Typical Geotextile Soil Wall Section

Total Page:16

File Type:pdf, Size:1020Kb

Typical Geotextile Soil Wall Section Slope to Drain Asphalt Pavement 2-Ft. Low Permeability Soil Shotcrete Cover or Gravel Borrow if Facing Under Pavement Geotextile 12" (Typical) Layer Temporary (Typical) Excavation Slope 1H (As required for safety.) Suitable Granular 6V Max. Seepage. Backfill (see material specification 3). Batter 3" Diameter Weep Holes Drainage Sand and at 10-Ft. Horizontal Gravel Layer Against Spacing and 1 Foot Backslope of Excavation Above Ground Surface 2-Ft. Min. 2-Ft. Min. Embedment NOT TO SCALE Existing MATERIALS 3-Ft. Min. Ground Overlap Fill hatched area with quarry spalls following Surface 1. Drainage Sand should meet the following gradation Subdrain Pipe (Tightline through wall (Modified City of Seattle Mineral Aggregate Type 26): and daylight at selected locations) wall construction. Sieve Size % Passing by Weight 4. SUBDRAIN PIPE 1-inch 100 a Perforated or slotted pipe; tight joints; sloped to drain 3. Keep the excavation free of water. A geotechnical (6"/100' min. slope); provide clean-outs; min. diameter: 3/4-inch 85 to 95 engineer should evaluate the prepared subgrade 4 inches. before placing fill. 1/4-inch 30 to 60 No. 8 20 to 50 b Perforated pipe holes (1/8-in. to 3/8-in. dia.) to be in 4. If soft or loose materials are present in the subgrade, No. 50 3 to 12 lower half of pipe with lower quarter segment they should be removed and replaced with compacted No. 200 0 to 1 unperforated for water flow. granular backfill. (by wet sieving) (non-plastic fines) c Slotted pipe to have 1/8-in. max. width slots. 5. Wall system to be designed by a professional engineer. An alternative to drainage sand and gravel is a d Surround Subdrain Pipe with a minimum of 6 inches of 50-50 mixture of washed pea gravel and washed washed 3/8" pea gravel. sand (Mineral Aggregate Type 6). 2. Washed 3/8" Pea Gravel to Meet City of Seattle NOTES Seattle Landslide Study Mineral Aggregate Type 9. 1. This figure is not for construction. It should only be Seattle Public Utilities 3. Granular backfill to consist of suitable on-site soil or used for information pertaining to potential design Seattle, Washington imported, clean, well-graded sand and gravel or concepts. Final design should be based on crushed rock; material must meet the following site-specific conditions and accomplished by a gradation criteria (City of Seattle Mineral Aggregate geotechnical engineer licensed as a professional engineer. TYPICAL GEOTEXTILE FIG. 2-15 Type No. 17); SOIL WALL SECTION Sieve Size % Passing by Weight 2. Compact backfill in 6-in. maximum loose lifts to at least 95% of Modified Proctor maximum dry density 3-inch 95-100 (ASTM D-1557). Backfill, drainage sand and gravel, October 1999 W-7992-01 1/4-inch 25 -75 and geotextile placement should be built up together. No. 200 0 to 5 SHANNON & WILSON, INC. (by wet sieving) (non-plastic fines) Geotechnical and Environmental Consultants FIG. 2-15.
Recommended publications
  • Mechanically Stabilized Embankments
    Part 8 MECHANICALLY STABILIZED EMBANKMENTS First Reinforced Earth wall in USA -1969 Mechanically Stabilized Embankments (MSEs) utilize tensile reinforcement in many different forms: from galvanized metal strips or ribbons, to HDPE geotextile mats, like that shown above. This reinforcement increases the shear strength and bearing capacity of the backfill. Reinforced Earth wall on US 50 Geotextiles can be layered in compacted fill embankments to engender additional shear strength. Face wrapping allows slopes steeper than 1:1 to be constructed with relative ease A variety of facing elements may be used with MSEs. The above photo illustrates the use of hay bales while that at left uses galvanized welded wire mesh HDPE geotextiles can be used as wrapping elements, as shown at left above, or attached to conventional gravity retention elements, such as rock-filled gabion baskets, sketched at right. Welded wire mesh walls are constructed using the same design methodology for MSE structures, but use galvanized wire mesh as the geotextile 45 degree embankment slope along San Pedro Boulevard in San Rafael, CA Geotextile soil reinforcement allows almost unlimited latitude in designing earth support systems with minimal corridor disturbance and right-of-way impact MSEs also allow roads to be constructed in steep terrain with a minimal corridor of disturbance as compared to using conventional 2:1 cut and fill slopes • Geotextile grids can be combined with low strength soils to engender additional shear strength; greatly enhancing repair options when space is tight Geotextile tensile soil reinforcement can also be applied to landslide repairs, allowing selective reinforcement of limited zones, as sketch below left • Short strips, or “false layers” of geotextiles can be incorporated between reinforcement layers of mechanically stabilized embankments (MSE) to restrict slope raveling and erosion • Section through a MSE embankment with a 1:1 (45 degree) finish face inclination.
    [Show full text]
  • Porosity and Permeability Lab
    Mrs. Keadle JH Science Porosity and Permeability Lab The terms porosity and permeability are related. porosity – the amount of empty space in a rock or other earth substance; this empty space is known as pore space. Porosity is how much water a substance can hold. Porosity is usually stated as a percentage of the material’s total volume. permeability – is how well water flows through rock or other earth substance. Factors that affect permeability are how large the pores in the substance are and how well the particles fit together. Water flows between the spaces in the material. If the spaces are close together such as in clay based soils, the water will tend to cling to the material and not pass through it easily or quickly. If the spaces are large, such as in the gravel, the water passes through quickly. There are two other terms that are used with water: percolation and infiltration. percolation – the downward movement of water from the land surface into soil or porous rock. infiltration – when the water enters the soil surface after falling from the atmosphere. In this lab, we will test the permeability and porosity of sand, gravel, and soil. Hypothesis Which material do you think will have the highest permeability (fastest time)? ______________ Which material do you think will have the lowest permeability (slowest time)? _____________ Which material do you think will have the highest porosity (largest spaces)? _______________ Which material do you think will have the lowest porosity (smallest spaces)? _______________ 1 Porosity and Permeability Lab Mrs. Keadle JH Science Materials 2 large cups (one with hole in bottom) water marker pea gravel timer yard soil (not potting soil) calculator sand spoon or scraper Procedure for measuring porosity 1.
    [Show full text]
  • Technical Supplement 14D--Geosynthetics in Stream Restoration
    Technical Geosynthetics in Stream Restoration Supplement 14D (210–VI–NEH, August 2007) Technical Supplement 14D Geosynthetics in Stream Restoration Part 654 National Engineering Handbook Issued August 2007 Cover photo: Inert or manmade materials can be used in restoration de- signs where immediate stability is required and can be used in concert with vegetation. Advisory Note Techniques and approaches contained in this handbook are not all-inclusive, nor universally applicable. Designing stream restorations requires appropriate training and experience, especially to identify conditions where various approaches, tools, and techniques are most applicable, as well as their limitations for design. Note also that prod- uct names are included only to show type and availability and do not constitute endorsement for their specific use. (210–VI–NEH, August 2007) Technical Geosynthetics in Stream Restoration Supplement 14D Contents Purpose TS14D–1 Introduction TS14D–1 Materials TS14D–1 Geotextile ....................................................................................................... TS14D–1 Geogrid ........................................................................................................... TS14D–1 Geonet ............................................................................................................ TS14D–2 Geocell ........................................................................................................... TS14D–2 Rolled erosion control products ................................................................
    [Show full text]
  • Performance of Nonwoven Geotextiles on Soil Drainage and Filtration Nour-Eddine Sabiri, Adeline Caylet, Agnès Montillet, Laurence Le Coq, Yves Durkheim
    Performance of nonwoven geotextiles on soil drainage and filtration Nour-Eddine Sabiri, Adeline Caylet, Agnès Montillet, Laurence Le Coq, Yves Durkheim To cite this version: Nour-Eddine Sabiri, Adeline Caylet, Agnès Montillet, Laurence Le Coq, Yves Durkheim. Performance of nonwoven geotextiles on soil drainage and filtration. European Journal of Environmental and Civil Engineering, Taylor & Francis, 2017, 10.1080/19648189.2017.1415982. hal-01741182 HAL Id: hal-01741182 https://hal.archives-ouvertes.fr/hal-01741182 Submitted on 21 Aug 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Performance of nonwoven geotextiles on soil drainage and filtration Nour-Eddine Sabiria, Adeline Cayleta,b, Agnès Montilleta, Laurence Le Coqa and Yves Durkheimc auniversité de nantes, gEpEa, umr-CnrS 6144, nantes, france; buniversité de Bretagne Sud, frE CnrS 3744, irdl, pontivy, france; cafitEX, Champhol, france ABSTRACT The selection of a geotextile to prevent the soil suffusion in a civil engineering ARTICLE HISTORY work is a classical problem. The internal erosion is a key factor as the migration received 8 march 2017 of fine particles damages the integrity of the soil structure. This work deals accepted 6 december 2017 with the problem of using a draining system consisting of a layer of soil and a KEYWORDS geotextile sheet in order to prevent soil suffusion.
    [Show full text]
  • Method 9100: Saturated Hydraulic Conductivity, Saturated Leachate
    METHOD 9100 SATURATED HYDRAULIC CONDUCTIVITY, SATURATED LEACHATE CONDUCTIVITY, AND INTRINSIC PERMEABILITY 1.0 INTRODUCTION 1.1 Scope and Application: This section presents methods available to hydrogeologists and and geotechnical engineers for determining the saturated hydraulic conductivity of earth materials and conductivity of soil liners to leachate, as outlined by the Part 264 permitting rules for hazardous-waste disposal facilities. In addition, a general technique to determine intrinsic permeability is provided. A cross reference between the applicable part of the RCRA Guidance Documents and associated Part 264 Standards and these test methods is provided by Table A. 1.1.1 Part 264 Subpart F establishes standards for ground water quality monitoring and environmental performance. To demonstrate compliance with these standards, a permit applicant must have knowledge of certain aspects of the hydrogeology at the disposal facility, such as hydraulic conductivity, in order to determine the compliance point and monitoring well locations and in order to develop remedial action plans when necessary. 1.1.2 In this report, the laboratory and field methods that are considered the most appropriate to meeting the requirements of Part 264 are given in sufficient detail to provide an experienced hydrogeologist or geotechnical engineer with the methodology required to conduct the tests. Additional laboratory and field methods that may be applicable under certain conditions are included by providing references to standard texts and scientific journals. 1.1.3 Included in this report are descriptions of field methods considered appropriate for estimating saturated hydraulic conductivity by single well or borehole tests. The determination of hydraulic conductivity by pumping or injection tests is not included because the latter are considered appropriate for well field design purposes but may not be appropriate for economically evaluating hydraulic conductivity for the purposes set forth in Part 264 Subpart F.
    [Show full text]
  • Downloaded from the Online Library of the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE)
    INTERNATIONAL SOCIETY FOR SOIL MECHANICS AND GEOTECHNICAL ENGINEERING This paper was downloaded from the Online Library of the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE). The library is available here: https://www.issmge.org/publications/online-library This is an open-access database that archives thousands of papers published under the Auspices of the ISSMGE and maintained by the Innovation and Development Committee of ISSMGE. Localized mobilization of geotextile reinforcement force at failure surface Mobilisation localisee de la force de renforcement du geotextile en surface de rupture P.V. Long, D.T. Bergado & A. S. Balasubramaniam - School o i C ivil Engineering, Asian Institute of Technology (AIT), Bangkok, Thailand P. Delmas - Bidim, France ABSTRACT: The orientation and magnitude of geotextile reinforcement force associated with slip failure are the key parameters affecting on the stability analyses of reinforced embankments. Presently, these parameters have been selected arbitrarily and even independently. The large direct shear tests with inclined geotextile reinforcements as well as the finite element modelling for reinforced- soil mass that simulate the actual conditions of slip failure in the field have been conducted for investigating the relationship between the inclination factor, the reinforcement stiffness, and the localized mobilization of reinforcement strain during shear. The orientation and magnitude of reinforcement force can then be estimated from this relation. 1 INTRODUCTION inside dimensions of 930 mm in length by 580 mm in width and Limit equilibrium analyses with circular slip surfaces have 560 mm in height. The compaction was done with 150 mm lift been commonly used in conventional design of geotextile at moisture content of 13 % and dry density of 17 kN/m3 reinforced embankments on soft ground.
    [Show full text]
  • Geosynthetic Reinforced Steep Slopes: Current Technology in the United States
    applied sciences Review Geosynthetic Reinforced Steep Slopes: Current Technology in the United States Yoo-Jae Kim 1,*, Ashley Russell Kotwal 1, Bum-Yean Cho 2, James Wilde 1 and Byung Hee You 1 1 Department of Engineering Technology, Materials Science, Engineering, and Commercialization Program, Texas State University, 601 University Drive, San Marcos, TX 78666, USA; [email protected] (A.R.K.); [email protected] (J.W.); [email protected] (B.H.Y.) 2 Department of Fire Safety Research, Korea Institute of Civil Engineering and Building Technology, 64 Ma-doro 182beon-gil, Mado-myeon, Hwaseong-si, Gyeonggi-do 18544, Korea; [email protected] * Correspondence: [email protected]; Tel.: +1-512-245-6309 Received: 5 April 2019; Accepted: 13 May 2019; Published: 16 May 2019 Abstract: Geosynthetics is a crucial mechanism in which the earth structures can be mechanically stabilized through strength enforcing tensile reinforcement. Moreover, geosynthetic reinforcement stabilizes steep slopes through incorporating the polymeric materials, becoming one of the most cost-effective methods in not only accommodating budgetary restrictions but also alleviating space constraints. In order to explicate on the applicability and widen the understanding of geosynthetic reinforcement technology, a synthesis study was conducted on geosynthetic reinforced steep slope. This study is very important because in not only highlighting the advantages and limitations of using geosynthetic reinforcement but also in investigating the current construction and design methods with a view to determining which best practices can be employed. Furthermore, this study also identified and assessed the optimal condition of the soil, performance measures, construction specifications, design criteria, and geometry of the slope.
    [Show full text]
  • Comparison of Hydraulic Conductivities for a Sand and Gravel Aquifer in Southeastern Massachusetts, Estimated by Three Methods by LINDA P
    Comparison of Hydraulic Conductivities for a Sand and Gravel Aquifer in Southeastern Massachusetts, Estimated by Three Methods By LINDA P. WARREN, PETER E. CHURCH, and MICHAEL TURTORA U.S. Geological Survey Water-Resources Investigations Report 95-4160 Prepared in cooperation with the MASSACHUSETTS HIGHWAY DEPARTMENT, RESEARCH AND MATERIALS DIVISION Marlborough, Massachusetts 1996 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director For additional information write to: Copies of this report can be purchased from: Chief, Massachusetts-Rhode Island District U.S. Geological Survey U.S. Geological Survey Earth Science Information Center Water Resources Division Open-File Reports Section 28 Lord Road, Suite 280 Box 25286, MS 517 Marlborough, MA 01752 Denver Federal Center Denver, CO 80225 CONTENTS Abstract.......................................................................................................................^ 1 Introduction ..............................................................................................................................................................^ 1 Hydraulic Conductivities Estimated by Three Methods.................................................................................................... 3 PenneameterTest.............................................................^ 3 Grain-Size Analysis with the Hazen Approximation............................................................................................. 8 SlugTest...................................................^
    [Show full text]
  • Gravel Roads Maintenance & Frontrunner Training Workshop
    A Ditch In Time Gravel Roads Maintenance Workshop 1 So you think you’ve got a wicked driveway 2 1600’ driveway with four switchbacks and 175’ of elevation change (11% grade) 3 Rockhouse Development, Conway 4 5 6 Swift River (left) through National Forest into Saco River that drains the MWV Valley’s developments 7 The best material starts as solid rock that is drilled & blasted… 8 Then crushed into smaller pieces and screened to produce specific size aggregate 9 How strong should it be? One big truck = 10,000 cars! 10 11 The road surface… • Lots of small aggregate (stones) to provide strength with a shape that will lock stones together to support wheels • Sufficient “fines,” the binder that will lock the stones together, to keep the stones from moving around 12 • The stone: hard and uniform in size and more angular than that made just from screening bank run gravel 13 • A proper combination of correctly sized broken rock, sand and silt/clay soil materials will produce a road surface that hardens into a strong and stable crust that forms a reasonably impervious “roof” to our road • An improper balance- a surface that is loose, soft & greasy when wet, or excessively dusty when dry (see samples) 14 One way to judge whether gravel will pack or not… 15 Here’s another way… 16 Or: The VeryFine test The sticky palm test As shown in the Camp Roads manual 17 • “Dirty” gravel packs but does not drain • “Clean” gravel drains but does not pack 18 Other road surfacing materials: • Rotten Rock- traditional surfacing material in the Mt Washington Valley
    [Show full text]
  • (Sds) : Sand & Gravel
    SAFETY DATA SHEET (SDS) : SAND & GRAVEL SECTION I – IDENTIFICATION PRODUCT IDENTIFIER TRADE NAME OTHER SYNONYMS Natural Sand & Gravel, Gravel Gravel Sand Construction Aggregate, River Rock, Pea Gravel, Course Aggregate RECOMMENDED USE AND RESTRICTION ON USE Used for construction purposes This product is not intended or designed for and should not be used as an abrasive blasting medium or for foundry applications. MANUFACTURER/SUPPLIER INFORMATION Martin Marietta Materials 4123 Parklake Ave Raleigh, North Carolina 27612 Phone: 919-781-4550 For additional health, safety or regulatory information and other emergency situations, call 919-781-4550 SECTION II – HAZARD(S) IDENTIFICATION HAZARD CLASSIFICATION: Category 1A Carcinogen Category 1 Specific Target Organ Toxicity (STOT) following repeated exposures Category 1 Eye Damage Category 1 Skin Corrosive SIGNAL WORD: DANGER HAZARD STATEMENTS: May cause cancer by inhalation. Causes damage to lungs, kidneys and autoimmune system through prolonged or repeated exposure by inhalation. Causes severe skin burns and serious eye damage. PRECAUTIONARY STATEMENTS Do not handle until the safety information presented in this SDS has been read and understood. Do not breathe dusts or mists. Do not eat, drink or smoke while manually handling this product. Wash skin thoroughly after manually handling. If swallowed: Rinse mouth and do not induce vomiting. If on skin (or hair): Rinse skin after manually handling and wash contaminated clothing if there is potential for direct skin contact before reuse. If inhaled excessively: Remove person to fresh air and keep comfortable for breathing. If in eyes: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do, and continue rinsing.
    [Show full text]
  • Step 2-Soil Mechanics
    Step 2 – Soil Mechanics Introduction Webster defines the term mechanics as a branch of physical science that deals with energy and forces and their effect on bodies. Soil mechanics is the branch of mechanics that deals with the action of forces on soil masses. The soil that occurs at or near the surface of the earth is one of the most widely encountered materials in civil, structural and architectural engineering. Soil ranks high in degree of importance when compared to the numerous other materials (i.e. steel, concrete, masonry, etc.) used in engineering. Soil is a construction material used in many structures, such as retaining walls, dams, and levees. Soil is also a foundation material upon which structures rest. All structures, regardless of the material from which they are constructed, ultimately rest upon soil or rock. Hence, the load capacity and settlement behavior of foundations depend on the character of the underlying soils, and on their action under the stress imposed by the foundation. Based on this, it is appropriate to consider soil as a structural material, but it differs from other structural materials in several important aspects. Steel is a manufactured material whose physical and chemical properties can be very accurately controlled during the manufacturing process. Soil is a natural material, which occurs in infinite variety and whose engineering properties can vary widely from place to place – even within the confines of a single construction project. Geotechnical engineering practice is devoted to the location of various soils encountered on a project, the determination of their engineering properties, correlating those properties to the project requirements, and the selection of the best available soils for use with the various structural elements of the project.
    [Show full text]
  • Geotextile Filter Design, Application, and Product Selection Guide
    geotextile filter design, application, and product selection guide Marine & Transportation Engineering GEOTEXTILE FILTER DESIGN, APPLICATION, AND PRODUCT SELECTION GUIDE Drainage and Erosion Control Applications TABLE OF Introduction and Explanation of the Problem ....................................... 1 CONTENTS The Mirafi® Solution ...................................................................... 1 Systematic Design Approach .......................................................... 2 Step One: Application Filter Requirements ................................................ 3 Step Two: Boundary Conditions ............................................................. 3 Step Three: Soil Retention Requirements .................................................... 4 Step Four: Geotextile Permeability Requirements ........................................ 5 Step Five: Anti-Clogging Requirements .................................................... 6 Step Six: Survivability Requirements ..................................................... 7 Step Seven: Durability Requirements ......................................................... 7 Geotextile Filter Selection Guide ...................................................... 8 Geotextile Filter Minimum Average Physical Properties Chart ........................................................ 10 INTRODUCTION Drainage Aggregate trench and blanket drains are commonly used to drain water from AND EXPLANATION OF surrounding soils or waste materials. These drains are typically installed less than
    [Show full text]