Study of the Antihydrogen Atom and Ion Formation in the Collisions Antiproton-Positronium Pauline Comini

Total Page:16

File Type:pdf, Size:1020Kb

Study of the Antihydrogen Atom and Ion Formation in the Collisions Antiproton-Positronium Pauline Comini Study of the antihydrogen atom and ion formation in the collisions antiproton-positronium Pauline Comini To cite this version: Pauline Comini. Study of the antihydrogen atom and ion formation in the collisions antiproton- positronium. Accelerator Physics [physics.acc-ph]. Université Pierre et Marie Curie - Paris VI, 2014. English. NNT : 2014PA066639. tel-01150446 HAL Id: tel-01150446 https://tel.archives-ouvertes.fr/tel-01150446 Submitted on 11 May 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Universit´ePierre et Marie Curie Ecole´ Doctorale 517: Particules, Noyaux et Cosmos Service de Physique des Particules du CEA–Saclay Etude´ de la formation d’antihydrog`ene neutre et ionis´e dans les collisions antiproton–positronium Study of the antihydrogen atom and ion formation in the collisions antiproton–positronium Par Pauline Comini Th`ese de doctorat de Physique Dirig´ee par Yves Sacquin et co-encadr´ee par Paul-Antoine Hervieux et Fran¸cois Nez pr´esent´ee et soutenue publiquement le 23 Octobre 2014 devant un jury compos´ede M.BertrandLaforge,LPNHE,Paris ........................................Pr´esidentdujury M.LamriAdoui,CIMAP,Caen ...................................................Rapporteur M.PierreVanhove,CEA-IPhT,Saclay ............................................Rapporteur M.JaumeCarbonell,IPN,Orsay ................................................Examinateur M.YasunoriYamazaki,RIKEN,Wako ..........................................Examinateur M.YvesSacquin,CEA-IRFU,Saclay ......................................Directeurdeth`ese M.Paul-AntoineHervieux,IPCMS,Strasbourg .........................................Invit´e M.Fran¸coisNez,LKB,Paris ...........................................................Invit´e i Remerciements Voici quelques ultimes mots en fran¸cais pour remercier chaleureusement les personnes qui, con- tinuellement ou ponctuellement, m'ont apport´econseils, soutien, aide et ´energietout au long de cette th`ese, voire m^eme lors de ses pr´emissespendant le stage de deuxi`emeann´eede Master. Mes premiers remerciements vont bien ´evidemment `amon directeur de th`eseYves Sacquin, qui s'est retrouv´e,comme moi, embarqu´esur un sujet ´eloign´ede ses premi`eresqualifications. Merci pour sa bienveillante supervision, ses truculentes anecdotes scientifiques, ses r´eguli`eres sollicitations et sa traque f´eroce des \permit" r´ecalcitrants lors des relectures. Un immense merci ceux que je qualifierais de co-directeurs, tant leur r^olefut pr´epond´erant dans l'encadrement de cette th`ese: Paul-Antoine Hervieux et Fran¸coisNez. Au premier, pour m'avoir r´econcili´eeavec les calculs th´eoriques,tout en me faisant part de son admiration pour Louis de Broglie autour d'une tarte flamb´ee,ou encore pour son soutien t´el´ephoniquequi fut tr`es appr´eci´e; Paul-Antoine fut toujours disponible, m^emelorsque son emploi du temps lui criait le contraire. Au second pour avoir guid´emes premiers pas parmi les las´eristesavec patience et `arenfort d'´energiechocolat´ee(suisse, bien s^ur),ainsi que pour son d´evouement dans le sprint final ; en quelques phrases concises, bien que parfois sibyllines, il m'a transmis de bien utiles conseils pratiques. Yves, Paul-Antoine, Fran¸cois... A` chacun sa mani`erede communiquer son enthousiasme, `a chacun son humour : dans tous les cas, ce fut v´eritablement agr´eableet enrichissant de travailler avec eux ! Je continuerai en m'adressant d'abord `ames coll`eguesdu CEA. En particulier, merci `aPatrice P´erezet Pascal Debu, qui m'ont pr´esent´ele projet pour la premi`erefois et ont accept´ema candidature spontan´ee`aun sujet de th`esequi n'´etait,alors, pas encore formul´e.Je salue Laszlo Liszkay, Bertrand Vallage, Jean-Michel Rey et Jean-Marc Reymond, qui forment le reste d'une ´equipe alliant comp´etenceset bonne humeur. Merci `atous pour leurs avis d'experts, conseils pratiques et sympathiques encouragements. Merci { thank you { obrigada aux ´etudiants sur le projet GBAR `aSaclay : Nicolas Ruiz, Pierre Dupr´e,Daniel Brook-Roberge, Tim Mortensen, Amelia Leite et, plus particuli`erement, Pierre Grandemange avec lequel j'ai partag´edeux ann´eesde th`eseet quelques heures cumul´ees de pauses caf´ein´ees,lors desquelles nous commis´erionssur les mal´edictionsde mes jobs plant´es et de son pi`ege`apositons. Ce fut un plaisir de les rencontrer et de travailler avec eux. A` tous, je souhaite bonne continuation ! / It was a real pleasure to meet them and work with them. I wish them all the best! Je tiens `asaluer les coll`eguesdu SIS au CEA-Saclay { et plus particuli`erement Paul Lotrus { pour leur patience et leur compr´ehensionface aux indications, parfois vagues et versatiles, que je leur fournissais pour la r´ealisationde l'automate g´erant les s´ecurit´esde la cabane du laser. Bravo pour le r´esultat! Je voudrais ´egalement associer `aces remerciements Anne-Isabelle Etienvre,´ actuellement chef du Service de physique des particules de l'Irfu, pour m'avoir orient´eevers Patrice, ainsi qu'Achille Stocchi, du LAL `aOrsay, pour avoir soutenu ma candidature `aune bourse minist´erielleaupr`es de l'´ecoledoctorale. Enfin, j'adresse un clin d’œil `aLaurent Chevallier, mon parrain au SPP, qui a men´ecette mission avec une facilit´ed´econcertante, et `aPascal L´ev^eque, du SACM, qui serait triste si je l'oubliais (et merci, bien s^ur,pour l'am´enagement de la cabane laser). ii La moiti´ede ma th`eses'est d´eroul´eeau laboratoire Kastler-Brossel de Jussieu. Aussi, je souhaite faire part de toute ma gratitude `al'ensemble de l'´equipe 13 du LKB, permanents (Fran¸coisBiraben, Pierre Clad´e,Sa¨ıdaGuellati, Lucile Julien et, bis repetita placent, Fran¸cois Nez) et doctorants (Sandrine Galtier, Cl´ement Courvoisier, Manuel Andia, Rapha¨elJannin, ainsi qu'H´el`eneFleurbaey). Je ne peux que louer l'´equipe pour son accueil familial et ses r´ejouissantes poses-th´e,accompagn´eesde succulents g^ateaux{ cat´egorie \lourds-l´egers"{ faits maison. J'en profite ´egalement pour remercier plus sp´ecifiquement Fran¸coisBiraben, pour son aide pr´ecieuse sur la simulation et pour ses explications et conseils qui ont ponctu´esmon s´ejourparmi l'´equipe, et dont, finalement, je regrette de n'avoir pas plus profit´e! De m^eme,un grand merci `aLucile pour m'avoir fourni livres et cours n´ecessaires`ama mise en selle dans le monde des lasers. Et enfin merci `aSa¨ıdapour son chaleureux soutien dans la derni`ereligne droite. J'adresse ´egalement tous mes remerciements `aLaurent Hilico pour ses limpides explications, en particulier concernant la d´etectionsynchrone. Merci aussi pour nous avoir laiss´esubtiliser, + `apeine d´eball´e,le beau lambdam`etreachet´epar le groupe \H2 " (dont je salue aussi Albane Douillet et Jean-Philippe Karr) ! Je suis tr`esreconnaissante envers le personnel de l'atelier de m´ecaniquedu LKB { Jean-Michel Isac, Pascal Travers, Ga¨elCoupin, Arnaud Leclercq et Saysavanh Souramasing { pour leur travail rapide et efficace, m^emelorsqu'ils sont surcharg´es.Je leur dois notamment la r´ealisationde tous les ´el´ements m´ecaniquesde l'oscillateur, et je sais qu'une certaine petite pi`eceen laiton perc´ee d'une ouverture oblique leur a donn´ebien du fil `aretordre... Merci `aFlorence Thibout, pour nous avoir souffl´eune d´elicatecellule de c´esium,et pour m'avoir permis d'assiter au rituel de la queue de cochon. Et enfin merci `aBrigitte Lamour et Jean-Pierre Okpisz, pour le support technique en ´electroniqueet les conversations autour d'un fer `asouder ; merci de m'avoir confi´edu mat´eriel en ao^utpour monter mes photodiodes. Au d´ebutde l'aventure, il y eut l'Institut de physique et de chimie des mat´eriauxde Strasbourg, o`uj'ai pass´edeux mois avant d'y retourner r´eguli`erement pendant la th`ese. Je voudrais donc saluer, en plus de Paul-Antoine, Giovanni Manfredi, Omar Morandi, et lancer un vielmols merci `aYannick Hinschberger, pour un stage tout en bon son hard-rock bien gras. Bon courage Mateo Valdes Dupuy, qui commence sa th`ese`al'IPHC de Strasbourg sur le calcul des sections efficaces `atr`esbasse ´energie. Je remercie ´egalement Christine Tug`eneet Fabien M¨uller pour leurs rapides interventions d`es lors qu'un probl`emesurvenait sur une des machines de calcul de Strasbourg. Un large merci aux diff´erents secr´etariatsde chacun des laboratoires que j'ai travers´es.Je suis notamment extr^ement reconnaissante envers Estelle Brunette, Emilie´ Chancrin, Martine Oger, B´eatriceGuyot, Monique Granon, Laeticia Morel-Mar´echal, Delphine Charbonneau pour leur aide efficace et sympathique. I would like to acknowledge the GBAR collaborators for their interest (either enthusiastic, simply polite or even sometimes doubtful) during collaboration meetings, and for the ensuing fruitful discussions. Je remercie enfin chaleureusement Messieurs Bertrand Laforge, Jaume Carbonell, Yasunori Yamazaki (doumo arigatou gozaimashita), Lamri Adoui et Pierre Vanhove, pour avoir accept´e iii de faire partie de mon jury ainsi que pour l'int´er^etqu'ils ont manifest´e`ace travail et les cor- rections qu'ils m'ont propos´ees; je remercie plus particuli`erement les deux derniers membres pr´ec´edemment cit´espour avoir endoss´ela difficile t^ache de rapporteur sur un sujet polymorphe. Aux antipodes de la physique, je souhaiterais saluer mes amis de la revue Disharmonies, contre- point litt´eraireet culturel salutaire qui m'a permis de m'exercer `ala communication scientifique. Durant ma th`ese, j'ai pu retrouv´eavec joie les membres de la R´edac'qui, lors de cette derni`ere ann´ee,n'ont cess´ede m'adresser leurs encouragements. Cette ligne est probablement celle qui sera le plus avidement lue.
Recommended publications
  • Confinement of Antihydrogen for 1000 Seconds
    Confinement of antihydrogen for 1000 seconds G.B. Andresen1, M.D. Ashkezari2, M. Baquero-Ruiz3, W. Bertsche4, E. Butler5, C.L. Cesar6, A. Deller4, S. Eriksson4, J. Fajans3#, T. Friesen7, M.C. Fujiwara8,7, D.R. Gill8, A. Gutierrez9, J.S. Hangst1, W.N. Hardy9, R.S. Hayano10, M.E. Hayden2, A.J. Humphries4, R. Hydomako7, S. Jonsell11, S. Kemp5§, L. Kurchaninov8, N. Madsen4, S. Menary12, P. Nolan13, K. Olchanski8, A. Olin8&, P. Pusa13, C.Ø. Rasmussen1, F. Robicheaux14, E. Sarid15, D.M. Silveira16, C. So3, J.W. Storey8$, R.I. Thompson7, D.P. van der Werf4, J.S. Wurtele3#, Y. Yamazaki16¶. 1Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark. 2Department of Physics, Simon Fraser University, Burnaby BC, V5A 1S6, Canada 3Department of Physics, University of California, Berkeley, CA 94720-7300, USA 4Department of Physics, Swansea University, Swansea SA2 8PP, United Kingdom 5Physics Department, CERN, CH-1211, Geneva 23, Switzerland 6Instituto de Fısica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-972, Brazil 7Department of Physics and Astronomy, University of Calgary, Calgary AB, T2N 1N4, Canada 8TRIUMF, 4004 Wesbrook Mall, Vancouver BC, V6T 2A3, Canada 9Department of Physics and Astronomy, University of British Columbia, Vancouver BC, V6T 1Z1, Canada 10Department of Physics, University of Tokyo, Tokyo 113-0033, Japan 11 Department of Physics, Stockholm University, SE-10691, Stockholm, Sweden 12Department of Physics and Astronomy, York University, Toronto, ON, M3J 1P3, Canada 13Department of Physics,
    [Show full text]
  • Antimatter Weapons (1946-1986): from Fermi and Teller's
    Antimatter weapons (1946-1986): From Fermi and Teller’s speculations to the first open scientific publications ∗ Andre Gsponer and Jean-Pierre Hurni Independent Scientific Research Institute Box 30, CH-1211 Geneva-12, Switzerland e-mail: [email protected] Version ISRI-86-10.3 June 4, 2018 Abstract We recall the early theoretical speculations on the possible explosive uses of antimatter, from 1946 to the first production of antiprotons, at Berkeley in 1955, and until the first capture of cold antiprotons, at CERN on July 17–18, 1986, as well as the circumstances of the first presentation at a scientific conference of the correct physical processes leading to the ignition of a large scale thermonuclear explosion using less than a few micrograms of antimatter as trigger, at Madrid on June 30th – July 4th, 1986. Preliminary remark This paper will be followed by by Antimatter weapons (1986-2006): From the capture of the first antiprotons to the production of cold antimatter, to appear in 2006. 1 Introduction At CERN (the European Laboratory for Particle Physics), on the evening of the 17 to the 18 of July 1986, antimatter was captured in an electromagnetic trap for arXiv:physics/0507132v2 [physics.hist-ph] 28 Oct 2005 the first time in history. Due to the relatively precarious conditions of this first ∗Expanded version of a paper published in French in La Recherche 17 (Paris, 1986) 1440– 1443; in English in The World Scientist (New Delhi, India, 1987) 74–77, and in Bulletin of Peace Proposals 19 (Oslo,1988) 444–450; and in Finnish in Antimateria-aseet (Kanssainvalinen¨ rauhantutkimuslaitos, Helsinki, 1990, ISBN 951-9193-22-7) 7–18.
    [Show full text]
  • ANTIMATTER a Review of Its Role in the Universe and Its Applications
    A review of its role in the ANTIMATTER universe and its applications THE DISCOVERY OF NATURE’S SYMMETRIES ntimatter plays an intrinsic role in our Aunderstanding of the subatomic world THE UNIVERSE THROUGH THE LOOKING-GLASS C.D. Anderson, Anderson, Emilio VisualSegrè Archives C.D. The beginning of the 20th century or vice versa, it absorbed or emitted saw a cascade of brilliant insights into quanta of electromagnetic radiation the nature of matter and energy. The of definite energy, giving rise to a first was Max Planck’s realisation that characteristic spectrum of bright or energy (in the form of electromagnetic dark lines at specific wavelengths. radiation i.e. light) had discrete values The Austrian physicist, Erwin – it was quantised. The second was Schrödinger laid down a more precise that energy and mass were equivalent, mathematical formulation of this as described by Einstein’s special behaviour based on wave theory and theory of relativity and his iconic probability – quantum mechanics. The first image of a positron track found in cosmic rays equation, E = mc2, where c is the The Schrödinger wave equation could speed of light in a vacuum; the theory predict the spectrum of the simplest or positron; when an electron also predicted that objects behave atom, hydrogen, which consists of met a positron, they would annihilate somewhat differently when moving a single electron orbiting a positive according to Einstein’s equation, proton. However, the spectrum generating two gamma rays in the featured additional lines that were not process. The concept of antimatter explained. In 1928, the British physicist was born.
    [Show full text]
  • Antihydrogen and the Antiproton Magnetic Moment
    Gabrielse ATRAP: Context and Status Antihydrogen and the Antiproton Magnetic Moment Gerald Gabrielse Spokesperson for TRAP and ATRAP at CERN Levere tt Pro fesso r o f Phys ics, Har var d Uni ver sit y Gabrielse Context CERN Pursues Fundamental Particle Physics at WWeveegySceseesghatever Energy Scale is Interesting A Long and Noble CERN Tradition 1981 – traveled to Fermilab “TEV or bust” 1985 – different response at CERN wh en I went th ere to try to get access to LEAR antiprotons for qqyg/m measurements and cold antihydrogen It is exciting that there is now • a dedicated storaggge ring for antih ygpydrogen experiments • four international collaborations • too few antiprotons for the demand Gabrielse Pursuing Fundamental Particle Physics atWhtt Whatever Energy Sca le is In teres ting A Long and Noble CERN Tradition 1986 – First trapped antiprotons (TRAP) 1989 – First electron-cooling of trapped antiprotons (TRAP) 1 cm magnetic field 21 MeV antiprotons slow in matter degrader _ + _ CERN’s AD, plus these cold methods make antihydrogen possible Gabrielse Pursuing Fundamental Particle Physics atWhtt Whatever Energy Sca le is In teres ting A Long and Noble CERN Tradition 1981 – traveled to Fermilab “TEV or bust” 1985 – different response at CERN when I went there to try to get access to LEAR antiprotons for q/m measurements and cold antihydrogen LHC: 7 TeV + 7 TeV AD: 5 MeV 100 times 5 x 1016 More trapped ELENA upgrade: 0.1 MeV antiprotons ATRAP: 0.3 milli-eV Gabrielse Physics With Low Energy Antiprotons First Physics: Compare q/m for antiproton
    [Show full text]
  • Patentable Subject [Anti]Matter
    PATENTABLE SUBJECT [ANTI]MATTER Whether antihydrogen qualifies as patentable subject matter for the purposes of the United States patent law is not an easy question. In general, man-made inventions and new compositions of matter are proper subjects of patent protection, while products of nature are not. Antihydrogen, a newly created element made entirely of antimatter, has qualities of both a newly created composition of matter and a product of nature. As a result, antihydrogen approaches the theoretical boundaries of the product of nature doctrine because mankind finally has the opportunity to create for the very first time an element that has probably never existed before in the entire universe. This iBrief will begin by briefly explaining antimatter and antihydrogen. Then, a distinction will be drawn between a man-made invention and a product of nature by analyzing relevant case law. Finally, antihydrogen will be analyzed as hypothetical subject matter under the United States patent laws without considering the further requirements of novelty and non-obviousness. An Overview of Antimatter and Antihydrogen Antimatter In 1930, the theoretical physicist Paul Dirac predicted that for every particle of matter, there exists an equivalent particle of antimatter.1 The existence of antimatter was confirmed in 1933 with the discovery of the positron, the antimatter pair of the electron.2 The theory does not mean to say that every proton in the universe must have a ghostly antiproton pair; rather it simply means that matter in the universe can be made of “real” matter, like protons and electrons, or it can be made of antimatter, like antiprotons and positrons.
    [Show full text]
  • Trapped Antihydrogen in Its Ground State
    Trapped Antihydrogen in Its Ground State The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Richerme, Philip. 2012. Trapped Antihydrogen in Its Ground State. Doctoral dissertation, Harvard University. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:10058466 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA ©2012 - Philip John Richerme All rights reserved. Thesis advisor Author Gerald Gabrielse Philip John Richerme Trapped Antihydrogen in Its Ground State Abstract Antihydrogen atoms (H) are confined in a magnetic quadrupole trap for 15 to 1000 s - long enough to ensure that they reach their ground state. This milestone brings us closer to the long-term goal of precise spectroscopic comparisons of H and H for tests of CPT and Lorentz invariance. Realizing trapped H requires charac- terization and control of the number, geometry, and temperature of the antiproton (p) and positron (e+) plasmas from which H is formed. An improved apparatus and implementation of plasma measurement and control techniques make available 107 p and 4 × 109 e+ for H experiments - an increase of over an order of magnitude. For the first time, p are observed to be centrifugally separated from the electrons that cool them, indicating a low-temperature, high-density p plasma. Determination of the p temperature is achieved through measurement of the p evaporation rate as their con- fining well is reduced, with corrections given by a particle-in-cell plasma simulation.
    [Show full text]
  • Antihydrogen Synthesis Via Magnetobound States of Protonium Within Proton-Positron-Antiproton Plasmas
    43rd EPS Conference on Plasma Physics P4.112 Antihydrogen Synthesis Via Magnetobound States of Protonium Within Proton-Positron-Antiproton Plasmas M. Hermosillo, C. A. Ordonez University of North Texas, Denton, Texas, USA Through classical trajectory simulation, the possibility that antihydrogen can be synthesized via three body recombination involving magnetobound protonium is studied. It has been previ- ously reported that proton-antiproton collisions can result in a correlated drift of the particles perpendicular to a magnetic field. While the two particles are in their correlated drift, they are referred to as a magnetobound protonium system. Possible three body recombination resulting in bound state antihydrogen is studied when a magnetobound protonium system encounters a positron. The simulation incorporates a uniform magnetic field. A visual search and an energy analysis was done in an attempt to find parameters for which the positron is captured into a bound state with an antiproton, resulting in the formation of antihydrogen. Recently, simulations have shown that within a low temperature plasma containing protons and antiprotons, binary collisons invloving proton-antiproton pairs can cause them to become bound temporarily and experience giant cross-magnetic field drifts [1, 2]. These particle pairs have been referred to as being in a magnetobound state, which could serve as a useful intermedi- ate step in the production of neutral antimatter. Magnetobound states occur in low temperatures and strong magnetic fields such as those found inside Penning traps that produce antihydrogen. The possibility of three body recombination resulting in bound state antihydrogen is studied when a magnetobound protonium system encounters a positron. The interactions between particles throughout the simulation are treated classically.
    [Show full text]
  • Antihydrogen Physicsweb.Org Probing the Antiworld
    Feature: Antihydrogen physicsweb.org Probing the antiworld One of the most staggering achievements in quantum physics was Paul Dirac’s prediction of the anti-electron in 1930. By tirelessly modifying Schrödinger’s descrip- tion of the electron until it was consistent with special relativity, Dirac derived a beautiful equation that had additional “negative energy” solutions. He proposed that these solutions corresponded to a particle that has the same mass as the electron but the opposite electri- cal charge. Three years later the world’s first antipar- ticle – called the positron – was discovered by Carl Anderson at the California Institute of Technology. But Dirac’s vision for antimatter did not stop there. By 1931 he had realized that the only other elementary particle known at that time – the proton – should also have a corresponding antiparticle: the antiproton. This particle was discovered at Berkeley in October 1955 (see box on page 32), setting the stage for the creation of atoms made entirely from antimatter. A positron and an antiproton form the simplest type of anti-atom – antihydrogen. However, getting these two antiparticles to come together and form a single atomic system is no mean feat, not least because anti- matter immediately annihilates when it comes into con- tact with ordinary matter. So why have physicists even bothered trying for the past 50 years? Asymmetric world When we look out at the universe from our vantage point here on Earth, one thing is clear: it is dominated by matter. Irrespective of how or where we look, anti- matter simply does not exist in the quantities we would of the properties of anti-atoms provide a unique way expect if matter and antimatter had been created in to test this once and for all.
    [Show full text]
  • Trapped Antihydrogen : Nature : Nature Publishing Group Page 1 of 8
    Trapped antihydrogen : Nature : Nature Publishing Group Page 1 of 8 nature.com Sitemap Log In Register Archive Volume 468 Issue 7324 Letters Article NATURE | LETTER Trapped antihydrogen G. B. Andresen, M. D. Ashkezari, M. Baquero-Ruiz, W. Bertsche, P. D. Bowe, E. Butler, C. L. Cesar, S. Chapman, M. Charlton, A. Deller, S. Eriksson, J. Fajans, T. Friesen, M. C. Fujiwara, D. R. Gill, A. Gutierrez, J. S. Hangst, W. N. Hardy, M. E. Hayden, A. J. Humphries, R. Hydomako, M. J. Jenkins, S. Jonsell, L. V. Jørgensen, L. Kurchaninov et al. Nature 468, 673–676 (02 December 2010) doi:10.1038/nature09610 Received 08 October 2010 Accepted 27 October 2010 Published online 17 November 2010 Antimatter was first predicted1 in 1931, by Dirac. Work with high-energy antiparticles is now commonplace, and anti-electrons are used regularly in the medical technique of positron emission tomography scanning. Antihydrogen, the bound state of an antiproton and a positron, has been produced2, 3 at low energies at CERN (the European Organization for Nuclear Research) since 2002. Antihydrogen is of interest for use in a precision test of nature’s fundamental symmetries. The charge conjugation/parity/time reversal (CPT) theorem, a crucial part of the foundation of the standard model of elementary particles and interactions, demands that hydrogen and antihydrogen have the same spectrum. Given the current experimental precision of measurements on the hydrogen atom (about two parts in 1014 for the frequency of the 1s-to-2s transition 4), subjecting antihydrogen to rigorous spectroscopic examination would constitute a compelling, model-independent test of CPT.
    [Show full text]
  • The Antiproton Decelerator (AD) & ELENA
    The CERN Antiproton Physics Programme - The Antiproton Decelerator (AD) & ELENA Dániel Barna Wigner Research Centre for Physics, Budapest, Hungary ● The CERN antiproton facilities ● Experiments, their programmes and results The CERN Antiproton Decelerator ● Deceleration: 3.57 GeV/c → 100 MeV/c (Ekin=5.3 MeV) ● Stochastic and electron cooling ● 1 bunch (~107 P) / 100 s (beam steering is painfully slow...) ELENA – The future of antiprotons @ CERN ● ELENA = Extra Low ENergy Antiproton ring – under construction! ● Extension to the Antiproton Decelerator, 30.4 m circumference ● Further decelerate antiprotons to 100 keV to improve efficiency of experiments ● Allow simultaneous running of multiple experiments The ELENA Ring electron cooler ELENA: electrostatic beamlines p/H- source for commissioning and quick beamline setup ELENA: electrostatic beamlines p/H- source for commissioning and quick beamline setup pin pout The ELENA Ion Switch Installed and commissioned with 100 keV H- beam ELENA: electrostatic beamlines 4 bunches (1 μs) per shot: 4 experiments can run in parallel Quick electrostatic switches distribute beam to 4 experiments running parallel ELENA: electrostatic beamlines Static spherical deflectors where no quick switching is needed Quick switches and deflectors FastFast deflector deflector (<1 (<1 μs) μ givings) giving 220220 mrad mrad kick kick (J. (J.Borburgh Borburgh et.al.) et.al.) Spherical electrostatic deflector giving 33o deflection ELENA: electrostatic beamlines Straight sections: electrostatic quadrupoles - FODO transport
    [Show full text]
  • The First Cold Antihydrogen*
    The First Cold Antihydrogen* M.C. Fujiwaraab†, M. Amorettic, C. Amslerd, G. Bonomie, A.Bouchtae, P.D. Bowef, C. Carrarocg C.L. Cesarh, M. Charltoni, M. Dosere, V. Filippini j, A. Fontana jk, R. Funakoshib, P. Genova j, J.S. Hangstf, R.S. Hayanob, L.V. Jørgenseni, V. Lagomarsinocg, R. Landuae, D. Lindelöf d, E. Lodi Rizzinil, M. Macric, N. Madsenf, M. Marchesotti j, P. Montagna jk, H. Pruysd, C. Regenfusd, P. Rieldere, A. Rotondi jk, G. Testerac, A. Variolac, D.P. van der Werf i (ATHENA Collaboration) a Department of Physics, University of Tokyo, Tokyo 113-0033 Japan b Atomic Physics Laboratory, RIKEN, Saitama, 351-0189 Japan c Istituto Nazionale di Fisica Nucleare, Sezione di Genova, 16146 Genova, Italy d Physik-Institut, Zürich University, CH-8057 Zürich, Switzerland e EP Division, CERN, Geneva 23 Switzerland f Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus, Denmark g Dipartimento di Fisica, Università di Genova, 16146 Genova, Italy h Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21945-970, Brazil i Department of Physics, University of Wales Swansea, Swansea SA2 8PP, UK j Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, 27100 Pavia, Italy k Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, 27100 Pavia, Italy l Dipartimento di Chimica e Fisica per l‘Ingegneria e per i Materiali, Universit`a di Brescia, 25123 Brescia, Italy Abstract Antihydrogen, the atomic bound state of an antiproton and a positron, was produced at low energy for the first time by the ATHENA experiment, marking an important first step for precision studies of atomic antimatter.
    [Show full text]
  • Antihydrogen Formation in Antiproton–Positronium Collisions
    Nuclear Instruments and Methods in Physics Research B 214 (2004) 40–43 www.elsevier.com/locate/nimb Antihydrogen formation in antiproton–positronium collisions Nobuhiro Yamanaka a,*, Yasushi Kino b a RIKEN (Institute of Physical and Chemical Research), Wako, Saitama 351-0198, Japan b Department of Chemistry, Tohoku University, Sendai 980-8578, Japan Abstract Rearrangement in antiproton (pp) and positronium (Ps) collisions, p þ Ps ! H þ eÀ, is a promising process to produce large amount of antihydrogen atom (H). The formation cross section is calculated by using a time-dependent coupled channel (TDCC) method. Numerical accuracy of the TDCC method is demonstrated in a calculation of Ps- formation cross sections in positron and hydrogen collisions. The present result shows a dominant peak of the cross section around a center of mass collision energy of 10 eV. Ó 2003 Elsevier B.V. All rights reserved. PACS: 34.70.+e; 36.10.Dr Keywords: Antihydrogen; Antiproton; Positronium; Time-dependent coupled channel method 1. Introduction p þ Ps ! H þ eÀ [3]. Antihydrogen-formation cross sections were reported in many theoretical Cold antihydrogen production at the CERN works with, e.g., the close-coupling (CC) method antiproton decelerator (AD) has been recently re- [4,5], and the hyperspherical close-coupling ported [1,2]. The production of the atomic anti- (HSCC) method [6], and the classical trajectory matter stimulates spectroscopic studies for the test Monte Carlo (CTMC) simulation [7]. However, of fundamental principles of physics, e.g. the CPT those predictions are inconsistent with each other. invariance and the weak equivalence principle, and In the present work, we calculate antihydrogen- collision studies to reveal interaction between an- formation cross sections using a time-dependent timatter and matter (see, for review, [3]).
    [Show full text]