The Kinematics of the Swashplate Engine with Two Rotating Pairs the Kinematics of the Swashplate Engine with Two Rotating Pairs Yu

Total Page:16

File Type:pdf, Size:1020Kb

The Kinematics of the Swashplate Engine with Two Rotating Pairs the Kinematics of the Swashplate Engine with Two Rotating Pairs Yu Available online at www.sciencedirect.com Available online at www.sciencedirect.com ScienceDirect AvailableScienceDirect online at www.sciencedirect.com Procedia Engineering 00 (2017)000–000 Procedia Engineering 00 (2017)000–000 www.elsevier.com/locate/procedia ScienceDirect www.elsevier.com/locate/procedia Procedia Engineering 206 (2017) 1722–1727 International Conference on Industrial Engineering, ICIE 2017 International Conference on Industrial Engineering, ICIE 2017 The Kinematics of the Swashplate Engine with two Rotating Pairs The Kinematics of the Swashplate Engine with two Rotating Pairs Yu. Pogulyaeva, O. Nikishinb,*, A. Zheltova a b, a a South UralYu. State University,Pogulyaev 76, Lenin, O. Ave Nikishinnue, Chelyabinsk*, 454080, A. Zheltov The Russian Federation b Chelyabinska South UralState State University, University, 129, 76,Bratiev Lenin Kashir Avenue,inykh Chelyabinsk st., Chelyabinsk 454080, 454001, The Russian The Russian Federation Federation bChelyabinsk State University, 129, Bratiev Kashirinykh st., Chelyabinsk 454001, The Russian Federation Abstract Abstract The use of axial engines instead of traditional crankshaft mechanisms opens up additional possibilities to improve the dimension Thecharacteristics, use of axial regulation engines instead displacement of tradi tionalvolume, crankshaft and compressi mechanismson ratio. opens The up complex additional study possibilities of motion to of improve all power the mechanism dimension characteristics,elements is required regulation for further displacement engine optimizationvolume, and andcompressi improvements.on ratio. The papercomplex presents study theof motiondesign of theall powermechanism mechanism of the elementsswashplate is axialrequired engine for withfurther two engine rotating optimization pairs. The andbasic improvements. features of the The engine paper design presents are thedescribed. design ofThe the parameters mechanism required of the swashplatefor the theoretical axial engine description with twoof the rotating engine pairs. kinematics The basic are definefeaturesd. Theof the mathematical engine design model are described.describing Thethe engineparameters kinematics required is proposed.for the theoretical The basic description relationship of betweenthe engine the kinematics main kinematic are define variablesd. The is mathematicaldescribed in a model uniform descri motionbing of the the engine swash kinematics plate. is proposed.© 2017 The The Authors. basic relationship Published by between Elsevier the B.V. main kinematic variables is described in a uniform motion of the swash plate. Peer-review© 2017 The underAuthors. responsibility Published by of Elsevierthe scientific Ltd. committee of the International Conference on Industrial Engineering. ©Peer-review 2017 The Authors.under responsibility Published by of Elsevierthe scientific B.V. committee of the International Conference on Industrial Engineering Keywords:Peer-review motion under analysis; responsibility swash-plate of theengine; scientific modeling committee and simulation. of the International Conference on Industrial Engineering. Keywords: motion analysis; swash-plate engine; modeling and simulation. 1. Introduction 1. Introduction The idea of the power mechanism design based on the axial arrangement of cylinders around the output shaft is knownThe ideafor a of long the time.power This mechanism type of desienginegn basedis also on know the axialn as “Barrelarrangement Engine” of cylinders[1]. One aroundof the firstthe output concepts shaft was is knownsuggested for bya longMaxwell time. in This 1905 type [2]. of One engine of the is firstalso Russianknown asaxial “Barrel engine Engine” has been [1]. designed One of theand firsttested concepts in 1918 was by suggestedStechkin andby MaxwellMikulin. inOne 1905 of [2].the Onemost of famous the first modern Russian designs axial engine is the hasengine been offered designed by and the testedcompany in 1918 “Duke by StechkinEngines”. andIn Russia, Mikulin. significant One of resultsthe most were famous obtained modern at the Institutedesigns SSCis the FSUE engine “NAMI” offered [3]. by The the searchcompany in the “Duke field Engines”.of axial engines In Russia, is still significant open [4-7]. results Constructors were obtained are attr at actedthe Institute to the opportunitiesSSC FSUE “NAMI” that can [3]. give The axial search engines in the unlike field oftraditional axial engines crankshaft is still engines. open [4-7]. The Constructorsimprovement are of dimeattractednsion to characteristics, the opportunities regula thattion can displacementgive axial engines volume unlike and traditionalcompression crankshaft ratio, low engines. internal Thefriction improvement and vibration of dimelevelsnsion are amongcharacteristics, them. regulation displacement volume and compressionThis paper ratio, focused low oninternal the kinematics friction and based vibration on the levels new areway among to attach them. the piston to the swash plate. The design featureThis ispaper a cylindrical focused onpusher the kinematics with the free based end on moving the new in waya cylindrical to attach chan the pistonnel of swashto the swashplate. Theplate. pusher The design is not feature is a cylindrical pusher with the free end moving in a cylindrical channel of swash plate. The pusher is not * Corresponding author. Tel.: +7-908-040-4448. * CorrespondingE-mail address: author. [email protected] Tel.: +7-908-040-4448. E-mail address: [email protected] 1877-7058 © 2017 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the scientific committee of the International Conference on Industrial Engineering . 1877-7058 © 2017 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the scientific committee of the International Conference on Industrial Engineering . 1877-7058 © 2017 The Authors. Published by Elsevier Ltd. Peer-review under responsibility of the scientific committee of the International Conference on Industrial Engineering. 10.1016/j.proeng.2017.10.704 10.1016/j.proeng.2017.10.704 1877-7058 Available online at www.sciencedirect.com Available online at www.sciencedirect.com ScienceDirect Yu. Pogulyaev et al. / Procedia Engineering 206 (2017) 1722–1727 1723 ScienceDirect 2 Yu. Pogulyaev, O. Nikishin, A. Zheltov / Procedia Engineering 00 (2017) 000–000 Procedia Engineering 00 (2017)000–000 www.elsevier.com/locate/procedia Procedia Engineering 00 (2017)000–000 connected to the piston directly. The piston is rigidly fixed to the rod. The rod consists of two parts: movable and www.elsevier.com/locate/procedia fixed. The fixed part of the rod is rigidly connected to the piston, and its axis coincides with the cylinder axis. The movable part of the rod is attached to the fixed part through the turning pair. The pusher is attached to the movable part of the rod through the another turning pair. International Conference on Industrial Engineering, ICIE 2017 2. Mathematical model of the kinematics of the power mechanism International Conference on Industrial Engineering, ICIE 2017 The Kinematics of the Swashplate Engine with two Rotating Pairs 2.1. Design description The Kinematics of the Swashplate Engine with two Rotating Pairs The general scheme of the mechanism is presented in figure 1. The crank 2 is connected to the shaft 1 and Yu. Pogulyaeva, O. Nikishinb,*, A. Zheltova interact with swash plate 3 over a surface, which slope angle is denoted by . The swash plate is fixed on the ball a b, a joint 4. The pusher 5 is inserted into swash plate channel 6 and joined to the movable part of the rod 8 through the a South UralYu. State University,Pogulyaev 76, Lenin, O. Ave Nikishinnue, Chelyabinsk*, 454080, A. Zheltov The Russian Federation b turning pair 7. The movable part of the rod joined to the fixed part of the rod 10 through the turning pair 9. The fixed Chelyabinska South UralState State University, University, 129, 76,Bratiev Lenin Kashir Avenue,inykh Chelyabinsk st., Chelyabinsk 454080, 454001, The Russian The Russian Federation Federation part of the rod is rigidly connected to the piston 11. The angle between the axis of the cylindrical channel and touch bChelyabinsk State University, 129, Bratiev Kashirinykh st., Chelyabinsk 454001, The Russian Federation surface of the crank is denoted by . The connection point of the pusher and the rod in the general case does not lie Abstract in the median plane of the swash plate. The rotation angle of the shaft is denoted by . Abstract The general scheme of the swash plate is presented in figure 2a. Some points were fixed on the swash plate. Point The use of axial engines instead of traditional crankshaft mechanisms opens up additional possibilities to improve the dimension O - center of a local coordinate system Ox0 y 00 z . Points A and B lie on the axis of the cylindrical channel 1 of the Thecharacteristics, use of axial regulation engines instead displacement of tradi tionalvolume, crankshaft and compressi mechanismson ratio. opens The up complex additional study possibilities of motion to of improve all power the mechanism dimension swash plate. The point A lies at the beginning of the channel, the point B lies at the end. Points M and N are characteristics,elements is required regulation for further displacement engine optimizationvolume, and andcompressi improvements.on ratio. The papercomplex presents study theof motiondesign of theall powermechanism mechanism of the swashplate axial engine with two rotating pairs. The basic features
Recommended publications
  • Conseil International
    Prof. Günter Elsbett: Controlled shift-liners for optimized scavenging, improved thermal efficiency and multi- stroke capability for opposed piston engines and conventional engines Page 2 Prof. Günter Elsbett: Controlled shift-liners for optimized scavenging, improved thermal efficiency and multi- stroke capability for opposed piston engines and conventional engines INTRODUCTION they are guided and supported by the surrounding cylinder material, leading to Opposed Piston Engines (OPEs) are low oscillating liner masses during shifting. looking back to 120 years of history and have been produced as Otto and Diesel engines, offering a promising challenge in specific output and thermal efficiency. Diesel-OPEs have been used regularly for commercial aircraft due to excellent power/weight ratio, but powering also merchant ships with big engines of several thousands of kW. Already 75 years ago a brake efficiency of more than 40% could be achieved. In recent decades these Fig.1 Cross-section of the 4SOPE engines seem to be forgotten while the research and development engineers put The presented experimental-OPE was just their main focus on emission improvement. created demonstrating the functions of the Conventional OPE-technology is known for hydraulically shifted liners in a fired engine. emission problems, especially caused by The parts are machined from full pieces of scraping lubrication oil into in- and outlet material. This OPE is applied with a simple ports, as common OPEs scavenging is mechanical fuel injection system, single- limited for use in 2-stroke engines only. hole pintle-nozzles and electric governor. Any emission treatment is not applied. Now some new developments in OPE- Data: Single-cylinder, 4-stroke, natural technology show their relevance to future aspirated, 108mm bore, 2x118mm stroke, power-train challenges.
    [Show full text]
  • The “Michell” Crankless Engine – Why Was It Not a Commercial Success?
    The Piston Engine Revolution The “Michell” Crankless Engine – Why was it not a commercial success? John A. Anning At the beginning of the twentieth century, when the internal combustion engine was being developed for automobiles and aircraft, some designers arranged for the cylinders to be parallel to the output shaft. These became known as axial or barrel engines. They utilised either the swash plate or wobbleplate principles. The most promising was the Michell Crankless Engine, which was patented in 1917. AGM Michell FRS (1870-1959) was an Australian engineer best known for the design of the “Michell” tilting pad thrust bearing, patented in the UK and Australia in 1905. By the end of WWI Michell was a wealthy man from royalties and applied the tilting pad principle to an axial engine. The principle was first applied to compressors and by 1920 the first IC engine was made. An advantage is that perfect primary and secondary balance can be achieved at all rotational speeds. Michell formed Crankless Engines (Australia) Pty Ltd. A number of engines were built and installed in existing production vehicles. He realised that for the future commercialisation an overseas involvement was essential so offices were opened in London and New York. The Michell crankless principle still remains the most efficient method of converting linear into rotary motion. By the late 1920s with the world depression the Australian company was forced into receivership. A business analysis is given as to the possible reasons for its failure to achieve commercial success. It deserves its place in the panoply of IC engine history.
    [Show full text]
  • Military Vehicle Options Arising from the Barrel Type Piston Engine
    Journal of Power Technologies 101 (1) (2021) 22–33 Military vehicle options arising from the barrel type piston engine Pawe l Mazuro1 and Cezary Chmielewski1,B 1Warsaw University of Technology B [email protected] Abstract in terms of efficiency, meaning that piston engines can deliver enhanced range and endurance. This is benefi- The article reviews knowledge about requirements for engines in cial in missions requiring a stopover for refueling and state-of-the-art unmanned aerial vehicles and tanks. Analysis of particularly useful for unmanned supply, observation design and operational parameters was carried out on selected and maritime missions. turboshaft and piston engines generating power in the range of 500 - 1500 kW (0.5 - 1.5 MW). The data was compared In contrast, land combat vehicles have significantly with the performance of innovative, barrel type piston engines, different drive unit requirements. High mobility en- which are likely to become an alternative drive solution in the ables the vehicle to rapidly change location after de- target vehicle groups. tection. To this end, the torque curve as a function of the rotational speed of the shaft is of decisive im- portance. Keywords: military UAV, tanks, turboshaft engines, piston engines, barrel type piston engines The complexity of tank engines adds an additional layer of requirements, impacting the reliability and durability of the power unit, and they come with re- 1 Introduction lated manufacturing and operating costs. In military land vehicles, the engine should be as small This article consolidates knowledge on options and as possible; the space saved can be used for other capabilities arising from use of the barrel type piston purposes.
    [Show full text]
  • Re'search Memorandum
    c~~ififf$\? --A- CANC&LLtk, -j&$&+u 7&Czte-/ - &St , Au / 7 B ‘@. El4 3 5 is RE’SEARCH MEMORANDUM STUDY OF COMPRESSOR SYSTEMS FOR A GAS-GENERATOR ENGINE c .-? By Bernard I. Sather and Max J. Tauschek I I Lewis Flight Propulsion Laboratory i I’; Cleveland, Ohio Th~5oxulxa- -Lb-I EiE?ia p$g$p~gyg”~ym”& n&dmccdaat*Lnuj-mr. mM.a~-y yn 1L ,rO.Lblt.d m Irr. -wb!me sty I p.r.*ll. In th mm&y md mnl mwrvb.althabEd~.~ Ct*Ur omM~~~mycmarra~~ . SC- M*. aml Lil --.2iHmMMkDZD= L?hudd!szatl:r*d-munba NATIONAL ADVISORY COM M FOR AERONAUTICS WASHINGTON April 13, 1949 viJ!=s-! $ AC .c 3mkuy - --m!sv Awcf+AlrlliAL -km --L \ WV F-a-3 VI - --- --S~~l~~~~~~~lll~ NACA RM No. RCA28 ._..-___- -- .-.--- NATIONAL ADvIsaaY colNEEE Fak AERo~mIcs ByBernardI.SatheramdMaxJ.T'auschek Various methods of providing omessor-capacity and pressure- ratio control in the gas-generatm type of compound engine over a range of altitudes frcm sea level to 50,000 feet ax8 presented. The analythal results indicated that the best method of con- trol is that in which the first stage cf compression is carried out in a variable-speed supercharger driven by a hydmulio slip coupling. The second stage of oc~apression oould be either a rotazy constant-pressure-ratio-type cmpressor or a piston-type ccaspressor, both driven at oonstant speed. The a.n3lysis also iradioatedthat the variation Crp the value of the load coefficient for the first and second stages cd? the rotary constant-pressure-tgpe cqessor combination was within reasonable limits and that the valve timing .
    [Show full text]
  • Variable Valve Timing - Wikipedia 8/28/20, 114 PM
    Variable valve timing - Wikipedia 8/28/20, 114 PM Variable valve timing In internal combustion engines, variable valve timing (VVT) is the process of altering the timing of a valve lift event, and is often used to improve performance, fuel economy or emissions. It is increasingly being used in combination with variable valve lift systems. There are many ways in which this can be achieved, ranging from mechanical devices to electro-hydraulic and camless systems. Increasingly strict emissions regulations are causing many automotive manufacturers to use VVT systems. Cylinder head of Honda K20Z3. This engine uses continuously variable Two-stroke engines use a power valve system to get similar timing for the inlet valves results to VVT. Contents Background theory Continuous versus discrete Cam phasing versus variable duration Typical effect of timing adjustments Challenges History Steam engines Aircraft Automotive Motorcycles Marine Diesel Automotive nomenclature Methods for implementing Variable Valve Control (VVC) Cam switching Cam phasing Oscillating cam Eccentric cam drive Three-dimensional cam lobe Two shaft combined cam lobe profile https://en.wikipedia.org/wiki/Variable_valve_timing Page 1 of 12 Variable valve timing - Wikipedia 8/28/20, 114 PM Coaxial two shaft combined cam lobe profile Helical camshaft Camless engines Hydraulic system See also References External links Background theory The valves within an internal combustion engine are used to control the flow of the intake and exhaust gases into and out of the combustion chamber. The timing, duration and lift of these valve events has a significant impact on engine performance. Without variable valve timing or variable valve lift, the valve timing is the same for all engine speeds and conditions, therefore compromises are necessary.[1] An engine equipped with a variable valve timing actuation system is freed from this constraint, allowing performance to be improved over the engine operating range.
    [Show full text]
  • “Design and Fabrication of Arc Engine”
    PROJECT REPORT [AUT84] On “DESIGN AND FABRICATION OF ARC ENGINE” Submitted by RISHAV CHHABRA (1NH15AU038) MOHAMMED TAMKEEN (1NH15AU029) In partial fulfillment of the requirement for award of Degree in Bachelor of Engineering (DEPARTMENT OF AUTOMOBILE ENGINEERING) Under The Guidance of Ms. Smitha B S Asst. Professor, Department of Automobile Engineering DEPARTMENT OF AUTOMOBILE ENGINEERING CERTIFICATE This is to certify that the Project [AUT84] On “DESIGN AND FABRICATION OF ARC ENGINE” Is a bonafide work carried out by Rishav Chhabra [1NH15AU038] Mohammed Tamkeen [1NH15AU029] Bonafide students of New Horizon College of Engineering in partial fulfilment for the award of Bachelor of Engineering in Automobile Engineering of the Visveswaraya Technological University, Belgaum during the year 2018-2019. It is certified that all corrections/suggestions indicated for Internal Assessment have been incorporated in the Report deposited in the department library. The project report has been approved as it satisfies the academic requirements in respect of Project work prescribed for the said Degree. Signature of HOD Signature of Principal Signature of Internal Guide Dr. Shridhar Kurse Dr. Manjunatha Prof. Smitha B S External Viva Name of the Examiners 1. Signature with Date 2. ACKNOWLEDGEMENT We express our heartfelt thanks to Dr. Mohan Manghnani, Chairman, New Horizon Educational Institutions for providing this endeavor. We would also like to thank Dr. Shridhar Kurse, Head of Department, Department of Automobile Engineering, NHCE and Dr. Manjunatha, Principal of NHCE who has given us a constant support with motivation in completion of the project. We sincerely thank Dr. Shridhar Kurse, HOD and Professor, Department of Automobile Engineering, NHCE who has guided us throughout in completion of the project.
    [Show full text]
  • INTERNAL COMBUSTION ENGINES STILL DELIVER of the Compressor Cylinder Can Be Re- Duced to Eliminate Some of the Negative Work of the Compression Stroke
    redictions regarding the DIFFERENT demise of the internal DIFFERENT combustion engine (ICE) have a long history. The steadily growing number of STROKES: hybrid and full electric ve- STROKES: hicles on the road has only added fuel to Pthe fire, so to speak. But while naysayers have been trying to decide how many more years the ICE has left, engineers INTERNALINTERNAL and visionaries at several different com- panies have been looking for ways to ex- tend its life well into the future. They’ve accomplished this by completely reimag- COMBUSTIONCOMBUSTION ining how an ICE works and what it looks like. In this article, we’ll examine the new technologies that have been developed ENGINESENGINES by these companies. Simple inline or V- type piston engines are definitely not in- cluded in this group. It’s anyone’s guess how many (or if any) of these designs STILL DELIVER will ever end up in a mass-produced ve- STILL DELIVER hicle that you’ll see in your shop. For BBYY KKARLARL SSEYFERTEYFERT now, it’s interesting to see how far you can go with air, a little bit of fuel and a TheThe growinggrowing numbernumber ofof alternativealternative great deal of ingenuity. EcoMotors International (www.eco powertrainpowertrain vehiclesvehicles maymay havehave youyou motors.com) has developed an opposed- thinkingthinking you’llyou’ll soonsoon bebe anan electricelectric piston, opposed-cylinder (OPOC) engine that will run on a number of different engineerengineer ratherrather thanthan aa technician.technician. FearFear fuels, including gasoline, diesel and ethanol. The original OPOC engine de- not.not. TheThe internalinternal combustioncombustion engineengine sign has a long history dating back to the isn’t ready to fade into obscurity.
    [Show full text]
  • Stirling Engine
    Stirling engine From Wikipedia, the free encyclopedia A Stirling engine is a heat engine that operates by cyclic compression and expansion of air or other gas, the working fluid, at different temperature levels such that there is a net conversion of heat energy to mechanical work.[1] The engine is like a steam engine in that all of the engine's heat flows in and out through the engine wall. This is traditionally known as an external combustion engine in contrast to an internal combustion engine where the heat input is by combustion of a fuel within the body of the working fluid. Unlike the steam engine's use of water in both its liquid and gaseous phases as the Alpha type Stirling engine. The working fluid, the Stirling engine encloses a fixed quantity of expansion cylinder (red) is permanently gaseous fluid such as air or helium. As in all heat maintained at a high temperature engines, the general cycle consists of compressing cool gas, while the compression cylinder heating the gas, expanding the hot gas, and finally cooling the (blue) is cooled. The passage gas before repeating the cycle. between the two cylinders contains the regenerator. Originally conceived in 1816 as an industrial prime mover to rival the steam engine, its practical use was largely confined to low-power domestic applications for over a century.[2] The Stirling engine is noted for its high efficiency, quiet operation, and the ease with which it can use almost any heat source. This compatibility with alternative and renewable energy sources has become increasingly significant as the price of conventional fuels rises, and also in light of concerns such as peak oil and climate change.
    [Show full text]
  • Master's Thesis
    Potential Future Engine Cycles for Improved Thermal Efficiency Analysis of Various Internal Waste Heat Recovery Cycles with Minimal Deviation From Common Engine Architectures MICHAEL J. DENNY Department of Applied Mechanics Combustion Division Chalmers University of Technology Gothenburg, Sweden 2014 Master's Thesis 2014:32 Potential Future Engine Cycles for Improved Thermal Efficiency Analysis of Various Internal Waste Heat Recovery Cycles with Minimal Deviation From Common Engine Architectures MICHAEL J. DENNY © MICHAEL J. DENNY, 2014 Master's Thesis 2014:32 ISSN 1652-8557 Department of Applied Mechanics Combustion Division Chalmers University of Technology SE-412 96 G¨oteborg Sweden Telephone: + 46 (0)31-772 1000 Thesis performed at: Volvo Car Corporation Advanced Engine Engineering Dept. 97624 PO Box PV4B SE-405 31 G¨oteborg Sweden Printed by: Chalmers Reposervice G¨oteborg, Sweden 2014 Abstract A comparative 1-D analysis is undertaken between a baseline internal combustion engine (ICE) and several ICE operating cycle concepts which are intended to produce higher brake efficiencies than the baseline which runs on an Otto cycle. The baseline is a spark ignition gasoline engine representative of modern naturally aspirated automotive engines in its architecture and implemented technologies. Engine models are created and compared in the 1-D engine simulation software program GT-Power created by Gamma Technologies. After calibrating the performance of each model with the same resolution and tuning strategies, the result is that all of the concepts are less efficient than the base- line engine. Each engine concept requires additional hardware to separate the processes of the cycle within the engine. These components add to the mechanical friction, flow, and heat losses within the engine, and in some cases manage only to transfer exergy into different forms, not reduce it in a positive way.
    [Show full text]
  • IS 7879-8 (1987): Glossary of Aeronautical and Astronautical Terms, Part 8 Power Plant [TED 14: Aircraft and Space Vehicles]
    इंटरनेट मानक Disclosure to Promote the Right To Information Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public. “जान का अधकार, जी का अधकार” “परा को छोड न 5 तरफ” Mazdoor Kisan Shakti Sangathan Jawaharlal Nehru “The Right to Information, The Right to Live” “Step Out From the Old to the New” IS 7879-8 (1987): Glossary of aeronautical and astronautical terms, Part 8 Power plant [TED 14: Aircraft and Space Vehicles] “ान $ एक न भारत का नमण” Satyanarayan Gangaram Pitroda “Invent a New India Using Knowledge” “ान एक ऐसा खजाना > जो कभी चराया नह जा सकताह ै”ै Bhartṛhari—Nītiśatakam “Knowledge is such a treasure which cannot be stolen” Jlf4+z qw(” “RE-AFFlRM ED 1997’ UDC 001’4 : 629’73/‘78’036 IS : 7879 [ Part 8 I- 1987 \ i‘y- ” -..i-:\, -La m qic:R_ ‘_ i Indian Standard XL \. , > % GLOSSARY OF AERONAUTICAL AND ASTRONA”Tl&i$iii’/~~ ._ PART 8 POWER PLANT 1. scope - Covers terms and definitions relating to power plant for aerospace applications.
    [Show full text]
  • Microcopy Resolution Test Chart Natw3
    MICROCOPY RESOLUTION TEST CHART NATW3,'4_L _REAU OF STANDARDS 19_3 A i"maPJl_i__ - -_ ? NASA Cl!-165162 i _ w i ° I- ADVANCEDTECHNOLOGYSPARK-IGNITION AIRCRAFTr_ISTONENGINEDESIGNS\rUDY (NASA-Ci_- 165 lu2) ADVAhL££ _ kCti_iOLCG X NSl-13_6J SP&dK-IGIIIT£GN AInCRAI_ _IS_IG_ ENGINE DESIGt@ STUD 1 Final Re?oft (_leodne Continental _lotors, Mobile, Ala.) 127 [J dC AO7/MF A01 CSCL 21G G3/07 FINAL REPORT BY KENNETHJ. STUCKAS TELEDYNECONTINENTALMOTORS Aircraft ProductsDivision PREPAREDFOR NATIONALAERONAUTICSAND SPACEADMINISTRATION t! NASA LEWIS RESEARCHCENTER CLEVELAND,OHIO44135 CONTRACTNAS3-21272 t R_t No I 2 Gou_m_eet _ No aAS_ cs-16_62 /1 4 T,tl41 _ Sublltll S Rqm*t Dote Advanced Tect_noloty Spark-[self.Lee Novlmber 1980 &[rcr4fc Pier.on E_$Lne Doetiln Sl:udy 6 Iltrt_rm,_l Ofg_lZltIOn CI){I AuthO_r(I) I _lftOrmln I Ol'_l_IlltlOI_ Rloor! b'emleth J. Stucka_l 10 Work Umt Teled_me Contln_mCal )_DCOrl 11 Ca_ac_ o* C_rent No _rcraft i'toducr.8 Dtvimloa P+O. Box 90 NAS3-21272 Hobtle, Alabm 36601 13 Ty_ _f IlUort w_l I_m_ Cornea ;2 S_m_ng _mcv Nm_e m4 Mcw_e Contractor FLee1 Report Natloeal Aaronxutlcs And Space Administration _lehleltOn, D.C. 20_b 14 S_n4_rlql All_cv ,S S_l_lemm_t _v NoI ProJecr H_naIer. _hael $_orobatckyt NASA-Lwt8 _eeatch Center Cleveland. Ohio t6 AJIRI_! The Adwmced Technolely, Spark-ll_ltto_, _trcreft Piston bilge De_il_ Stud? v_ conducted to determine the Lmprov4m_mta thee could be made by tal_tn8 _dvlmt&le of the new technoloEy that could re_ulonably be expected to be made iv_l_lbie for an enline intended for production by J_uary 1, 19;_. _ etllinee were p_opoeed to eCCOUnC for levels of rechnololy co_xideteJ to _e IloderlCe risk _md hLlh risk.
    [Show full text]
  • Potentials of Coconut Oil As Diesel Substitute in Pacific Island Countries
    Rheinisch-Westfälische Technische Hochschule Aachen Fakultät für Maschinenwesen Lehrstuhl für Reaktorsicherheit und -technik Univ.-Prof. Dr.-Ing. Kurt Kugeler Diplomarbeit Potentials of Coconut Oil as Diesel Substitute in Pacific Island Countries vorgelegt von: cand. ing. Daniel Fürstenwerth betreut von: Dr.-Ing. Inga Maren Tragsdorf (RWTH Aachen) Dipl.-Ing. Gerhard Zieroth ( Executive Summary i Executive Summary The use of coconut oil as a substitute for diesel fuel is attracting increasing interest. This MSc thesis enhances the understanding of this technology and points out directions for its future application in the Republic of the Marshall Islands (RMI) as well as other Pacific Island Countries. The research work was undertaken by the PIEPSAP project in cooperation with RWTH University in Aachen and it is based on a literature review and field data obtained in RMI and Fiji. The use of straight vegetable oil in standard diesel engines leads to certain adverse technical and consequently financial effects. The extent of these depends on factors related to the (i) engine, (ii) oil and, equally important, (iii) utilisation and maintenance pattern. In principle, all adverse technical effects known from other vegetable oils occur when coconut oil is used. Important findings are that (i) “simply” replacing diesel fuel with coconut oil can by no means be recommended; (ii) blending of coconut oil with other fuels or the use of additives may decrease the rate but not prevent adverse technical effects; (iii) use of adaptation technology is a prerequisite, but no guarantee for a successful application of straight coconut oil. Before using coconut oil, a case-by-case analysis of the specific application is necessary, including the engine used and expected utilisation pattern.
    [Show full text]