Apicystis Gen Nov and Apicystis Bombi Neogregarinida), a Cosmopolitan

Total Page:16

File Type:pdf, Size:1020Kb

Apicystis Gen Nov and Apicystis Bombi Neogregarinida), a Cosmopolitan Original article Apicystis gen nov and Apicystis bombi (Liu, Macfarlane & Pengelly) comb nov (Protozoa: Neogregarinida), a cosmopolitan parasite of Bombus and Apis (Hymenoptera: Apidae) JJ Lipa O Triggiani 1 Institute of Plant Protection, Miczurina 20, 60-318 Poznan, Poland; 2 Istituto di Entomologia Agraria, Universita degli Studi, via Amendola 165/A, 70125 Bari, Italy (Received 20 May 1995; accepted 22 December 1995) Summary — A new genus Apicystis and a new combination Apicystis bombi (Liu, Macfarlane & Pen- gelly) is proposed for a neogregarine parasitic on Bombus spp and Apis mellifera. The genus Apicys- tis is characterized by having navicular oocysts containing only four sporozoites and basically differs from the genus Mattesia which has spindle oocysts with eight sporozoites. This parasite was recorded in ten species of Bombus in Europe and North America, but has been observed only once in Apis mel- lifera in Finland. Apicystis / Apis / Bombus / new genus / protozoan / parasite INTRODUCTION the paper by Liu et al (1974) in which these authors described Mattesia bombi Liu, Mac- farlane & Pengelly from Bombus spp in Based on research undertaken in Italy, Canada. Further studies et al 1988 and in Finland, 1990 we published a (Macfarlane short note (Lipa and Triggiani, 1992) in 1995, 1996) strongly support our original that the involved does which we reported finding a neogregarine opinion neogregarine not to the but parasite on Bombus hortorum, B terrestris belong genus Mattesia, rep- resents a new which we describe in and Apis mellifera. After describing the mor- genus this phological characteristics of the neogre- paper. garine, at the end of our note we stated ’All these features indicate that this neogre- MATERIAL AND METHODS garine constitutes both a new species and a new genus. It also represents the first record of neogregarine infection in the Api- As previously reported (Lipa and Triggiani, 1992) dae’. At that time we were not familiar with infected queens and workers of Bombus spp were collected in Italy in open-air in 1988, and various bumble bee species (Bombus spp), one infected worker of Apis mellifera was col- Schmid-Hempel (unpublished data) esti- lected in hive in Finland in 1990. In of 1995 July mated the neogregarine infection at a level additional infected males and of B ter- queens of 4-7% in Switzerland. restris were collected at the University Campus in Bari, Italy, and from fields at Valenzano, 15 Neogregarine oocysts were observed in km from Bari. Collected insects were dissected queens and workers of B hortorum and B and their fat body tissue and gut were examined terrestris collected by sweep net in Southern under a light microscope. Morphology and life Italy (Apuglia) (Lipa and Triggiani, 1992). cycle of the pathogen were studied on smeared The of identical was fat body tissue preparations fixed for 2 min in presence oocysts methanol and stained in 0.25% Giemsa for noticed in one A mellifera worker out of 34 8-12 h. collected in July 1990 from one hive of the of the In spite of our efforts we were not able to experimental apiary Agricultural locate and access any oocyst material, stained Research Center, Jokioinen, Finland. Micro- microscope slides or photos concerning Matte- scopic examination of additional individu- sia bombi occurring in Bombus spp in Canada als of Bombus spp in Italy (Triggiani, 1991), on which the original description was based. New Zealand and Japan (Macfarlane et al, to information obtained from RP Mac- According Denmark and Finland farlane (Christchurch, New Zealand) and P Kevan 1995), (Lipa, unpub- lished failed to reveal (Guelph, Canada), all documentation material data) neogregarine concerning M bombi, deposited at the University infection. of Guelph, was discarded when the authors left or In July 1995 the neogregarine infection retired. After to several bum- making enquiries was detected in B terrestris collected ble bee researchers for information and infected again in Bari out of three one insect material, P Schmid-Hempel (Institute of Italy: (5th): males, Microbiology, ETH Zurich, Switzerland) informed was one infected with neogregarine and one us about observations of neogregarine infection was infected with both neogregarine and in Bombus spp in Switzerland and provided pho- Nosema bombi; Bari (10th): out of two tographs of its oocysts. males, one was infected with neogregarine and Crithidia bombi; Bari (14th) one male and one queen were infected with neogre- RESULTS AND DISCUSSION garine; Valenzano (18th), out of three work- ers, two queens and ten males examined one queen and one male were infected with Geographic distribution, neogregarine. hosts and infection level The above data indicate that neogre- garine infection is common, but its level is The neogregarine concerned was first low in Bombus spp and sporadic in A mel- reported as Mattesia bombi (Liu et al, 1974; lifera. This is not surprising as infections Macfarlane et al, 1995, 1996) in the Ontario of Bombus spp and A mellifera by eugre- province of Canada in the queens and some garines and flagellates reach very low lev- males of various Bombus spp. Of the 3 045 els and have been reported from very few overwintered queens examined, 5.3% were localities (Lipa and Triggiani, 1988; Mac- parasitized: Bombus vagans being the most farlane et al, 1995). However, since the heavily infected, with 8.2% of its queens parasitic neogregarine was found in parasitized (Liu et al, 1974; Macfarlane et Canada, Finland, France, Italy and Switzer- al, 1995). Recently Macfarlane et al (1996) land it must be assumed that it is a cos- reported this neogregarine in France where mopolitan parasite so it is only a matter of it infected various Bombus spp. Based on time before it is reported from other coun- the dissection of several hundred workers of tries. Life Cycle lifera from Finland were identical and this allows us to conclude that in all cases of infection the same is Electron microscopy studies undertaken by neogregarine species involved. The oocysts were navicular in Liu et al combined with our previous (1974), and the of them had distinct observations (Lipa and 1992) and shape majority Triggiani, Fresh measured in water the results of the present study, provide caps. oocysts were 16.2-21.6 μm long and 5.6 μm wide sufficient data to allow an understanding of after and were the complete life cycle of this neogregarine (fig 1); oocysts fixing staining 11.1-14.4 and 3.6-5.4 wide. in host insects and recognition of the main μm long μm Inside the stained young oocysts, four uni- stages necessary for its identification and nucleate were visible the description of the new genus. sporozoites readily (fig 2). However, they became less visible in The that in the intes- sporozoites emerge the mature oocysts. tine from ingested oocysts penetrate through the midgut wall into the body cavity and infect the fat body cells in which they grow, Taxonomic position develop and multiply. Heavily infected fat tissue is strikingly white and much reduced but microscopic examination for presence Liu et al (1974) described this neogre- of oocysts is required to diagnose infection garine as Mattesia bombi and placed it and identify the pathogen. into the family Ophryocystidae (the authors misspelled it as Ophrocystidae). However, On smeared gut and fat body prepara- the life cycle and of meronts tions of the infected Bombus spp and A mel- morphology and indicate that the lifera oocysts various developmental stages oocysts (spores) Bombus and were observed. Micronuclear meronts have neogregarine infecting spp A mellifera to the diameters up to 45 μm and contain up to 40 belongs family in the order small nuclei, each measuring 1.3 μm. Later Lipotrophidae Neogregarinida micronuclear merozoites are produced that (= Schizogregarinida) (Levine, 1988). to Levine the are oval or elongated and measure According (1988) family contains five 5-9 x 2.5-3.5 μm. Macronuclear meronts Lipotrophidae genera: Mat- measure 20 x 15 μm and give rise to ovoidal Farinocystis, Lipocystis, Lipotropha, tesia, and Menzbieria which have or pyriform macronuclear merozoits oocysts that contain (gamonts) 5-8 μm in diameter. Through the always eight sporozoites. Levine M bombi, process of gametogony, oocysts containing (1988) incorrectly placed which has navicular with four four sporozoites are produced (fig 2). The oocysts 1 and into the presence of empty oocysts in the tissue sporozoites (figs 2) genus Mattesia which has different smears suggests that autoinfection may take quite spindle with 3 place. Liu et al (1974) reported the presence oocysts eight sporozoites (figs of oocysts in the spermatheca of mated and 4). queens and this indicates a possible con- For the reasons explained above, we genital means of transmission of the neogre- remove the neogregarine Mattesia bombi garine. infecting Bombus and Apis from the Matte- sia genus and classify it as Apicystis bombi (Liu et al, 1974) comb nov in a newly estab- Oocyst morphology lished genus Apicystis gen nov. This generic name is proposed to emphasize that the The oocysts observed in Bombus spp from neogregarine is associated with insects Canada, Italy and Switzerland and in A mel- belonging to the family Apoidea. Host specificity tivity of A bombi to bumble bees or honey bees have been conducted. Since infec- All host records refer to insects infected in tion has been recorded in ten species of nature, and thus far no tests on the infec- Bombus, on two continents and in four countries, it may be concluded that bum- bimaculatus, B fervidus, B griseocollis, B ble bees are the principal hosts for A bombi. hortorum, B impatiens, B perplexus, B ter- Observations in Finland indicate that A restris, B terricola, and B vagans in bombi can also infect honey bees (A mel- Canada, France, Italy and Switzerland, and lifera).
Recommended publications
  • Implications of Habitat Restoration for Bumble Bee Population Dynamics, Foraging Ecology, and Epidemiology
    IMPLICATIONS OF HABITAT RESTORATION FOR BUMBLE BEE POPULATION DYNAMICS, FORAGING ECOLOGY, AND EPIDEMIOLOGY By Knute Baldwin Gundersen A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Entomology—Doctor of Philosophy Ecology, Evolutionary Biology and Behavior—Dual Major 2018 ABSTRACT IMPLICATIONS OF HABITAT RESTORATION FOR BUMBLE BEE POPULATION DYNAMICS, FORAGING ECOLOGY, AND EPIDEMIOLOGY By Knute Baldwin Gundersen Many insects provide valuable ecosystem services, including those that support our food supply. Beneficial insects such as pollinators fulfill part of this role by contributing to approximately one third of the global food crop production. Over the past few decades, pollinators have faced declining populations due to a variety of factors such as agricultural intensification, lack of floral and nesting resources, and disease. One method used in agricultural settings to help sustain pollinator populations is designating unfarmed habitat such as ditches and field margins for habitat enhancement in the form of hedgerows and wildflower strips. These floristically rich areas can be tailored to bloom both before and after crop bloom to help sustain pollinators during the time when crops are not in bloom. In turn, bee populations can benefit from the consistent availability of resources in these areas of habitat enhancement. This dissertation explores how habitat enhancement affects nesting density of a common wild pollinator, Bombus impatiens . Further, this research also aims to determine how foraging preferences change and how bumble bee disease transmission and prevalence respond to habitat enhancement. Research was conducted at 15 commercial highbush blueberry ( Vaccinium corymbosum ) fields in southwest Michigan containing either no restoration, a newly planted restoration, or a mature (5-8 year old) restoration in the field margin from 2015 to 2017.
    [Show full text]
  • ABSTRACT Gregarine Parasitism in Dragonfly Populations of Central
    ABSTRACT Gregarine Parasitism in Dragonfly Populations of Central Texas with an Assessment of Fitness Costs in Erythemis simplicicollis Jason L. Locklin, Ph.D. Mentor: Darrell S. Vodopich, Ph.D. Dragonfly parasites are widespread and frequently include gregarines (Phylum Apicomplexa) in the gut of the host. Gregarines are ubiquitous protozoan parasites that infect arthropods worldwide. More than 1,600 gregarine species have been described, but only a small percentage of invertebrates have been surveyed for these apicomplexan parasites. Some consider gregarines rather harmless, but recent studies suggest otherwise. Odonate-gregarine studies have more commonly involved damselflies, and some have considered gregarines to rarely infect dragonflies. In this study, dragonfly populations were surveyed for gregarines and an assessment of fitness costs was made in a common and widespread host species, Erythemis simplicicollis. Adult dragonfly populations were surveyed weekly at two reservoirs in close proximity to one another and at a flow-through wetland system. Gregarine prevalences and intensities were compared within host populations between genders, among locations, among wing loads, and through time. Host fitness parameters measured included wing load, egg size, clutch size, and total egg count. Of the 37 dragonfly species surveyed, 14 species (38%) hosted gregarines. Thirteen of those species were previously unreported as hosts. Gregarine prevalences ranged from 2% – 52%. Intensities ranged from 1 – 201. Parasites were aggregated among their hosts. Gregarines were found only in individuals exceeding a minimum wing load, indicating that gregarines are likely not transferred from the naiad to adult during emergence. Prevalence and intensity exhibited strong seasonality during both years at one of the reservoirs, but no seasonal trend was detected at the wetland.
    [Show full text]
  • Evidence for and Against Deformed Wing Virus Spillover from Honey Bees to Bumble Bees: a Reverse Genetic Analysis Olesya N
    www.nature.com/scientificreports OPEN Evidence for and against deformed wing virus spillover from honey bees to bumble bees: a reverse genetic analysis Olesya N. Gusachenko1*, Luke Woodford1, Katharin Balbirnie‑Cumming1, Eugene V. Ryabov2 & David J. Evans1* Deformed wing virus (DWV) is a persistent pathogen of European honey bees and the major contributor to overwintering colony losses. The prevalence of DWV in honey bees has led to signifcant concerns about spillover of the virus to other pollinating species. Bumble bees are both a major group of wild and commercially‑reared pollinators. Several studies have reported pathogen spillover of DWV from honey bees to bumble bees, but evidence of a sustained viral infection characterized by virus replication and accumulation has yet to be demonstrated. Here we investigate the infectivity and transmission of DWV in bumble bees using the buf-tailed bumble bee Bombus terrestris as a model. We apply a reverse genetics approach combined with controlled laboratory conditions to detect and monitor DWV infection. A novel reverse genetics system for three representative DWV variants, including the two master variants of DWV—type A and B—was used. Our results directly confrm DWV replication in bumble bees but also demonstrate striking resistance to infection by certain transmission routes. Bumble bees may support DWV replication but it is not clear how infection could occur under natural environmental conditions. Deformed wing virus (DWV) is a widely established pathogen of the European honey bee, Apis mellifera. In synergistic action with its vector—the parasitic mite Varroa destructor—it has had a devastating impact on the health of honey bee colonies globally1,2.
    [Show full text]
  • An Abstract of the Thesis Of
    AN ABSTRACT OF THE THESIS OF Sarah A. Maxfield-Taylor for the degree of Master of Science in Entomology presented on March 26, 2014. Title: Natural Enemies of Native Bumble Bees (Hymenoptera: Apidae) in Western Oregon Abstract approved: _____________________________________________ Sujaya U. Rao Bumble bees (Hymenoptera: Apidae) are important native pollinators in wild and agricultural systems, and are one of the few groups of native bees commercially bred for use in the pollination of a range of crops. In recent years, declines in bumble bees have been reported globally. One factor implicated in these declines, believed to affect bumble bee colonies in the wild and during rearing, is natural enemies. A diversity of fungi, protozoa, nematodes, and parasitoids has been reported to affect bumble bees, to varying extents, in different parts of the world. In contrast to reports of decline elsewhere, bumble bees have been thriving in Oregon on the West Coast of the U.S.A.. In particular, the agriculturally rich Willamette Valley in the western part of the state appears to be fostering several species. Little is known, however, about the natural enemies of bumble bees in this region. The objectives of this thesis were to: (1) identify pathogens and parasites in (a) bumble bees from the wild, and (b) bumble bees reared in captivity and (2) examine the effects of disease on bee hosts. Bumble bee queens and workers were collected from diverse locations in the Willamette Valley, in spring and summer. Bombus mixtus, Bombus nevadensis, and Bombus vosnesenskii collected from the wild were dissected and examined for pathogens and parasites, and these organisms were identified using morphological and molecular characteristics.
    [Show full text]
  • Catalogue of Protozoan Parasites Recorded in Australia Peter J. O
    1 CATALOGUE OF PROTOZOAN PARASITES RECORDED IN AUSTRALIA PETER J. O’DONOGHUE & ROBERT D. ADLARD O’Donoghue, P.J. & Adlard, R.D. 2000 02 29: Catalogue of protozoan parasites recorded in Australia. Memoirs of the Queensland Museum 45(1):1-164. Brisbane. ISSN 0079-8835. Published reports of protozoan species from Australian animals have been compiled into a host- parasite checklist, a parasite-host checklist and a cross-referenced bibliography. Protozoa listed include parasites, commensals and symbionts but free-living species have been excluded. Over 590 protozoan species are listed including amoebae, flagellates, ciliates and ‘sporozoa’ (the latter comprising apicomplexans, microsporans, myxozoans, haplosporidians and paramyxeans). Organisms are recorded in association with some 520 hosts including mammals, marsupials, birds, reptiles, amphibians, fish and invertebrates. Information has been abstracted from over 1,270 scientific publications predating 1999 and all records include taxonomic authorities, synonyms, common names, sites of infection within hosts and geographic locations. Protozoa, parasite checklist, host checklist, bibliography, Australia. Peter J. O’Donoghue, Department of Microbiology and Parasitology, The University of Queensland, St Lucia 4072, Australia; Robert D. Adlard, Protozoa Section, Queensland Museum, PO Box 3300, South Brisbane 4101, Australia; 31 January 2000. CONTENTS the literature for reports relevant to contemporary studies. Such problems could be avoided if all previous HOST-PARASITE CHECKLIST 5 records were consolidated into a single database. Most Mammals 5 researchers currently avail themselves of various Reptiles 21 electronic database and abstracting services but none Amphibians 26 include literature published earlier than 1985 and not all Birds 34 journal titles are covered in their databases. Fish 44 Invertebrates 54 Several catalogues of parasites in Australian PARASITE-HOST CHECKLIST 63 hosts have previously been published.
    [Show full text]
  • Bumblebee Conservator
    Volume 2, Issue 1: First Half 2014 Bumblebee Conservator Newsletter of the BumbleBee Specialist Group In this issue From the Chair From the Chair 1 A very happy and productive 2014 to everyone! We start this year having seen From the Editor 1 enormously encouraging progress in 2013. Our different regions have started from BBSG Executive Committee 2 very different positions, in terms of established knowledge of their bee faunas Regional Coordinators 2 as well as in terms of resources available, but members in all regions are actively moving forward. In Europe and North America, which have been fortunate to Bumblebee Specialist have the most specialists over the last century, we are achieving the first species Group Report 2013 3 assessments. Mesoamerica and South America are also very close, despite the huge Bumblebees in the News 9 areas to survey and the much less well known species. In Asia, with far more species, many of them poorly known, remarkably rapid progress is being made in sorting Research 13 out what is present and in building the crucial keys and distribution maps. In some Conservation News 20 regions there are very few people to tackle the task, sometimes in situations that Bibliography 21 make progress challenging and slow – their enthusiasm is especially appreciated! At this stage, broad discussion of problems and of the solutions developed from your experience will be especially important. This will direct the best assessments for focusing the future of bumblebee conservation. From the Editor Welcome to the second issue of the Bumblebee Conservator, the official newsletter of the Bumblebee Specialist Group.
    [Show full text]
  • Regional and Temporal Parasite Loads in Bumble Bees Associated With
    University of Massachusetts Amherst ScholarWorks@UMass Amherst North American Cranberry Researcher and NACREW 2017 Extension Workers Conference Aug 29th, 12:00 PM - 1:15 PM Regional and temporal parasite loads in bumble bees associated with cranberry landscapes Noel Hahn University of Massachusetts Amherst Cranberry Station, [email protected] Andrea Couto UMass Amherst Cranberry Station, [email protected] Anne Averill University of Massachusetts - Amherst, [email protected] Follow this and additional works at: https://scholarworks.umass.edu/nacrew Part of the Agriculture Commons Recommended Citation Hahn, Noel; Couto, Andrea; and Averill, Anne, "Regional and temporal parasite loads in bumble bees associated with cranberry landscapes" (2017). North American Cranberry Researcher and Extension Workers Conference. 11. https://scholarworks.umass.edu/nacrew/2017/posters/11 This Event is brought to you for free and open access by the Cranberry Station at ScholarWorks@UMass Amherst. It has been accepted for inclusion in North American Cranberry Researcher and Extension Workers Conference by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. Regional and temporal parasite loads in bumble bees associated with cranberry landscapes Noel Hahn, Andrea C. Couto, Anne Averill Department of Environmental Conservation, University of Massachusetts, Amherst, MA; University of Massachusetts Cranberry Station, Wareham, Massachusetts Abstract Objectives There are concerns that the fitness of bumble bees that provide pollination • Quantify the number of bumble bees that are services to cranberry could suffer within intensively managed agricultural Crithidia bombi Nosema bombi lands. In the cranberry region of Massachusetts, the crop occurs within parasitized by , , urbanized coastal and sand plains that generally lack floral resources.
    [Show full text]
  • The Classification of Lower Organisms
    The Classification of Lower Organisms Ernst Hkinrich Haickei, in 1874 From Rolschc (1906). By permission of Macrae Smith Company. C f3 The Classification of LOWER ORGANISMS By HERBERT FAULKNER COPELAND \ PACIFIC ^.,^,kfi^..^ BOOKS PALO ALTO, CALIFORNIA Copyright 1956 by Herbert F. Copeland Library of Congress Catalog Card Number 56-7944 Published by PACIFIC BOOKS Palo Alto, California Printed and bound in the United States of America CONTENTS Chapter Page I. Introduction 1 II. An Essay on Nomenclature 6 III. Kingdom Mychota 12 Phylum Archezoa 17 Class 1. Schizophyta 18 Order 1. Schizosporea 18 Order 2. Actinomycetalea 24 Order 3. Caulobacterialea 25 Class 2. Myxoschizomycetes 27 Order 1. Myxobactralea 27 Order 2. Spirochaetalea 28 Class 3. Archiplastidea 29 Order 1. Rhodobacteria 31 Order 2. Sphaerotilalea 33 Order 3. Coccogonea 33 Order 4. Gloiophycea 33 IV. Kingdom Protoctista 37 V. Phylum Rhodophyta 40 Class 1. Bangialea 41 Order Bangiacea 41 Class 2. Heterocarpea 44 Order 1. Cryptospermea 47 Order 2. Sphaerococcoidea 47 Order 3. Gelidialea 49 Order 4. Furccllariea 50 Order 5. Coeloblastea 51 Order 6. Floridea 51 VI. Phylum Phaeophyta 53 Class 1. Heterokonta 55 Order 1. Ochromonadalea 57 Order 2. Silicoflagellata 61 Order 3. Vaucheriacea 63 Order 4. Choanoflagellata 67 Order 5. Hyphochytrialea 69 Class 2. Bacillariacea 69 Order 1. Disciformia 73 Order 2. Diatomea 74 Class 3. Oomycetes 76 Order 1. Saprolegnina 77 Order 2. Peronosporina 80 Order 3. Lagenidialea 81 Class 4. Melanophycea 82 Order 1 . Phaeozoosporea 86 Order 2. Sphacelarialea 86 Order 3. Dictyotea 86 Order 4. Sporochnoidea 87 V ly Chapter Page Orders. Cutlerialea 88 Order 6.
    [Show full text]
  • Report for the Yellow Banded Bumble Bee (Bombus Terricola) Version 1.1
    Species Status Assessment (SSA) Report for the Yellow Banded Bumble Bee (Bombus terricola) Version 1.1 Kent McFarland October 2018 U.S. Fish and Wildlife Service Northeast Region Hadley, Massachusetts 1 Acknowledgements Gratitude and many thanks to the individuals who responded to our request for data and information on the yellow banded bumble bee, including: Nancy Adamson, U.S. Department of Agriculture-Natural Resources Conservation Service (USDA-NRCS); Lynda Andrews, U.S. Forest Service (USFS); Sarah Backsen, U.S. Fish and Wildlife Service (USFWS); Charles Bartlett, University of Delaware; Janet Beardall, Environment Canada; Bruce Bennett, Environment Yukon, Yukon Conservation Data Centre; Andrea Benville, Saskatchewan Conservation Data Centre; Charlene Bessken USFWS; Lincoln Best, York University; Silas Bossert, Cornell University; Owen Boyle, Wisconsin DNR; Jodi Bush, USFWS; Ron Butler, University of Maine; Syd Cannings, Yukon Canadian Wildlife Service, Environment and Climate Change Canada; Susan Carpenter, University of Wisconsin; Paul Castelli, USFWS; Sheila Colla, York University; Bruce Connery, National Park Service (NPS); Claudia Copley, Royal Museum British Columbia; Dave Cuthrell, Michigan Natural Features Inventory; Theresa Davidson, Mark Twain National Forest; Jason Davis, Delaware Division of Fish and Wildlife; Sam Droege, U.S. Geological Survey (USGS); Daniel Eklund, USFS; Elaine Evans, University of Minnesota; Mark Ferguson, Vermont Fish and Wildlife; Chris Friesen, Manitoba Conservation Data Centre; Lawrence Gall,
    [Show full text]
  • Molecular Characterization of Gregarines from Sand Flies (Diptera: Psychodidae) and Description of Psychodiella N. G. (Apicomplexa: Gregarinida)
    J. Eukaryot. Microbiol., 56(6), 2009 pp. 583–588 r 2009 The Author(s) Journal compilation r 2009 by the International Society of Protistologists DOI: 10.1111/j.1550-7408.2009.00438.x Molecular Characterization of Gregarines from Sand Flies (Diptera: Psychodidae) and Description of Psychodiella n. g. (Apicomplexa: Gregarinida) JAN VOTY´ PKA,a,b LUCIE LANTOVA´ ,a KASHINATH GHOSH,c HENK BRAIGd and PETR VOLFa aDepartment of Parasitology, Faculty of Science, Charles University, Prague CZ 128 44, Czech Republic, and bBiology Centre, Institute of Parasitology, Czech Academy of Sciences, Cˇeske´ Budeˇjovice, CZ 370 05, Czech Republic, and cDepartment of Entomology, Walter Reed Army Institute of Research, Silver Spring, Maryland, 20910-7500 USA, and dSchool of Biological Sciences, Bangor University, Bangor, Wales, LL57 2UW United Kingdom ABSTRACT. Sand fly and mosquito gregarines have been lumped for a long time in the single genus Ascogregarina and on the basis of their morphological characters and the lack of merogony been placed into the eugregarine family Lecudinidae. Phylogenetic analyses performed in this study clearly demonstrated paraphyly of the current genus Ascogregarina and revealed disparate phylogenetic positions of gregarines parasitizing mosquitoes and gregarines retrieved from sand flies. Therefore, we reclassified the genus Ascogregarina and created a new genus Psychodiella to accommodate gregarines from sand flies. The genus Psychodiella is distinguished from all other related gregarine genera by the characteristic localization of oocysts in accessory glands of female hosts, distinctive nucleotide sequences of the small subunit rDNA, and host specificity to flies belonging to the subfamily Phlebotominae. The genus comprises three described species: the type species for the new genus—Psychodiella chagasi (Adler and Mayrink 1961) n.
    [Show full text]
  • Uncovering the Variable Life History Traits and Strategies of the Gregarine Parasite, Monocystis Perplexa, in Its Invasive Earthworm Host, Amynthas Agrestis
    University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2018 Uncovering The aV riable Life History Traits And Strategies Of The Gregarine Parasite, Monocystis Perplexa, In Its Invasive Earthworm Host, Amynthas Agrestis Erin L. Keller University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Biology Commons, Ecology and Evolutionary Biology Commons, and the Parasitology Commons Recommended Citation Keller, Erin L., "Uncovering The aV riable Life History Traits And Strategies Of The Gregarine Parasite, Monocystis Perplexa, In Its Invasive Earthworm Host, Amynthas Agrestis" (2018). Graduate College Dissertations and Theses. 929. https://scholarworks.uvm.edu/graddis/929 This Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. UNCOVERING THE VARIABLE LIFE HISTORY TRAITS AND STRATEGIES OF THE GREGARINE PARASITE, MONOCYSTIS PERPLEXA, IN ITS INVASIVE EARTHWORM HOST, AMYNTHAS AGRESTIS A Thesis Presented by Erin L. Keller to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Master of Science Specializing in Biology October, 2018 Defense Date: May 15, 2018 Thesis Examination Committee: Joseph J. Schall, Ph.D., Advisor Josef H. Görres, Ph.D., Chairperson Lori Stevens, Ph.D. Cynthia J. Forehand, Ph.D., Dean of the Graduate College ABSTRACT Parasite life histories influence many aspects of infection dynamics, from the parasite infrapopulation diversity to the fitness of the parasite (the number of successfully transmitted parasites).
    [Show full text]
  • Zoologischer Anzeiger
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Zoologischer Anzeiger Jahr/Year: 1911 Band/Volume: 38 Autor(en)/Author(s): Sokolow Iwan Artikel/Article: Liste des Grégarines décrites depuis 1899a. 304-314 © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/;download www.zobodat.at 304 5. Liste des Grégarines décrites depuis 1899a. ParB. Sokolow, St. Pétersbourg. eingeg. 10. Juni 1911. B. Subordre Schizogrégariues (Léger). [= Amoebosporidia Sehn.] 1900. Léger: G. R. Soc. Biol. T. LU. p. 868—870. Multiplication schizogonique. Fécondation isogame. Un ou plu- sieurs sporocystes. Différenciation des familles: Schizogonie extracellulaire. Conjugaison isogame. -— I. fana. Ophryo- cystidae. Schizogonie extracellulaire. Conjugaison anisogame. — II. fam. Schizo- cystidae. Schizogonie intracellulaire. Sporocystes à 4 sporoz. — III. fam. Sele- nidiidae. Changement d'hôte. Reproduction sexuelle anisogame. — IV. fam. Aggrégatidées. I. Fam. Ophryocystidae (Léger et Duboscq). 1908. Léger et Duboscq: Arch. f. Protistke. Bd. XII. S. 44—108. 1909. Léger et Duboscq: Arch. f. Protistke. Bd. XVII. S. 19—135. Gen. Ophryoeystis (Schneider). Schizontes de forme conique fixés à l'épithélium par de nombreuses radicelles. Un seul sporocyste octozoïque. 1) O. schneiden (Léger et Hagenmüller). 1900. Léger et Hagenmüller: Arch. Zool. Exp. (3). T. VIII. p. 40—45. 1907. Léger: Arch. f. Protistke. Bd. VIII. S. 159-203. Schizontes grégarinoïdes avec 1 à 4 noyaux, de forme conique; pas de schizontes mycétoïdes. Gamontes ovoïdes de 10 à 11 X 8 ,"• Cou- ples ovoïdes, allongés de 16 à 18 X ? /'> ave c une très mince enveloppe. Sporocystes biconiques de 11 sur 5,5 (a. Tubes de Malpighi de Blaps magica.
    [Show full text]