3D Printing Quarterly Report—Q22020 3D PRINTING–A FAST-MOVING MARKET Developments in 3D Printing a Sector by Sector Overview
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Novel Concept for the Study of Heterogeneous Robotic Swarms
Swarmanoid: a novel concept for the study of heterogeneous robotic swarms M. Dorigo, D. Floreano, L. M. Gambardella, F. Mondada, S. Nolfi, T. Baaboura, M. Birattari, M. Bonani, M. Brambilla, A. Brutschy, D. Burnier, A. Campo, A. L. Christensen, A. Decugni`ere, G. Di Caro, F. Ducatelle, E. Ferrante, A. F¨orster, J. Martinez Gonzales, J. Guzzi, V. Longchamp, S. Magnenat, N. Mathews, M. Montes de Oca, R. O’Grady, C. Pinciroli, G. Pini, P. R´etornaz, J. Roberts, V. Sperati, T. Stirling, A. Stranieri, T. St¨utzle, V. Trianni, E. Tuci, A. E. Turgut, and F. Vaussard. IRIDIA – Technical Report Series Technical Report No. TR/IRIDIA/2011-014 July 2011 IRIDIA – Technical Report Series ISSN 1781-3794 Published by: IRIDIA, Institut de Recherches Interdisciplinaires et de D´eveloppements en Intelligence Artificielle Universite´ Libre de Bruxelles Av F. D. Roosevelt 50, CP 194/6 1050 Bruxelles, Belgium Technical report number TR/IRIDIA/2011-014 The information provided is the sole responsibility of the authors and does not necessarily reflect the opinion of the members of IRIDIA. The authors take full responsibility for any copyright breaches that may result from publication of this paper in the IRIDIA – Technical Report Series. IRIDIA is not responsible for any use that might be made of data appearing in this publication. IEEE ROBOTICS & AUTOMATION MAGAZINE, VOL. X, NO. X, MONTH 20XX 1 Swarmanoid: a novel concept for the study of heterogeneous robotic swarms Marco Dorigo, Dario Floreano, Luca Maria Gambardella, Francesco Mondada, Stefano Nolfi, Tarek Baaboura, -
Shape-Memory Polymeric Artificial Muscles Stress That Is Applied to the Polymer [8,70]
molecules Review Shape-Memory Polymeric Artificial Muscles: Mechanisms, Applications and Challenges 1, 1, 1, , 1 2 2 Yujie Chen y , Chi Chen y, Hafeez Ur Rehman * y, Xu Zheng , Hua Li , Hezhou Liu and Mikael S. Hedenqvist 3,* 1 State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; [email protected] (Y.C.); [email protected] (C.C.); [email protected] (X.Z.) 2 Collaborative Innovation Centre for Advanced Ship and Dee-Sea Exploration, Shanghai Jiao Tong University, Shanghai 200240, China; [email protected] (H.L.); [email protected] (H.L.) 3 Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden * Correspondence: [email protected] (H.U.R.); [email protected] (M.S.H.) These authors contributed equally to this work. y Academic Editor: Laura Peponi Received: 7 July 2020; Accepted: 3 September 2020; Published: 16 September 2020 Abstract: Shape-memory materials are smart materials that can remember an original shape and return to their unique state from a deformed secondary shape in the presence of an appropriate stimulus. This property allows these materials to be used as shape-memory artificial muscles, which form a subclass of artificial muscles. The shape-memory artificial muscles are fabricated from shape-memory polymers (SMPs) by twist insertion, shape fixation via Tm or Tg, or by liquid crystal elastomers (LCEs). The prepared SMP artificial muscles can be used in a wide range of applications, from biomimetic and soft robotics to actuators, because they can be operated without sophisticated linkage design and can achieve complex final shapes. -
(SAM) Alloy Parts Using X-Ray CT
Research Article ISSN 2639-9466 Nanotechnology & Applications Porosity Determination and Characterization of Binder Jet Printed Structural Amorphous Metal (SAM) Alloy Parts Using X-Ray CT Amamchukwu B. Ilogebe1*, Benedict Uzochukwu2, and Amy M. Elliot3 1North Carolina A&T State University, US. *Correspondence: Amamchukwu B. Ilogebe, North Carolina A&T State University, 2Virginia State University, US. US. 3Oak Ridge National Laboratory, US. Received: 04 November 2019; Accepted: 29 November 2019 Citation: Amamchukwu B. Ilogebe, Benedict Uzochukwu, Amy M. Elliot. Porosity Determination and Characterization of Binder Jet Printed Structural Amorphous Metal (SAM) Alloy Parts Using X-Ray CT. Nano Tech Appl. 2019; 2(1): 1-6. ABSTRACT The advent of Binder jet additive manufacturing continued to a revelation in the manufacture of intricate metal parts. This technology has been utilized in medical, aerospace and automotive industries, not much has been reported in the printing of parts from amorphous metal powders, which have found numerous applications in engineering because of their special properties. In this research, special emphasis was placed on two different manufacturing methods for structural amorphous metal alloy (SAM alloy); Die compaction and Binder jet printing. Samples of SAM alloy was created from these two-manufacturing methods and were subsequently, sintered, analyzed and compared. Previous studies show that as much as up to 50% porosity could be recorded in binder jet printing [1,2]. In this regard, different techniques were used to determine the percentage porosity from both manufacturing methods. The Archimedes method was used to determine the density and percentage porosity of the parts from the two methods. Similarly, percentage porosity was also determined using different tools in computed tomography (CT) analysis. -
3D Printing of Concrete Structures
Eindhoven University of Technology MASTER 3D printing of concrete structures Wolfs, Rob Award date: 2015 Link to publication Disclaimer This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required minimum study period may vary in duration. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain 3D PRINTING OF CONCRETE STRUCTURES GRADUATION THESIS R.J.M. Wolfs Eindhoven University of Technology Department of the Built Environment Master Architecture, Building and Planning Specialization Structural Design Title: 3D PRINTING OF CONCRETE STRUCTURES Report number: A-2015.85 Version: 1.0 Date: February 2015 Student: R.J.M. (Rob) Wolfs ID-number: 0675429 Email: [email protected] [email protected] Graduation committee: Prof. Dr. Ir. T.A.M. Salet 1 (Chairman) Dr. Dipl.–Ing. J. Beetz 1 Dr.-Ing. -
Paste Deposition Modelling, Deconstructing the Additive Manufacturing Process: Development of Novel Multi- Material Tools and Techniques for Craft Practitioners
PASTE DEPOSITION MODELLING, DECONSTRUCTING THE ADDITIVE MANUFACTURING PROCESS: DEVELOPMENT OF NOVEL MULTI- MATERIAL TOOLS AND TECHNIQUES FOR CRAFT PRACTITIONERS A thesis submitted for the degree of Doctor of Philosophy by Esteban Schunemann Department of Engineering and Design, Brunel University London 2015 ii I. Abstract A novel paste deposition process was developed to widen the range of possible materials and applications. This experimental process developed an increasingly complex series of additive manufacturing machines, resulting in new combinations of novel materials and deposition paths without sacrificing many of the design freedoms inherit in the craft process. The investigation made use of open-source software together with an approach to programming user originated infill geometries to form structural parts, differing from the somewhat automated processing by 'closed' commercial RP systems. A series of experimental trials were conducted to test a range of candidate materials and machines which might be suitable for the PDM process. The combination of process and materials were trailed and validated using a series of themed case studies including medical, food industry and jewellery. Some of the object created great interest and even, in the case of the jewellery items, won awards. Further evidence of the commercial validity was evidenced through a collaborative partnership resulting in the development of a commercial version of the experimental system called Newton3D. A number of exciting potential future directions having been opened up by this project including silicone fabrics, bio material deposition and inclusive software development for user originated infills and structures. iii II. Acknowledgments First and foremost I would like to extend my deepest gratitude to both my supervisors, Dr. -
Conductive Nanocomposite Fabrication by Graphene Enriched Polypropylene Master Batch
© 2015 IJEDR | Volume 3, Issue 4 | ISSN: 2321-9939 Conductive Nanocomposite fabrication by Graphene enriched Polypropylene Master Batch 1M.Naushad Ali, 2H.Alamri, 3Abdul Wahab 1 Bottom Up Technologies Corporation, Jharkhand, India 2Physics Deptt, Umm Al-Qura University, Makkah, KSA 3Engineering Grad Trainee, Jharkhand Rai UniversitSy, Ranchi, India ________________________________________________________________________________________________________ Abstract - The nanocomposites are the most attentive topic of the study currently in the material science world which is likely to bring the industrial revolution. Graphene reinforced polypropylene nanocomposite was fabricated in the balanced formulation of filler & carrier additives through melt mixing process at the trend of industrial practices. The concept of molecular arrangement was hypothesized and executed out practically. The master batch was prepared as the primary preparatory work using Twin Screw Extruder and the finished product was obtained by using the same master batch through injection molding. The percolation threshold was considered to be 5% wt. Graphene in finished product which has been proved as the innovative product line. A series of destructive and non-destructive tests and characterization techniques were conducted, analyzed and presented. First time the entire range of properties has been explored including electrical, thermal, gas barrier & mechanical properties. The resulted product has proven to be used at the industrial scale immediately and has opened the new directions in making use of other class of polymers innovatively. Key words - Nanocomposite, Electrical conductivity, Graphene, Polypropylene, Industrial applications, Nanotechnology I. Introduction Nanomaterials own the Quantum confinement which consequences the exceptional outstanding properties and lead to the enormous range of revolutionary applications. In this regard, the discovery of graphene and graphene-based polymer nanocomposites is playing a vital role in modern science and technology [1]. -
Global Risks Report 2017 12Th Edition
Strategic Partner of the Report The Global Risks Report 2017 12th Edition Strategic Partners Marsh & McLennan Companies Zurich Insurance Group Academic Advisers National University of Singapore Oxford Martin School, University of Oxford Wharton Risk Management and Decision Processes Center, University of Pennsylvania Contents 4 Preface By Klaus Schwab 5 Foreword 6 Executive Summary 8 Introduction 10 Part 1: Global Risks 2017 – Economy: Growth and Reform – Society: Rebuilding Communities – Technology: Managing Disruption – Geopolitics: Strengthening Cooperation – Environment: Accelerating Action 22 Part 2: Social and Political Challenges 23 2.1 Western Democracy in Crisis? 29 2.2 Fraying Rule of Law and Declining Civic Freedoms: Citizens and Civic Space at Risk 35 2.3 The Future of Social Protection Systems 42 Part 3: Emerging Technologies 43 3.1 Understanding the Technology Risk Landscape 48 3.2 Assessing the Risk of Artificial Intelligence 53 3.3 Physical Infrastructure Networks and the Fourth Industrial Revolution 58 Conclusion 60 Appendices Appendix A: Description of Global Risks, Trends and Emerging Technologies 2017 Appendix B: Global Risks Perception Survey 2016 and Methodology 68 Acknowledgements As in previous years, the analysis contained in this Report builds on the Preface annual Global Risks Perception Survey, completed by almost 750 members of the World Economic Forum’s global multistakeholder community. The year 2017 will present a pivotal moment for the global community. The threat of a less cooperative, more inward-looking world also creates the opportunity to address global risks and the trends that drive them. This will require responsive and responsible leadership with a deeper commitment to inclusive development and equitable growth, both nationally and globally. -
Non-Covalent Interactions on Polymer-Graphene Nanocomposites and Their Effects on the Electrical Conductivity
polymers Article Non-Covalent Interactions on Polymer-Graphene Nanocomposites and Their Effects on the Electrical Conductivity Jorge Luis Apátiga 1, Roxana Mitzayé del Castillo 1 , Luis Felipe del Castillo 2, Alipio G. Calles 1, Raúl Espejel-Morales 1, José F. Favela 3 and Vicente Compañ 4,* 1 Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Interior s/n, Ciudad Universitaria, Mexico City 04510, Mexico; [email protected] (J.L.A.); [email protected] or [email protected] (R.M.d.C.); [email protected] (A.G.C.); [email protected] (R.E.-M.) 2 Departamento de Polímeros, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Interior s/n, Ciudad Universitaria, Mexico City 04510, Mexico; [email protected] 3 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Interior s/n, Ciudad Universitaria, Mexico City 04510, Mexico; [email protected] 4 Departamento de Termodinámica Aplicada, Escuela Técnica Superior de Ingenieros Industriales (ETSII), Campus de Vera s/n, Universitat Politécnica de Valencia, 46020 Valencia, Spain * Correspondence: [email protected]; Tel.: +34-963-879-328 Abstract: It is well known that a small number of graphene nanoparticles embedded in polymers enhance the electrical conductivity; the polymer changes from being an insulator to a conductor. The Citation: Apátiga, J.L.; del Castillo, graphene nanoparticles induce several quantum effects, non-covalent interactions, so the percola- R.M.; del Castillo, L.F.; Calles, A.G.; tion threshold is accelerated. We studied five of the most widely used polymers embedded with Espejel-Morales, R.; Favela, J.F.; graphene nanoparticles: polystyrene, polyethylene-terephthalate, polyether-ketone, polypropylene, Compañ, V. -
Template-Assisted Electrochemical Synthesis of Cdse Quantum Dots—Polypyrrole Composite Nanorods
applied sciences Article Template-Assisted Electrochemical Synthesis of CdSe Quantum Dots—Polypyrrole Composite Nanorods Won-Seok Kang 1, Taegon Oh 2, Gwang-Hyeon Nam 1, Hyo-Sop Kim 1, Ki-Suk Kim 3, Sun-Hyun Park 3, Jae-Ho Kim 1,* and Jae-Hyeok Lee 3,* 1 Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea; [email protected] (W.-S.K.); [email protected] (G.-H.N.); [email protected] (H.-S.K.) 2 Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea; [email protected] 3 R&D Center for Advanced Pharmaceuticals & Evaluation, Korea Institute of Toxicology, Daejeon 34114, Korea; [email protected] (K.-S.K.); [email protected] (S.-H.P.) * Correspondence: [email protected] (J.-H.K.); [email protected] (J.-H.L.); Tel.: +82-31-219-2517 (J.-H.K.); +82-42-610-8338 (J.-H.L.) Received: 26 July 2020; Accepted: 26 August 2020; Published: 28 August 2020 Abstract: Luminescent nanoparticles have reached a high level of maturity in materials and spectral tunability for optics and optoelectronics. However, the lack of facile methodology for heterojunction formation of the nanoparticles provides many challenges for scalability. In this paper we demonstrate a simple procedure to synthesize a nanoparticle-embedded polymer nanorod hybrid structure via a template-based electrochemical method using anodic aluminum oxide membranes. This method enables the formation of interactive nanostructures wherein the interface area between the two components is maximized. As a proof of concept, semiconducting CdSe nanoparticles were embedded in polypyrrole nanorods with dimensions that can be finely tuned. -
Desktop Metal Is Set to Change How Metal Is Manufactured with the Fastest Metal 3D Printing System in the World
April 25, 2017 Desktop Metal Is Set to Change How Metal Is Manufactured with the Fastest Metal 3D Printing System in the World For the First Time, Affordable, Safe and Precise Metal 3D Printing for Both Prototyping and Mass Production Will Be a Reality Across Industries - at Speeds 100x Faster BURLINGTON, Mass.--(BUSINESS WIRE)-- Desktop Metal, the company committed to making metal 3D printing accessible to global manufacturers and engineers, today launched two systems covering the full product lifecycle -- from prototyping to mass production -- which mark a fundamental shift in how products will be developed and brought to market. The DM Studio and DM Production systems change the rules of traditional metal manufacturing solutions with the advent of first-of-its-kind innovative approaches that reduce costs and significantly increase speed, safety, and print quality. This Smart News Release features multimedia. View the full release here: http://www.businesswire.com/news/home/20170425005401/en/ The first office- friendly metal 3D printing system for rapid prototyping, the Desktop Metal Studio System is 10 times less expensive than existing technology today. The system is a complete platform, including both a printer, starting at $49,900, and microwave-enhanced sintering furnace that, The DM Studio System is the world’s first affordable, office-friendly metal 3D together, deliver printing system. (Photo: Business Wire) complex and even impossible geometries of metal 3D printed parts right in an engineer’s office or on the shop floor. The DM Studio System: Eliminates the need for expensive, industrial facilities to safely house the technology. Unlike traditional metal 3D printing processes, the DM Studio System requires no hazardous powders, no lasers and no cutting tools to operate. -
Desktop Metal, Inc
Desktop Metal, Inc. Went public via SPAC with Trine Acquisition Corporation, Desktop Metal, Inc. is accelerating the transformation of manufacturing with end-to-end metal 3D printing solutions. The Company has developed the Studio System+, a three-part solution that automates metal 3D printing. The high resolution printing system is integrated through Desktop Metal’s cloud-based software and provides a seamless worklflow for printing metal parts in-house. • Address: 63 Third Avenue , , Burlington , MA, 01803 • Geographic Region: New England • Industry: Computers and Peripherals, Electronics / Instrumentation, Software • SIC Codes: 3577 - Computer Peripheral Equipment • NAICS Codes: 334119 - Other Computer Peripheral Equipment Manufacturing • Legal Counsel: Latham & Watkins LLP • Company Website: www.desktopmetal.com Key Management Investors • Rubino, Mike - CFO • BMW i Ventures • Schmitt, Peter - Chief Designer • DCVC • Sachs, Ely - Co-Founder • Ford Motor Company • Chiang, Yet-Ming - Co-Founder • Founder Collective • Heart, A. - Co-Founder • Future Fund • Schuh, Christopher - Co-Founder • GE Ventures • Fulop, Ric - Co-Founder, CEO, Director • Google Ventures (GV) • Myerberg, Jonah - Co-Founder, CTO • Kleiner Perkins Caufield & Byers LLC • Chin, Rick - Co-Founder, VP, Software Development (KPCB) • Zuberi, Bilal - Director • Koch Disruptive Technologies (KDT) • Hsieh, Wen - Director • Lowe's Companies, Inc. • Grayson, Dayna - Director • Lux Capital • Knight, Byron - Director • Moonrise Venture Partners • Papa, Steve - Director • New Enterprise -
Process, Structure, Property and Applications of Metallic Glasses
AIMS Materials Science, 3(3): 1022-1053. DOI: 10.3934/matersci.2016.3.1022 Received: 15 March 2016 Accepted: 07 July 2016 Published: 26 July 2016 http://www.aimspress.com/journal/Materials Short review Process, structure, property and applications of metallic glasses Bindusri Nair and B. Geetha Priyadarshini * Nanotech Research Innovation and Incubation Centre, PSG Institute of Advanced Studies, Coimbatore, Tamil Nadu, India-641004 * Correspondence: Email: [email protected]. Abstract: Metallic glasses (MGs) are gaining immense technological significance due to their unique structure-property relationship with renewed interest in diverse field of applications including biomedical implants, commercial products, machinery parts, and micro-electro-mechanical systems (MEMS). Various processing routes have been adopted to fabricate MGs with short-range ordering which is believed to be the genesis of unique structure. Understanding the structure of these unique materials is a long-standing unsolved mystery. Unlike crystalline counterpart, the outstanding properties of metallic glasses owing to the absence of grain boundaries is reported to exhibit high hardness, excellent strength, high elastic strain, and anti-corrosion properties. The combination of these remarkable properties would significantly contribute to improvement of performance and reliability of these materials when incorporated as bio-implants. The nucleation and growth of metallic glasses is driven by thermodynamics and kinetics in non-equilibrium conditions. This comprehensive review article discusses the various attributes of metallic glasses with an aim to understand the fundamentals of relationship process-structure-property existing in such unique class of material. Keywords: metallic glasses; glass transition; amorphous; mechanical properties 1. Introduction Metallic Glasses (MG) are a class of materials which has caught the eye of many researchers since Klement et al’s [1] first work on Au-Si alloys in early 1960’s.