UNIVERSITÄT HAMBURG FAKULTÄT FÜR MATHEMATIK, INFORMATIK UND NATURWISSENSCHAFTEN Master Thesis Towards on-chip THz spectroscopy of quantum materials and heterostructures Gunda Kipp
[email protected] Degree Course: Physics Student ID Number: 6665148 Semesters of Study: 11 1st Supervisor: PD Guido Meier 2nd Supervisor: Professor Andrea Cavalleri December 5th, 2019 Abstract On-chip THz spectroscopy is a powerful tool to investigate the low-energy dynam- ics of solids. THz pulses generated by photoconductive switches are confined to the near-field by metallic transmission lines, which allows studying micrometer sized het- erostructures of different van der Waals materials. Routing sub-picosecond electrical pulses over several millimeters requires a transmission line geometry that avoids dis- persion and damping. In this thesis, different geometries are fabricated and character- ized to optimize the propagation of THz pulses for on-chip measurements. In addition, electromagnetic simulations are performed and compared to measured data. The transmission lines are fabricated by optical lithography, thermal evaporation, and lift-off processing. This includes the integration of a heater stage in the thermal evaporator to grow high-quality metal / oxide substrates. The novel transmission line geometry developed for on-chip spectroscopy measurements provides improved sig- nal propagation and a rather simple fabrication process. To implement on-chip THz spectroscopy in complementary experiments, the photo- conductive switches are required to be operated without direct optical access. In the framework of this thesis, first steps are taken to integrate the on-chip circuitry into a scanning near field optical microscopy (SNOM) setup at the Columbia University in New York. Triggering photoconductive switches with fiber-coupled laser pulses is tested and a stage is designed that allows sample mounting, beam alignment, as well as focusing via fiber optics in the SNOM.