Five Things Learned from the Antarctic Search for Meteorites

Total Page:16

File Type:pdf, Size:1020Kb

Five Things Learned from the Antarctic Search for Meteorites FIVE THINGS LEARNED FROM THE ANTARCTIC SEARCH FOR METEORITES Featured Story | From the Desk of Lori Glaze | Meeting Highlights | Opportunities for Students | News from Space Spotlight on Education | In Memoriam | Milestones | New and Noteworthy | Calendar LUNAR AND PLANETARY INFORMATION BULLETIN October 2020 Issue 162 FEATURED STORY Cover photo: Longtime ANSMET mountaineer John Schutt gets a closer look at a meteorite spotted in a moraine on the edge of the blue ice at Davis-Ward. Credit: ANSMET. FIVE THINGS LEARNED FROM THE ANTARCTIC SEARCH FOR METEORITES James M. Karner (University of Utah), Ralph P. Harvey (Case Western Reserve University), John S. Schutt (Case Western Reserve University), and Brian Rougeux (Case Western Reserve University) A half century ago, in 1969, the Japanese of a total of only nine in a relatively small representative sample of the extrater- Antarctic Research Expedition (JARE-10) area was extremely fortuitous, maybe restrial materials falling to Earth and found nine meteorites that were several even incomprehensible. Unless — and make them available for research. Here hundred meters to a few kilometers this was Cassidy’s “Eureka!” moment — are several things we’ve learned about apart, on bare ice that was upstream there were thousands of meteorites on meteorite recovery in Antarctica and from the Yamato Mountains. A few years the bare ice areas of Antarctica! Cassidy what it means to planetary science. later, at the annual Meteoritical Society spent the next few years convincing the meeting, the JARE team reported these National Science Foundation (NSF) to nine Antarctic finds to the planetary fund a U.S. team to search for meteorites Meteorites are Found science community. It turned out that in Antarctica, and finally in 1976–1977 the nine specimens were individual the first Antarctic Search for Meteorites on Slow-Moving or meteorites that were distinct from one (ANSMET) team recovered nine meteor- another, i.e., they were not just nine ites from the huge expanses of bare (blue) Stagnant Blue Ice pieces of one meteorite that broke apart ice in the Allan Hills area of Antarctica. At above the ice or on impact with the ice. present, Cassidy’s legacy, the ANSMET that is Being Slowly Furthermore, four of the nine meteorites program, is a collaboration between NSF, were of exceedingly rare class and/ NASA, and the Smithsonian Institution, Ablated Away or petrographic type — exceedingly and has completed its forty-third field rare in the fact that if you found 100 season. In those 43 seasons, ANSMET Our basic understanding of the genesis meteorites, only one out of that 100 has recovered more than 23,000 of Antarctic meteorite concentration sites might be any of those classes or types. meteorites from approximately 65 (i.e., icefields) is that meteorites have separate locations (which often include been raining down on the East Antarctic William (Bill) Cassidy, from the University multiple icefields) in East Antarctica. Plateau for several millions of years. of Pittsburgh, was in the audience for They are then buried by snow, and are that presentation, and he immediately The continuing goal of the ANSMET eventually incorporated into glaciers that surmised that four rare meteorite finds out program is to recover a complete and flow down through the Transantarctic 2 Issue 162 October 2020 © Copyright 2020 Lunar and Planetary Institute FEATURED STORY tration site where slow-moving searched for meteorites on the bare, ice is being ablated away blue ice areas of icefields following a is the Miller Range icefields transect-sampling procedure. In this pro- (Fig. 1a). The Miller Range cedure the field team forms a line, each icefields are located in the member a few tens of meters to several Beardmore Glacier region of tens of meters apart (usually on a snow- Antarctica and are composed mobile). The team then proceeds to drive of three fairly geographically across the blue ice in a direction perpen- distinct blue ice areas: the dicular to this line, scanning for meteorites northern, middle and southern as they go. Meteorites are pretty easy to icefields. ANSMET teams spot — black rocks on light blue ice, and have spent part or all of they are also easily distinguished from eight field seasons searching the small numbers of terrestrial rocks the three icefields and have scattered across the blue ice. Searching recovered more than 3000 on blue ice is speedy and relaxed. meteorites from them — and we still have at least one more season of work there! During the 2005–2006 field season, Moraines are a different story. They are Gordon Osinski and the rest by definition an accumulation of rocks of the ANSMET team set up that have been carried and deposited by an ice movement and abla- a glacier, therefore spotting a meteorite tion study, which consisted among thousands of terrestrial rocks of installing two dozen steel is definitely not easy. It takes intense Fig. 1a. Ice motion at the Miller Range. This multi-spectral satellite mosaic shows the blue ice areas of the Northern posts into the ice at separate concentration, patience, and even luck. and Middle Icefields in relation to the exposed peaks of the locations throughout the area. Searching in moraines is slow (the search Miller Range. The dark-colored areas are exposed moun- The idea was to document the is done on foot) and arduous. But after tains, whereas the white areas are snow. General ice motion post’s GPS location and also 43 years of searching, it is apparent that is south to north (from the bottom of the image up); i.e., the ice is flowing down off the polar plateau to the south and mark the surface level of the the moraines accompanying icefields running into the Miller Range peaks. The colored vectors ice on the post. Then, after a (lateral, terminal, medial, etc.) hold denote the specific ice motion and rates measured at each few years had passed, we significant concentrations of meteorites. location. Note that most of the ice in the area is moving at a would remeasure the post’s For example, in its last two field seasons rate of less than 1 meter per year. Credit: ANSMET. location and height of the ice at Davis Nunataks-Mt. Ward (DW), surface level. The results of that ANSMET recovered ~760 meteorites from Mountains (TAMS) and eventually empty study reveal that ice at Miller is moving the moraines that surround the icefields. into the Ross Sea. With general ice sheet very slowly, at a speed of less than ~1 That number amounts to almost 50% of thinning over the last 20,000 years, pre- meter per year in most cases. And just to the meteorites found in the area over viously unobstructed and rapidly flowing give these rates some context, ice in the those two seasons. Moraine searching glaciers have been redirected, trapped, Nimrod and Marsh glaciers (not shown, among thousands of terrestrial rocks is and stranded by exposed and subsur- but just off the image to the west and east, decidedly more challenging than spotting face barriers (i.e., the TAMS). Simply put, respectively), is briskly moving along meteorites on blue ice, but the poten- free-flowing ice has now been pinched at speeds of tens to hundreds of meters tial payoff in extraterrestrial samples off, slowed, and ablated — allowing per year. Figure 1b shows that the slow makes it worth the effort (see Fig. 2). deep blue ice to be exposed, and moving ice is being slowly ablated away meteorites trapped in that blue ice to be at an average rate of about 3.5 centime- exhumed at the surface and accumulate ters per year by scouring katabatic winds, Check the Downwind like a lag deposit. Additionally, these sublimation, and perhaps rare melting blue ice areas have most likely remained events. This combination of slow ice and Ice Edge stable for tens to hundreds of thousands steady ablation at Miller leads to an opti- of years, so they also have “caught” and mal setting for meteorite concentration. The downwind border of an icefield is preserved meteorites that have fallen often characterized by blue ice that gives on them over those extremely long time way to a compact snow called firn. The periods. We call that process direct infall, Check the strong katabatic winds in Antarctica are and it undoubtedly adds to the concen- capable of moving rocks of up to 100 tration of meteorites in blue ice areas. Moraines Too grams, and firn has proved to be an excellent trap for wind-blown rocks and A classic example of a meteorite concen- Historically, ANSMET teams have mainly meteorites (see Fig. 3). The meteorites 3 Issue 162 October 2020 © Copyright 2020 Lunar and Planetary Institute FEATURED STORY Furthermore, the downwind ice edge can be used to gauge whether or not a specific icefield contains a meteorite concentration: abundant small meteorites, probably a concentration upwind; few small meteorites, probably no concentration upwind. Fig. 3. The downwind ice edge at DW with flags marking dozens of recovered meteorites that were fetched up on firn. Credit: ANSMET. Check Areas surface. We’re leaning toward glacio- tectonic redistribution for the paradox of that have been The Beach, but whatever the reason, it is worth having another look in areas where Previously meteorites have been previously found. Searched ANSMET is Important For icefields showing a mete- orite concentration, ANSMET to the Planetary strives to systematically search Fig. 1b. Ice ablation rates at the Miller Range. The red num- all blue ice areas, relevant Science Community, bers denote the ice ablation rates in centimeters per year moraines, and ice edges in for the specific locations (black dots). The ASTER satellite imagery used in Figs.
Recommended publications
  • Imaginative Geographies of Mars: the Science and Significance of the Red Planet, 1877 - 1910
    Copyright by Kristina Maria Doyle Lane 2006 The Dissertation Committee for Kristina Maria Doyle Lane Certifies that this is the approved version of the following dissertation: IMAGINATIVE GEOGRAPHIES OF MARS: THE SCIENCE AND SIGNIFICANCE OF THE RED PLANET, 1877 - 1910 Committee: Ian R. Manners, Supervisor Kelley A. Crews-Meyer Diana K. Davis Roger Hart Steven D. Hoelscher Imaginative Geographies of Mars: The Science and Significance of the Red Planet, 1877 - 1910 by Kristina Maria Doyle Lane, B.A.; M.S.C.R.P. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August 2006 Dedication This dissertation is dedicated to Magdalena Maria Kost, who probably never would have understood why it had to be written and certainly would not have wanted to read it, but who would have been very proud nonetheless. Acknowledgments This dissertation would have been impossible without the assistance of many extremely capable and accommodating professionals. For patiently guiding me in the early research phases and then responding to countless followup email messages, I would like to thank Antoinette Beiser and Marty Hecht of the Lowell Observatory Library and Archives at Flagstaff. For introducing me to the many treasures held deep underground in our nation’s capital, I would like to thank Pam VanEe and Ed Redmond of the Geography and Map Division of the Library of Congress in Washington, D.C. For welcoming me during two brief but productive visits to the most beautiful library I have seen, I thank Brenda Corbin and Gregory Shelton of the U.S.
    [Show full text]
  • Ernst Zinner, Lithic Astronomer
    UCLA UCLA Previously Published Works Title Ernst Zinner, lithic astronomer Permalink https://escholarship.org/uc/item/0gq43750 Journal Meteoritics & Planetary Science, 42(7/8) ISSN 1086-9379 Author Mckeegan, Kevin D. Publication Date 2007-07-01 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Meteoritics & Planetary Science 42, Nr 7/8, 1045–1054 (2007) Abstract available online at http://meteoritics.org Ernst Zinner, lithic astronomer Kevin D. MCKEEGAN Department of Earth and Space Sciences, University of California, Los Angeles, Los Angeles, California 90095–1567, USA E-mail: [email protected] It is a rare privilege to be one of the founders of an entirely new field of science, and it is especially remarkable when that new field belongs to the oldest branch of “natural philosophy.” The nature of the stars has perplexed and fascinated humanity for millennia. While the sources of their luminosity and their structures and evolution were revealed over the last century, it is thanks to the pioneering efforts of a rare and remarkable man, Ernst Zinner, as well as his colleagues and students (mostly at the University of Chicago and at Washington University in Saint Louis), that in the last two decades it has become possible to literally hold a piece of a star in one’s hand. Armed with sophisticated microscopes and mass spectrometers of various sorts, these “lithic astronomers” are able to reveal stellar processes in exquisite detail by examining the chemical, mineralogical, and especially the nuclear properties of these microscopic grains of stardust. With this special issue of Meteoritics & Planetary Science, we honor Ernst Zinner (Fig.
    [Show full text]
  • Carnegie Institution of Washington Department of Terrestrial Magnetism Washington, DC 20015-1305
    43 Carnegie Institution of Washington Department of Terrestrial Magnetism Washington, DC 20015-1305 This report covers astronomical research carried out during protostellar outflows have this much momentum out to rela- the period July 1, 1994 – June 30, 1995. Astronomical tively large distances. Planetary nebulae do not, but with studies at the Department of Terrestrial Magnetism ~DTM! their characteristic high post-shock temperatures, collapse of the Carnegie Institution of Washington encompass again occurs. Hence all three outflows appear to be able to observational and theoretical fields of solar system and trigger the collapse of molecular clouds to form stars. planet formation and evolution, stars and star formation, Foster and Boss are continuing this work and examining galaxy kinematics and evolution, and various areas where the possibility of introducing 26Al into the early solar system these fields intersect. in a heterogeneous manner. Some meteoritical inclusions ~chondrules! show no evidence for live 26Al at the time of their formation. So either the chondrules formed after the 1. PERSONNEL aluminium had decayed away, or the solar nebula was not Staff Members: Sean C. Solomon ~Director!, Conel M. O’D. Alexander, Alan P. Boss, John A. Graham, Vera C. Rubin, uniformly populated with the isotope. Foster & Boss are ex- Franc¸ois Schweizer, George W. Wetherill ploring the injection of shock wave particles into the collaps- Postdoctoral Fellows: Harold M. Butner, John E. Chambers, ing solar system. Preliminary results are that ;40% of the Prudence N. Foster, Munir Humayun, Stacy S. McGaugh, incident shock particles are swallowed by the collapsing Bryan W. Miller, Elizabeth A. Myhill, David L.
    [Show full text]
  • Course Descriptions
    COURSE DESCRIPTIONS Architectural Design Technology COURSE DESCRIPTIONS The following course descriptions are intended to briefly describe the nature of each of the courses. For more complete information, AAD 180 Fundamentals of Design I 3 (2,2,0,0) departments or faculty can provide specific course syllabuses. Introduction to the principles and theories of design and design methodology in the “making” of representations of form and space. The numbers in the right side of each description define the credits and average weekly contact hours the student will spend AAD 182 Fundamentals of Design II 3 (2,2,0,0) in formal classes during a 16 week semester. Classes scheduled Continuation of AAD 180, with emphasis on spatial sequence, for other than a 16 week semester will have the contact hours tectonics, and design precedents. adjusted accordingly. Prerequisite: AAD 180. A – defines the number of semester credits B Architecture – average number of lecture hours per week C – average number of laboratory hours per week AAE 100 Introduction to Architecture 3 (3,0,0,0) D – average number of clinical hours per week Survey of architecture. Includes historical examples and the E – average number of other formal instructional hours per week theoretical, social, technical, and environmental forces that shape this profession. Especially for majors and non-majors who wish to explore this field as a career choice. Automotive Technology, Collision and Repair ABDY 101B Collision Repair Fundamentals and Estimating 4 (1,6,0,0) This lecture/lab course includes an overview of the collision industry, instruction in safe shop procedures, measurement, vehicle disassembly, and estimating software and techniques.
    [Show full text]
  • North Carolina Obituaries Courier Tribune Name Date of Paper Page # Date of Death Abbott, Blannie Allen 7-Aug-84 7A 6-Aug-84
    North Carolina Obituaries Courier Tribune Name Date of Paper Page # Date of Death Abbott, Blannie Allen 7-Aug-84 7A 6-Aug-84 Abbott, Douglas L. 1-Sep-82 12A 30-Aug-82 Abbott, Helen Hartsook 3-Dec-82 9A 2-Dec-82 Abbott, Molly Jeane 3-Nov-81 8A 31-Oct-81 Abbott, Nora Johnson Mitchell 14-Oct-83 12A 13-Oct-83 Abbott, Roger 1-Aug-84 6A 31-Jul-84 Abercrombie, Dodd 5-Oct-80 6A 3-Oct-80 Abernathy, Ray Paul 29-Jun-80 8A 28-Jun-80 Abernathy, Shaun Travis 24-May-83 8A 24-May-83 Abrams, Reagan Vincent 28-Sep-80 6A 26-Sep-80 Abston, Thomas Earl 30-Dec-82 10A 29-Dec-82 Ackerman, Elsie K. 20-Apr-82 8A 19-Apr-82 Acree, Una Mae Phillips 6-Jul-81 6A 5-Jul-81 Adams, Anna Threadgill 9-Dec-85 9A 8-Dec-85 Adams, Annie Vaughn 12-Mar-85 6A 11-Mar-85 Adams, Bernice Hooper 6-Jul-82 8A 5-Jul-82 Adams, Dora Carrick 13-Jun-80 10A 12-Jun-80 Adams, Edward Vance 23-May-83 6A 23-May-83 Adams, Herman Hugh Sr. 29-Oct-81 8A 27-Oct-81 Adams, James Clifton 18-Sep-84 9A 17-Sep-84 Adams, John Edwin 1-Mar-84 10A 29-Feb-84 Adams, T.B. 15-Oct-82 10A 14-Oct-82 Adams, Velma D. 11-Aug-81 8A 10-Aug-81 Adcock, Plackard C. 6-Jul-82 8A 5-Jul-82 Aderholt, Daniel H. 17-May-85 10A 13-May-85 Adkins, Clarence Odell 1-Jan-85 7A 1-Jan-85 Adkins, E.G.
    [Show full text]
  • Origins of Life: Transition from Geochemistry to Biogeochemistry
    December 2016 Volume 12, Number 6 ISSN 1811-5209 Origins of Life: Transition from Geochemistry to Biogeochemistry NITA SAHAI and HUSSEIN KADDOUR, Guest Editors Transition from Geochemistry to Biogeochemistry Staging Life: Warm Seltzer Ocean Incubating Life: Prebiotic Sources Foundation Stones to Life Prebiotic Metal-Organic Catalysts Protometabolism and Early Protocells pub_elements_oct16_1300&icpms_Mise en page 1 13-Sep-16 3:39 PM Page 1 Reproducibility High Resolution igh spatial H Resolution High mass The New Generation Ion Microprobe for Path-breaking Advances in Geoscience U-Pb dating in 91500 zircon, RF-plasma O- source Addressing the growing demand for small scale, high resolution, in situ isotopic measurements at high precision and productivity, CAMECA introduces the IMS 1300-HR³, successor of the internationally acclaimed IMS 1280-HR, and KLEORA which is derived from the IMS 1300-HR³ and is fully optimized for advanced U-Th-Pb mineral dating. • New high brightness RF-plasma ion source greatly improving spatial resolution, reproducibility and throughput • New automated sample loading system with motorized sample height adjustment, significantly increasing analysis precision, ease-of-use and productivity • New UV-light microscope for enhanced optical image resolution (developed by University of Wisconsin, USA) ... and more! Visit www.cameca.com or email [email protected] to request IMS 1300-HR³ and KLEORA product brochures. Laser-Ablation ICP-MS ~ now with CAMECA ~ The Attom ES provides speed and sensitivity optimized for the most demanding LA-ICP-MS applications. Corr. Pb 207-206 - U (238) Recent advances in laser ablation technology have improved signal 2SE error per sample - Pb (206) Combined samples 0.076121 +/- 0.002345 - Pb (207) to background ratios and washout times.
    [Show full text]
  • Physical Properties of Martian Meteorites: Porosity and Density Measurements
    Meteoritics & Planetary Science 42, Nr 12, 2043–2054 (2007) Abstract available online at http://meteoritics.org Physical properties of Martian meteorites: Porosity and density measurements Ian M. COULSON1, 2*, Martin BEECH3, and Wenshuang NIE3 1Solid Earth Studies Laboratory (SESL), Department of Geology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada 2Institut für Geowissenschaften, Universität Tübingen, 72074 Tübingen, Germany 3Campion College, University of Regina, Regina, Saskatchewan S4S 0A2, Canada *Corresponding author. E-mail: [email protected] (Received 11 September 2006; revision accepted 06 June 2007) Abstract–Martian meteorites are fragments of the Martian crust. These samples represent igneous rocks, much like basalt. As such, many laboratory techniques designed for the study of Earth materials have been applied to these meteorites. Despite numerous studies of Martian meteorites, little data exists on their basic structural characteristics, such as porosity or density, information that is important in interpreting their origin, shock modification, and cosmic ray exposure history. Analysis of these meteorites provides both insight into the various lithologies present as well as the impact history of the planet’s surface. We present new data relating to the physical characteristics of twelve Martian meteorites. Porosity was determined via a combination of scanning electron microscope (SEM) imagery/image analysis and helium pycnometry, coupled with a modified Archimedean method for bulk density measurements. Our results show a range in porosity and density values and that porosity tends to increase toward the edge of the sample. Preliminary interpretation of the data demonstrates good agreement between porosity measured at 100× and 300× magnification for the shergottite group, while others exhibit more variability.
    [Show full text]
  • The Space-Based Global Observing System in 2010 (GOS-2010)
    WMO Space Programme SP-7 The Space-based Global Observing For more information, please contact: System in 2010 (GOS-2010) World Meteorological Organization 7 bis, avenue de la Paix – P.O. Box 2300 – CH 1211 Geneva 2 – Switzerland www.wmo.int WMO Space Programme Office Tel.: +41 (0) 22 730 85 19 – Fax: +41 (0) 22 730 84 74 E-mail: [email protected] Website: www.wmo.int/pages/prog/sat/ WMO-TD No. 1513 WMO Space Programme SP-7 The Space-based Global Observing System in 2010 (GOS-2010) WMO/TD-No. 1513 2010 © World Meteorological Organization, 2010 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate these publication in part or in whole should be addressed to: Chairperson, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0)22 730 84 03 P.O. Box No. 2300 Fax: +41 (0)22 730 80 40 CH-1211 Geneva 2, Switzerland E-mail: [email protected] FOREWORD The launching of the world's first artificial satellite on 4 October 1957 ushered a new era of unprecedented scientific and technological achievements. And it was indeed a fortunate coincidence that the ninth session of the WMO Executive Committee – known today as the WMO Executive Council (EC) – was in progress precisely at this moment, for the EC members were very quick to realize that satellite technology held the promise to expand the volume of meteorological data and to fill the notable gaps where land-based observations were not readily available.
    [Show full text]
  • American Mathematical Association of Two-Year Colleges
    American Mathematical Association of Two-Year Colleges Photo courtesy of Visit Phoenix/dspaz.com 47th AMATYC Annual Conference Keynote Speakers October 28 – 31, 2021 Lindy Elkins-Tanton Arizona State University The NASA Psyche Mission: Journey to a Metallic World Sheraton Phoenix Downtown 340 North 3rd Street Talithia Williams Harvey Mudd College Phoenix, AZ 85004 Power in Numbers: Reservations (online): Unveiling Hidden Figures https://tinyurl.com/AMATYC2021Sheraton Reservations (phone): 1.866.837.4213 ext. 4 (mention AMATYC Conference) Featured Speakers James Tanton Mathematical Association of America Opening Doors The Astounding Mathematics Through Mathematics of Bicycle Tracks Scott Adamson Chandler-Gilbert CC Fired Up to Take Online Teaching Innovations Back to the Classroom! Hosted by ArizMATYC and the Southwest Region www.amatyc.org Vision Statement To be the leading voice and resource for excellence in mathematics education in the first two years of college Mission Statement To provide high quality professional development, to advocate and collaborate at all levels, and to build communities of learners for all involved in mathematics education in the first two years of college. Adopted by the Board on April 1, 2016 Core Values These are the Core Values that guide AMATYC’s internal and external interactions with each other and our community: Academic Excellence Access Collegiality Innovation Integrity Professional Development Teaching Excellence KEYNOTE SPEAKERS Thursday Keynote Session Lindy Elkins-Tanton The NASA Psyche Mission: Journey to a Metallic World Thursday, October 28 3:00 pm – 4:30 pm “Psyche” is both the name of a metallic asteroid, and the name of the NASA mission to visit that asteroid.
    [Show full text]
  • The Hubble Space Telescope – 10 Years On
    BEN 11/7/00 2:27 PM Page 2 r bulletin 104 — november 2000 10 BEN 11/7/00 2:28 PM Page 3 the hubble space telescope – 10 years on The Hubble Space Telescope – 10 Years On P. Benvenuti & L. Lindberg Christensen ESA/ESO Space Telescope European Coordinating Facility, Garching, Germany Introduction scientists at the Space Telescope Science ESA is NASA’s partner in the Hubble Space Institute in Baltimore (STScI), USA. In return, a Telescope Project. ESA built the Faint Object minimum of 15% of the Telescope’s observing Camera (the HST instrument that delivers time is guaranteed for projects and research images with the highest spatial resolution), submitted by European astronomers from provided the solar panels that power the ESA’s Member States. In reality, the spacecraft, and supports a team of 15 high standard of projects from European astronomers has, so far, won them some 20% of the total observing time. Last Christmas Eve was very special one for ESA astronauts Claude Nicollier and Jean-François Clervoy: together with their American The initial ESA/NASA Memorandum of colleagues, they spent it aboard the Space Shuttle ‘Discovery’, after Understanding on HST expires 11 years after its concluding the latest scheduled repair mission to the orbiting Hubble launch, i.e. in April 2001. Both ESA and NASA Space Telescope (HST). This third Shuttle refurbishment mission to are convinced that the collaboration on HST has HST was, like its two predecessors, a resounding success. Only days been very successful, not merely in the later, as Hubble entered the new millennium, came the first beautiful development and initial operation of the images of a complex gravitationally lensing cluster of galaxies.
    [Show full text]
  • Fine-Grained Antarctic Micrometeorites and Weathered Carbonaceous Chondrites As Possible Analogues of Ceres Surface: Implications on Its Evolution
    EPSC Abstracts Vol. 12, EPSC2018-1024, 2018 European Planetary Science Congress 2018 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2018 Fine-grained Antarctic micrometeorites and weathered carbonaceous chondrites as possible analogues of Ceres surface: implications on its evolution. Jacopo Nava (1), Cristian Carli (2), Ernesto Palomba (2), Alessandro Maturilli (3) and Matteo Massironi (1) (1) Università degli studi di Padova – Dipartimento di Geoscienze, Padova, Italy ([email protected]) (2) IAPS-INAF, Istituto Nazionale di Astrofisica e Planetologia Spaziali, Roma, Italy (3) Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany. Abstract more weathered and are mainly made of jarosite plus Fe-carbonates and Fe-K sulfides. All of these IR spectra of several micrometeorites (MMs) and samples show the constant presence of carbon Antarctic weathered carbonaceous chondrites compound, which can be poorly graphitized C. (AWCCs) have been acquired and compared to Ceres Phyllosilicates are rare. For what concerns the spectra. We propose these samples as possible AWCCs we found the CM2 sample GRA 98005 with analogues of Ceres. This allowed us to define a more weathering grade Ce that had one side exposed to the precise composition of Ceres and to suggest a Antarctic environment, and is thus heavily altered, possible evolution of this body. and one side that has been preserved with a pristine composition. Spectra on the pristine side are flat and almost featureless. On the contrary spectra of the 1. Introduction weathered side tend to have a shape close to the average Ceres spectra. This meteorite, on the Ceres is an icy body with a surface composition close weathered side, is dominated by Fe-oxides, Ca-Fe to the carbonaceous chondrites (CCs) [1] that carbonates, anidrite and gypsum plus enstatite and suffered aqueous alteration [2] and geothermal forsterite.
    [Show full text]
  • Discoveries of Mass Independent Isotope Effects in the Solar System: Past, Present and Future Mark H
    Reviews in Mineralogy & Geochemistry Vol. 86 pp. 35–95, 2021 2 Copyright © Mineralogical Society of America Discoveries of Mass Independent Isotope Effects in the Solar System: Past, Present and Future Mark H. Thiemens Department of Chemistry and Biochemistry University of California San Diego La Jolla, California 92093 USA [email protected] Mang Lin State Key Laboratory of Isotope Geochemistry Guangzhou Institute of Geochemistry, Chinese Academy of Sciences Guangzhou, Guangdong 510640 China University of Chinese Academy of Sciences Beijing 100049 China [email protected] THE BEGINNING OF ISOTOPES Discovery and chemical physics The history of the discovery of stable isotopes and later, their influence of chemical and physical phenomena originates in the 19th century with discovery of radioactivity by Becquerel in 1896 (Becquerel 1896a–g). The discovery catalyzed a range of studies in physics to develop an understanding of the nucleus and the properties influencing its stability and instability that give rise to various decay modes and associated energies. Rutherford and Soddy (1903) later suggested that radioactive change from different types of decay are linked to chemical change. Soddy later found that this is a general phenomenon and radioactive decay of different energies and types are linked to the same element. Soddy (1913) in his paper on intra-atomic charge pinpointed the observations as requiring the observations of the simultaneous character of chemical change from the same position in the periodic chart with radiative emissions required it to be of the same element (same proton number) but differing atomic weight. This is only energetically accommodated by a change in neutrons and it was this paper that the name “isotope” emerges.
    [Show full text]