Wood Structure of the Rosaceae in Relation to Ecology, Habit and Phenology

Total Page:16

File Type:pdf, Size:1020Kb

Wood Structure of the Rosaceae in Relation to Ecology, Habit and Phenology IAWA Bulletin n.s., Vol. 13 (3),1992: 307-349 WOOD STRUCTURE OF THE ROSACEAE IN RELATION TO ECOLOGY, HABIT AND PHENOLOGY by Shu-Yin Zhang!, Pieter Baas! and Marinus Zandee2 Summary Twelve wood anatornical characters, to­ deae and Spiraeoideae are mainly shrubby; gether with broad parameters from ecology, the Maloideae and Prunoideae mainly arbores­ habit and phenology were subjected to simple cent. Phenology mainly influences ray size correlation analysis, path analysis and prin­ and composition and vessel diameter, but cipal component analysis, in a total sampie of does, in our sampIe, not influence ring-por­ over 470 specimens belonging to 271 species osity. of the Rosaceae from the entire distribution Most of the above trends are in accordance area of the farnily. The functional, develop­ with reports on other families or regional mental and systematic implications of the re­ floras. Part of the variation in vessel charac­ sulting relations are discussed. Based on the ters is interpreted as the result of functional present analysis of ecological trends and pre­ adaptation for efficient or safe hydraulic ar­ vious phylogenetic analysis, a tentative sce­ chitecture. nario for the evolution of the Rosaceae is A principal component analysis (PCA) offered. produces three more or less recognisable The four non-anatornical variables (viz. groups: the Maloideae, the Spiraeoideae p.p., macroclimate, moisture availability, habit, and together with the Rosoideae, and the Prunoi­ phenology) show dose mutual correlations. deae. The representatives of the QuiIIajeae Therefore, simple correlation analysis cannot (usually placed in the Spiraeoideae) are dis­ properly reflect intrinsic relations between tributed near the centre of the scatter plot in wood anatornical characters and ecological the Maloideae and Prunoideae. Ray features factors, habit and phenology, and sometimes and vessel element length appear to be the even is misleading. After standardising all most important characters giving rise to this data for the mutual correlations of the ecologi­ result. cal parameters, and habit and phenology, and Key words: Ecological, functional, develop­ the mutual dependencies of most wood ana­ mental wood anatomy, systematics, evo­ tornical characters, only a lirnited number of lution, Rosaceae, habit, phenology, ves­ significant correlations between the non-ana­ sels, rays, ring-porosity, crystals. tomical and wood anatornical parameters remain (Table 15). These correlations only Introduction explain a low proportion of the total variation The Rosaceae constitute a chiefly woody recorded (usually 3-10% for single ecological family with a wide ecological range (from factors). Macroclirnate affects vessel diameter mesic to dry habitats; from cold temperate to and the incidence of crystals. Moisture avail­ hot tropical regions), different kinds of habit ability influences vessel element length. Habit (from tall trees to shrubs, subshrubs, dim­ is mainly related to ring-porosity, vessel fre­ bers or herbs) and phenology (from decidu­ quency, vessel element length, vessel diam­ ous to evergreen), and a large wood anatorni­ eter, ray height and ray composition. It is cal diversity (Zhang & Baas 1992; Zhang also related to systematic position: the Rosoi- 1992). It is thus feasible to study wood struc- 1) Rijksherbarium/Hortus Botanicus, P.O. Box 9514, 2300 RA Leiden, The Netherlands. 2) Institute of Theoretical Biology, Kaiserstraat 63, 2311 GP Leiden, The Netherlands. Downloaded from Brill.com10/07/2021 07:51:36AM via free access 308 IAWA Bulletin n.s., Vol. 13 (3),1992 ture in relation to different abiotic and biotic wood anatomical characters by assessing their factors (viz. ecology, habit, and phenology) dependence on ecological factors. in this family. As explained in the materials and methods A number of studies on the relations of seetion, the quality and degree of detail of the wood structure to ecology were reported with­ ecological information leaves much to be de­ in species (Van Buijtenen 1958; Denne 1971, sired for most species studied. An attempt to 1974,1976; Jenkins 1975; Nicholls & Wright answer the above questions can therefore be 1976; Zhang et al. 1988), in genera (Baas preliminary at best as far as the analysis of 1973; Car1quist 1982a; Dickison et al. 1978; ecological trends is concemed. Van der Graaff & Baas 1974; Van den Oever et al. 1981), in families (Baas & Zweypfen­ Materials and Methods ning 1979; Baas et al. 1988; Car1quist 1966, 1977b, 1978, 1982b, 1984b; Dickison & Materials Phend 1985; Rury 1985; Rury & Dickison Over 470 samples bel on ging to 271 spe­ 1984), and in regional floras (Baas & Carl­ eies of Rosaceae were quantified wood ana­ quist 1985; Baas & Schweingruber 1987; tomically. Over half of the samples were col­ Baas et al. 1983; Carlquist 1977a; Carlquist lected from China (see Zhang & Baas 1992), & Hoekman 1985), and some general eco­ the remaining samples were from different logical trends were established (for reviews parts around the world (see Zhang 1992). Of see Baas 1976, 1982, 1986; Carlquist 1975, the specimens studied, most are from sub­ 1980, 1988). Less attention, however, has tropieal and temperate regrons, while a limit­ been paid to habit in relation to wood struc­ ed number of specimens are from tropical ture (e.g., Baas & Zweypfenning 1979: Baas regions. & Schweingruber; Baas et al. 1983: Baas et al. 1984; Carlquist 1966, 1984b; Rury & Parameters analysed Dickison 1984). So far there are relatively few The present study, like many earlier stud­ reports on the correlations of phenology with ies of ecological wood anatomy, suffers from wood structure (e.g. Baas & Zhang 1986; insufficient ecological data. No ecologieal in­ Car1quist 1988; Chowdhury 1964). formation is available on the sampies from In the present study the diversity in vari­ the FHOw eollection. For the sampies from ous wood anatomie al characters in relation to China, the locality is usually known, but fur­ ecological factors (e.g. macroclimate and ther information (e.g., altitude, plant size, moisture availability), habit, and phenology water availability) is limited to certain sam­ will be analysed in order to answer the fol­ pIes (viz., the sampies from Zhongtiao and lowing questions: 1) How and to what extent Yunnan). Ecological information for the Chi­ is wood structure related to the rough ecolog­ nese samples was therefore based mainly on ical parameters analysed? 2) How and to what floristic literature (Wu 1980; Yu 1974, 1985, extent are various wood anatomical charac­ 1986). For the samples from Schweingruber, ters related to habit and phenology on the one Carlquist, and those from Israel, the relevant hand, and among themselves on the other? publieations (Baas & Schweingruber 1987: 3) How and to what extent are the effects of Carlquist & Hoekman 1985; Baas et al. 1983; macroclimate, moisture availability, habit and Fahn et al. 1986) have offered the necessary phenology on wood structure interrelated? ecological data. The eeological information 4) How and to what extent do the mutual de­ for the sampies from Dechamps was based pendencies of wood anatomical features af­ on the field data attached with the sampIes. feet the ecological trends? Wormation on phenology and habit was main­ Earlier studies on the wood anatomie al di­ Iy based on Mabberley (1987), Hutehinson versity of the Rosaceae (Zhang & Baas 1992; (1964) and Yu (1974,1985,1986). In addi­ Zhang 1992) serve as a basis of our present tion to the limited and rough data mentioned study. In return, this study is also aimed at above, non-standard sampling may also have increasing our understanding of the system­ influeneed the quantitative data. However. it is arie and biologie al significance of various believed that these random sources of varia- Downloaded from Brill.com10/07/2021 07:51:36AM via free access Zhang, Baas & Zandee - Wood structure of the Rosaceae 309 tion cannot have influenced the general re­ categories, however, were recognised in this sults appreciably. study. 1) Shrubs: here including shrubs, sub­ For the purpose of statistical quantifica­ shrubs, and perennial herbs; 2) Trees: woody tion, the following broad ecological and habit plants that attain a height of at least 7 m at categories were recognised: maturlty; 3) Intermediate-sized plants: large Macroclimatic zones - 1) Temperate spe­ shrubs to small trees. eies (occurrlng above 32° N or S latitude); 2) Subtropical species (occurring between In total, 12 wood anatomical characters 23° 30' and 32° N or S); 3) Tropical species were analysed. These characters include not (occurrlng between 23° 30' N or S; for the only qualitative but also quantitative ones: Chinese species, those occurrlng in Taiwan, ring-porosity, vessel frequency, percentage Hainan, southern Guangdong and southern of solitary vessels, (tangential) vessel diam­ Yunnan were treated as tropical elements). eter, vessel element length, length/diameter This classification ignores vast altitudinal (LID) ratio of vessel elements, multiple per­ variation within each region. forations, helical vessel wall thickenings, ray width, multiseriate ray height, ray composition Moisture availability - The same very and crystals. For definition and measurement rough and arbitrary categories as recognised of these features, see Zhang & Baas (1992). by Baas and Schweingruber (1987) for the All data analysed are given in Table 1. For European flora were adopted. 1) Dry: species statistical analysis, the qualitative parameters from physically
Recommended publications
  • Phylogeny of Maleae (Rosaceae) Based on Multiple Chloroplast Regions: Implications to Genera Circumscription
    Hindawi BioMed Research International Volume 2018, Article ID 7627191, 10 pages https://doi.org/10.1155/2018/7627191 Research Article Phylogeny of Maleae (Rosaceae) Based on Multiple Chloroplast Regions: Implications to Genera Circumscription Jiahui Sun ,1,2 Shuo Shi ,1,2,3 Jinlu Li,1,4 Jing Yu,1 Ling Wang,4 Xueying Yang,5 Ling Guo ,6 and Shiliang Zhou 1,2 1 State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China 2University of the Chinese Academy of Sciences, Beijing 100043, China 3College of Life Science, Hebei Normal University, Shijiazhuang 050024, China 4Te Department of Landscape Architecture, Northeast Forestry University, Harbin 150040, China 5Key Laboratory of Forensic Genetics, Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China 6Beijing Botanical Garden, Beijing 100093, China Correspondence should be addressed to Ling Guo; [email protected] and Shiliang Zhou; [email protected] Received 21 September 2017; Revised 11 December 2017; Accepted 2 January 2018; Published 19 March 2018 Academic Editor: Fengjie Sun Copyright © 2018 Jiahui Sun et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Maleae consists of economically and ecologically important plants. However, there are considerable disputes on generic circumscription due to the lack of a reliable phylogeny at generic level. In this study, molecular phylogeny of 35 generally accepted genera in Maleae is established using 15 chloroplast regions. Gillenia isthemostbasalcladeofMaleae,followedbyKageneckia + Lindleya, Vauquelinia, and a typical radiation clade, the core Maleae, suggesting that the proposal of four subtribes is reasonable.
    [Show full text]
  • Towards an Updated Checklist of the Libyan Flora
    Towards an updated checklist of the Libyan flora Article Published Version Creative Commons: Attribution 3.0 (CC-BY) Open access Gawhari, A. M. H., Jury, S. L. and Culham, A. (2018) Towards an updated checklist of the Libyan flora. Phytotaxa, 338 (1). pp. 1-16. ISSN 1179-3155 doi: https://doi.org/10.11646/phytotaxa.338.1.1 Available at http://centaur.reading.ac.uk/76559/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . Published version at: http://dx.doi.org/10.11646/phytotaxa.338.1.1 Identification Number/DOI: https://doi.org/10.11646/phytotaxa.338.1.1 <https://doi.org/10.11646/phytotaxa.338.1.1> Publisher: Magnolia Press All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online Phytotaxa 338 (1): 001–016 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2018 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.338.1.1 Towards an updated checklist of the Libyan flora AHMED M. H. GAWHARI1, 2, STEPHEN L. JURY 2 & ALASTAIR CULHAM 2 1 Botany Department, Cyrenaica Herbarium, Faculty of Sciences, University of Benghazi, Benghazi, Libya E-mail: [email protected] 2 University of Reading Herbarium, The Harborne Building, School of Biological Sciences, University of Reading, Whiteknights, Read- ing, RG6 6AS, U.K.
    [Show full text]
  • (Rosaceae), I. Differentiation of Mespilus and Crataegus
    Phytotaxa 257 (3): 201–229 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2016 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.257.3.1 STUDIES IN MESPILUS, CRATAEGUS, AND ×CRATAEMESPILUS (ROSACEAE), I. DIFFERENTIATION OF MESPILUS AND CRATAEGUS, EXPANSION OF ×CRATAEMESPILUS, WITH SUPPLEMENTARY OBSERVATIONS ON DIFFERENCES BETWEEN THE CRATAEGUS AND AMELANCHIER CLADES JAMES B. PHIPPS Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada; email: [email protected] Abstract The paper argues the position for retaining a monotypic Mespilus, i.e., in the sense of M. germanica, the medlar. Recent cladistic papers lend support for Mespilus being sister to Crataegus, and there is a clear morphological distinction from Cra- taegus, emphasized by adaptation to carnivore frugivory. Mespilus secured, the paper then treats each of the known hybrids between Mespilus and Crataegus, making the new combination Crataemespilus ×canescens (J.B. Phipps) J.B. Phipps. Keywords: Crataemespilus ×canescens (J.B. Phipps) J.B. Phipps comb. nov.; inflorescence position; medlar; Mespilus a folk-genus; Mespilus distinct from Crataegus; Rosaceae; taxonomic history of Mespilus Introduction The author has a long-standing interest in generic delimitation in the Maloid genera of the Rosaceae (Maleae Small, formerly Maloideae C. Weber, Pyrinae Dumort.), as shown particularly in a series of papers with K. Robertson, J. Rohrer, and P.G. Smith (Phipps et al. 1990, 1991; Robertson at al. 1991, 1992; Rohrer at al. 1991, 1994) which treated all 28 genera of Maleae as recognised by us. There is also a revisionary treatment of New World Heteromeles M.J.
    [Show full text]
  • Variación Fenotípica De Hesperomeles Obtusifolia
    Revista de la Asociación Colombiana de Ciencias Biológicas VARIACIÓN FENOTÍPICA DE HESPEROMELES OBTUSIFOLIA (CEROTE COMÚN) ENTRE AMBIENTES CONSERVADOS Y PERTURBADOS DE LA RESERVA NATURAL PUEBLO VIEJO MUNICIPIO DE MALLAMA DEPARTAMENTO DE NARIÑO-COLOMBIA PHENOTYPIC VARIATION OF HESPEROMELES OBTUSIFOLIA (COMMON CEROTE) BETWEEN PRESERVED AND DISTURBED ENVIRONMENTS NATURE OF THE RESERVE PUEBLO VIEJO MUNICIPALITY OF MALLAMA DEPARTMENT OF NARIÑO-COLOMBIA Paula Andrea Eraso Escobar1, David Alejandro Guaitarilla1, Sonia Mahecha Vahos2, Luz Lagos Mora2. 1. Estudiante pregrado de biología 2. Docente de Universidad de Nariño, Pasto, Colombia, Departamento de Biologia Recibido: Octubre 15 de 2016 Aceptado: Noviembre 10 de 2016 *Correspondencia del autor: Luz Estela Lagos Mora, Universidad de Nariño, Pasto, Colombia. E-mail: [email protected] RESUMEN Las variaciones de las características morfológicas en las plantas pueden ser una respuesta a las codiciones am- bientales, considerando todos los factores físicos y fi siológicos, y en casos extremos a cambios estructurales, consecuencia de fenómenos como la deforestación o el cambio climático. El cerote común (Hesperomeles obtu- sifolia), es un especie que habita zonas conservadas e intervenidas en su rango de distribución, es por ello que se utilizó como modelo para evaluar las variación de las características morfológicas en dos zonas diferentes: una conservada en el pá-ramo del infi ernillo y una intervenida de la reserva Natural Pueblo Viejo en el Mu-nicipio de Mallama (Departamento de Nariño); para lo cual se realizaron muestreos de 21 individuos por zona, de los que se tomó 10 hojas por cada muestra y 5 frutos y se analizaron los parámetros morfométricos. Los análisis estadísticos mostaron diferencias estadísticamente signifi cativas en todas las variables evaluadas, lo cual puede indicar que la especie de estudio presenta una alta plasticidad fenotípica, que se considera de importancia frente a la coloniza- ción de nuevos hábitats Palabras claves: Variación morfológica, Morfométria, plasticidad fenotípica.
    [Show full text]
  • Universidad Nacional Agraria La Molina Facultad De Ciencias Forestales
    UNIVERSIDAD NACIONAL AGRARIA LA MOLINA FACULTAD DE CIENCIAS FORESTALES CARACTERIZACIÓN DE LOS ARBUSTOS EN LA PROVINCIA DE TARMA, DEPARTAMENTO DE JUNÍN, CON ÉNFASIS EN SU MORFOLOGÍA VEGETATIVA. Presentado por: Sandra Lorisue Saavedra Barroso TESIS PARA OPTAR EL TÍTULO DE INGENIERO FORESTAL Lima - Perú 2017 ACTA DE SUSTENTACIÓN DE TESIS Los Miembros del Jurado que suscriben, reunidos para calificar la sustentación del Trabajo de Tesis, presentado por la ex-alumna de la Facultad de Ciencias Forestales, Bach. SANDRA LORISUE SAAVEDRA BARROSO, intitulado “CARACTERIZACIÓN DE LOS ARBUSTOS EN LA PROVINCIA DE TARMA, DEPARTAMENTO DE JUNÍN, CON ÉNFASIS EN SU MORFOLOGÍA VEGETATIVA. ”. Oídas las respuestas a las observaciones formuladas, lo declaramos: ………………………………… con el calificativo de ………………………………… En consecuencia queda en condición de ser considerada APTA y recibir el título de INGENIERO FORESTAL. La Molina, 5 de diciembre de 2016 Ing. Ignacio Lombardi Indacochea Presidente Mg. Sc. Manuel Chavesta Custodio Dra. Mercedes Flores Pimentel Miembro Miembro PhD. Carlos Reynel Rodríguez Asesor ii DEDICATORIA A Dios por su inspiración y a mi familia por su apoyo. iii AGRADECIMIENTOS Quiero expresar mi más sincero agradecimiento a mi asesor de tesis, el Dr. Carlos Reynel por su generoso apoyo y constante motivación en la realización de este trabajo. A mis jurados, el Ing. Ignacio Lombardi, el Mg.Sc. Manuel Chavesta y la Dra. Mercedes Flores por sus valiosas correcciones al presente documento. A la Ing. Mabel Borda y mis compañeras forestales Cyntia Villa y Sara Terreros por sus valiosas colaboraciones durante la fase de campo. Al personal que conforma el Herbario Forestal MOL de la Universidad Agraria La Molina.
    [Show full text]
  • 9:00 Am PLACE
    CARTY S. CHANG INTERIM CHAIRPERSON DAVID Y. IGE BOARD OF LAND AND NATURAL RESOURCES GOVERNOR OF HAWAII COMMISSION ON WATER RESOURCE MANAGEMENT KEKOA KALUHIWA FIRST DEPUTY W. ROY HARDY ACTING DEPUTY DIRECTOR – WATER AQUATIC RESOURCES BOATING AND OCEAN RECREATION BUREAU OF CONVEYANCES COMMISSION ON WATER RESOURCE MANAGEMENT STATE OF HAWAII CONSERVATION AND COASTAL LANDS CONSERVATION AND RESOURCES ENFORCEMENT DEPARTMENT OF LAND AND NATURAL RESOURCES ENGINEERING FORESTRY AND WILDLIFE HISTORIC PRESERVATION POST OFFICE BOX 621 KAHOOLAWE ISLAND RESERVE COMMISSION LAND HONOLULU, HAWAII 96809 STATE PARKS NATURAL AREA RESERVES SYSTEM COMMISSION MEETING DATE: April 27, 2015 TIME: 9:00 a.m. PLACE: Department of Land and Natural Resources Boardroom, Kalanimoku Building, 1151 Punchbowl Street, Room 132, Honolulu. AGENDA ITEM 1. Call to order, introductions, move-ups. ITEM 2. Approval of the Minutes of the June 9, 2014 N atural Area Reserves System Commission Meeting. ITEM 3. Natural Area Partnership Program (NAPP). ITEM 3.a. Recommendation to the Board of Land and Natural Resources approval for authorization of funding for The Nature Conservancy of Hawaii for $663,600 during FY 16-21 for continued enrollment in the natural area partnership program and acceptance and approval of the Kapunakea Preserve Long Range Management Plan, TMK 4-4-7:01, 4-4-7:03, Lahaina, Maui. ITEM 3.b. Recommendation to the Board of Land and Natural Resources approval for authorization of funding for The Nature Conservancy of Hawaii for $470,802 during FY 16-21 for continued enrollment in the natural area partnership program and acceptance and approval of the Pelekunu Long Range Management Plan, TMK 5-4- 3:32, 5-9-6:11, Molokai.
    [Show full text]
  • A Brief Nomenclatural Review of Genera and Tribes in Theaceae Linda M
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 24 | Issue 1 Article 8 2007 A Brief Nomenclatural Review of Genera and Tribes in Theaceae Linda M. Prince Rancho Santa Ana Botanic Garden, Claremont, California Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Prince, Linda M. (2007) "A Brief Nomenclatural Review of Genera and Tribes in Theaceae," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 24: Iss. 1, Article 8. Available at: http://scholarship.claremont.edu/aliso/vol24/iss1/8 Aliso 24, pp. 105–121 ᭧ 2007, Rancho Santa Ana Botanic Garden A BRIEF NOMENCLATURAL REVIEW OF GENERA AND TRIBES IN THEACEAE LINDA M. PRINCE Rancho Santa Ana Botanic Garden, 1500 North College Ave., Claremont, California 91711-3157, USA ([email protected]) ABSTRACT The angiosperm family Theaceae has been investigated extensively with a rich publication record of anatomical, cytological, paleontological, and palynological data analyses and interpretation. Recent developmental and molecular data sets and the application of cladistic analytical methods support dramatic changes in circumscription at the familial, tribal, and generic levels. Growing interest in the family outside the taxonomic and systematic fields warrants a brief review of the recent nomenclatural history (mainly 20th century), some of the classification systems currently in use, and an explanation of which data support various classification schemes. An abridged bibliography with critical nomen- clatural references is provided. Key words: anatomy, classification, morphology, nomenclature, systematics, Theaceae. INTRODUCTION acters that were restricted to the family and could be used to circumscribe it.
    [Show full text]
  • Generic Limits of Pyrinae: Insights from Nuclear Ribosomal DNA Sequences
    Botanical Studies (2012) 53: 151-164. SYSTEMATICS Generic limits of Pyrinae: Insights from nuclear ribosomal DNA sequences Qing-Yan LI1, Wei GUO1, Wen-Bo LIAO1,*, James A. MACKLIN2, and Jian-Hua LI3,* 1Sun Yat-sen University, School of Life Sciences, Guangdong Key Laboratory of Plant Resources, Guangzhou, Guangdong, 510275, P.R. China 2Harvard University Herbaria, Organismal and Evolutionary Biology, 22 Divinity Avenue, Cambridge, Massachusetts, 02138, USA 3Biology Department, Hope College, MI 49423, USA (Received August 23, 2010; Accepted October 6, 2011) ABSTRACT. The subtribe Pyrinae, formerly the Maloideae, is a monophyletic group of about 1,000 species that includes well known fruit crops such as apple (Malus), pear (Pyrus), quince (Cydonia), loquat (Eriobotrya), chokeberry (Aronia), and serviceberry (Amelanchier). Generic limits have been fluid in Pyrinae, especially in Malus, Sorbus and Photinia. This study evaluated the generic limits of 180 samples of multiple species or accessions from each of the traditional genera using sequences of the nrDNA ITS region. The ITS data recog- nized 24 genera, including Amelanchier, Aria (including Micromeles), Aronia, Chaenomeles, Chamaemespilus, Chamaemeles, Cormus, Cotoneaster, Crataegus, Cydonia, Dichotomanthes, Eriobotrya, Hesperomeles, Mala- comeles, Malus (including Chloromeles, Docynia, Docyniopsis, and Eriolobus), Mespilus, Osteomeles, Pera- phyllum, Pourthiaea, Pseudocydonia, Pyrus, Rhaphiolepis, Sorbus, and Torminalis. However, both Photinia and Pyracantha are polyphyletic. Photinia is separated into different clades, one of which contains species of Heteromeles and Stranvaesia. Asian species of Pyracantha do not form a clade with P. coccinea of southern Europe and Iran. Our results support the close relationship of Amelanchier, Malacomeles, and Peraphyllum, and of Crataegus and Mespilus, and for the first time recognize the sister relationship of the South American genus Hesperomeles with the Crataegus-Mespilus clade.
    [Show full text]
  • A Brief Review of the Fossil History of the Family Rosaceae with a Focus On
    Pl. Syst. Evol. 266: 45–57 (2007) Plant Systematics DOI 10.1007/s00606-007-0540-3 and Evolution Printed in The Netherlands A brief review of the fossil history of the family Rosaceae with a focus on the Eocene Okanogan Highlands of eastern Washington State, USA, and British Columbia, Canada M. L. DeVore1 and K. B. Pigg2 1Department of Biological and Environmental Sciences, Georgia College & State University, Milledgeville, GA, USA 2School of Life Sciences, Arizona State University, Tempe, AZ, USA Received January 16, 2006; accepted August 17, 2006 Published online: June 28, 2007 Ó Springer-Verlag 2007 Abstract. Many of the oldest definitive members of temperate regions (Heywood 1993). Members the Rosaceae are present in the Eocene upland floras of the Rosaceae have radiated into a wide of the Okanogan Highlands of northeastern Wash- variety of environments ranging from mesic to ington State and British Columbia, Canada. Over a xeric communities and are elements of boreal dozen rosaceous taxa representing extant and extinct and tundra ecosystems. No doubt one of the genera of all four traditionally recognized subfam- driving forces for the Rosaceae’s success is the ilies are known from flowers, fruits, wood, pollen, presence of agamospermy, hybridization, poly- and especially leaves. The complexity seen in Eocene Rosaceae suggests that hybridization and poly- ploidy and vegetative reproduction within the ploidy may have played a pivotal role in the early family. All of these microevolutionary pro- evolution of the family. Increased species diversity cesses contribute to generating novel genetic and the first appearance of additional modern taxa combinations capable of colonizing and per- occur during the Late Paleogene in North America sisting in new, open habitats.
    [Show full text]
  • Phylogenetic Relationships in Rosaceae Inferred from Chloroplast Matk and Trnl-Trnf Nucleotide Sequence Data
    Plant Syst. Evol. 231: 77±89 32002) Phylogenetic relationships in Rosaceae inferred from chloroplast matK and trnL-trnF nucleotide sequence data D. Potter1, F. Gao1, P. Esteban Bortiri1, S.-H. Oh1, and S. Baggett2 1Department of Pomology, University of California, Davis, USA 2Ph.D. Program Biology, Lehman College, City University of New York, New York, USA Received February 27, 2001 Accepted October 11, 2001 Abstract. Phylogenetic relationships in Rosaceae economically important fruits of temperate were studied using parsimony analysis of nucleo- regions is produced by members of this family, tide sequence data from two regions of the including species of Malus 3apples), Pyrus chloroplast genome, the matK gene and the trnL- 3pears), Prunus 3plums, peaches, cherries, trnF region. As in a previously published phylog- almonds, and apricots), Rubus 3raspberries), eny of Rosaceae based upon rbcL sequences, and Fragaria 3strawberries). The family also monophyletic groups were resolved that corre- includes many ornamentals, e.g., species of spond, with some modi®cations, to subfamilies Maloideae and Rosoideae, but Spiraeoideae were Rosa 3roses), Potentilla 3cinquefoil), and polyphyletic. Three main lineages appear to have Sorbus 3mountain ash). A variety of growth diverged early in the evolution of the family: 1) habits, fruit types, and chromosome numbers Rosoideae sensu stricto, including taxa with a base is found within the family 3Robertson 1974), chromosome number of 7 3occasionally 8); 2) which is traditionally divided into four sub- actinorhizal Rosaceae, a group of taxa that engage families on the basis of fruit type 3e.g., Schulze- in symbiotic nitrogen ®xation; and 3) the rest of the Menz 1964).
    [Show full text]
  • Rosaceae-Sanguisorbeae De Macaronesia : Géneros Marcetella
    Bot. Macaronesica 25: 95-126 (2004) 95 ROSACEAE-SANGUISORBEAE DE MACARONESIA: GÉNEROS MARCETELLA, BENCOMIA Y DENDRIOPOTERIUM. PALINOLOGÍA, BIOGEOGRAFÍA, SISTEMAS SEXUALES Y FILOGENIA JULIA PÉREZ DE PAZ. Jardín Botánico Canario “Viera y Clavijo” Apdo 14 de Tafira Alta.35017 Las Palmas de Gran Canaria. ([email protected]) Recibido: Marzo 2004 Palabras claves: Rosaceae-Sanguisorbeae, Dendriopoterium, Bencomia, Marcetella, Macaronesia, Sarcopoterium, Sanguisorba, Cliffortia, Hagenia, Leucosidea, Polylepis, Acaena, palinología, diversidad, filogenenia, sistemas sexuales, tipos polínicos, biogeografía. Key words: Rosaceae-Sanguisorbeae, Dendriopoterium, Bencomia, Marcetella, Macaronesia, Sarcopoterium, Sanguisorba, Cliffortia, Hagenia, Leucosidea, Polylepis, Acaena, palynology, diversity, phylogeny, sexual systems, pollen types, biogeography RESUMEN El conocimiento generalizado de los tipos polínicos de los miembros continentales de la tribu Sanguisorbeae, con los modelos de ornamentación exínica, pontopérculo y otras características palinológicas, es el principal objetivo de este estudio, dadas las asociaciones e implicaciones palinológicas de este grupo con la biogeografía, formas de crecimiento de los taxones y sistemas sexuales. Se considera que estas nuevas aportaciones palinológicas ayudarían a conocer y entender el origen y relaciones del grupo de géneros macaronésicos, que además se constituye como uno de los ejemplos clave para el seguimiento y evolución de los sistemas sexuales, representando la vía de acceso a la dioecia
    [Show full text]
  • Flora of Kwangtung and Hongkong (China) Being an Account of The
    ASIA Oldtnell Htttneraity ffitbrarg CHARLES WILLIAM WASON COLLECTION CHINA AND THE CHINESE THE GIFT OF CHARLES WILLIAM WASON CLASS OF 1876 1918 CORNELL UNIVERSITY LIBRARY 3 1924 073 202 933 The original of tiiis book is in tine Cornell University Library. There are no known copyright restrictions in the United States on the use of the text. http://www.archive.org/details/cu31924073202933 P.EW Bulletin, Add. Series X 762, 1-30 bSI^11/ 73. SOD-IOJI- To -filce. page- 1 . J [All Bights Reserved.] EOYAL BOTMIC GARDENS, KEW. BULLETIN OF MISCELLANEOUS INEOEIATIOK ADDITIONAL SERIES X. ELORA OE KWAiaTUia AO H0I&K0I6- (OHIIA) BEING AN ACCOUNT OP THE FLOWERING PLA.NTS, FERNS AND FERN ALLIES TOGETHER WITH KEYS FOR THEIR DETERMINATION PRECEDED BY A MAP AND INTRODTJCTrON, BY STEPHEN TROYTE DUNN, B.A., F.L.S., sometime Superintendent of the Botanical and Forestry Department, Hongkong ; AND WILLIAM JAMES TUTCHER, F.L.S., Superintendent of the Botanical and Forestry Department, Hongkong. LONDON: PUBLISHED BY HIS MAJESTY'S STATIONERY OFFICE. To be purchased, either directly or through any Bookseller, from WjifMAN AND SONS, Ltd., Feitbr Lane, E.G.; or OLIVER AND BOYD, Tweeddale Court, Edinburgh; or E. PONSONBY, Ltd., 116, Graeton Street, Dublin. printed by DARLING AND SON, Ltd., Bacon Street, E. 1912. Price is. 6d. G: PREFACE. The first and, up till now, the only work by which plants from any part of the Celestial Empire could be identified was Bentham's Flora Hongkongensis published in 1861. This Flora dealt only with the small island of Hongkong on the S.E.
    [Show full text]