G 271 Hazardous Weather and Flooding Preparedness Student
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Equity: a Guide for Local Health Departments” Is a Product of the Public Health Institute Center for Climate Change and Health
Climate Change, Health, and A Guide For Local Equity: Health Departments Authors Contributors Linda Rudolph, MD, MPH Heather Kuiper, PhD, MPH Catherine Harrison, RN, MPH Zachariah Baker, JD Laura Buckley, MPH Neil Maizlish, PhD, MPH Savannah North, MPH Elsie Moore, MPH Acknowledgements “Climate Change, Health, and Equity: A Guide for Local Health Departments” is a product of the Public Health Institute Center for Climate Change and Health. “Climate Change, Health, and Equity: A Guide for Local Health Departments” was developed under Agreement #16-11001 with the California Department of Public Health Office of Health Equity and with funding from the American Public Health Association. Additional support was provided by The Kresge Foundation. This guide was designed by Amy Weiher at Weiher Creative, Inc. and was edited by Ann Greenberger at Greenline Editing. The authors wish to give special appreciation to the local health departments that have worked to integrate climate change into their work, and shared their experiences with the authors. Their work has inspired us to help others become more engaged in this urgent and critical issue. A special thanks to our reviewers: Charles Benjamin Beard, MS, PhD Chelsea Gridley-Smith, PhD Olubukolami Musa, MPH Centers for Disease Control and Prevention National Association of City and County American Public Health Association Health Officials Andrew Deckert, MD, MPH Kate Robb, MSPH Public Health Officer, Shasta County Linda Helland, MPH American Public Health Association California Department of Public -
Soaring Weather
Chapter 16 SOARING WEATHER While horse racing may be the "Sport of Kings," of the craft depends on the weather and the skill soaring may be considered the "King of Sports." of the pilot. Forward thrust comes from gliding Soaring bears the relationship to flying that sailing downward relative to the air the same as thrust bears to power boating. Soaring has made notable is developed in a power-off glide by a conven contributions to meteorology. For example, soar tional aircraft. Therefore, to gain or maintain ing pilots have probed thunderstorms and moun altitude, the soaring pilot must rely on upward tain waves with findings that have made flying motion of the air. safer for all pilots. However, soaring is primarily To a sailplane pilot, "lift" means the rate of recreational. climb he can achieve in an up-current, while "sink" A sailplane must have auxiliary power to be denotes his rate of descent in a downdraft or in come airborne such as a winch, a ground tow, or neutral air. "Zero sink" means that upward cur a tow by a powered aircraft. Once the sailcraft is rents are just strong enough to enable him to hold airborne and the tow cable released, performance altitude but not to climb. Sailplanes are highly 171 r efficient machines; a sink rate of a mere 2 feet per second. There is no point in trying to soar until second provides an airspeed of about 40 knots, and weather conditions favor vertical speeds greater a sink rate of 6 feet per second gives an airspeed than the minimum sink rate of the aircraft. -
National Weather Service Reference Guide
National Weather Service Reference Guide Purpose of this Document he National Weather Service (NWS) provides many products and services which can be T used by other governmental agencies, Tribal Nations, the private sector, the public and the global community. The data and services provided by the NWS are designed to fulfill us- ers’ needs and provide valuable information in the areas of weather, hydrology and climate. In addition, the NWS has numerous partnerships with private and other government entities. These partnerships help facilitate the mission of the NWS, which is to protect life and prop- erty and enhance the national economy. This document is intended to serve as a reference guide and information manual of the products and services provided by the NWS on a na- tional basis. Editor’s note: Throughout this document, the term ―county‖ will be used to represent counties, parishes, and boroughs. Similarly, ―county warning area‖ will be used to represent the area of responsibility of all of- fices. The local forecast office at Buffalo, New York, January, 1899. The local National Weather Service Office in Tallahassee, FL, present day. 2 Table of Contents Click on description to go directly to the page. 1. What is the National Weather Service?…………………….………………………. 5 Mission Statement 6 Organizational Structure 7 County Warning Areas 8 Weather Forecast Office Staff 10 River Forecast Center Staff 13 NWS Directive System 14 2. Non-Routine Products and Services (watch/warning/advisory descriptions)..…….. 15 Convective Weather 16 Tropical Weather 17 Winter Weather 18 Hydrology 19 Coastal Flood 20 Marine Weather 21 Non-Precipitation 23 Fire Weather 24 Other 25 Statements 25 Other Non-Routine Products 26 Extreme Weather Wording 27 Verification and Performance Goals 28 Impact-Based Decision Support Services 30 Requesting a Spot Fire Weather Forecast 33 Hazardous Materials Emergency Support 34 Interactive Warning Team 37 HazCollect 38 Damage Surveys 40 Storm Data 44 Information Requests 46 3. -
Hurricane Knowledge
Hurricane Knowledge Storm conditions can vary on the intensity, size and even the angle which the tropical cyclone approaches your area, so it is vital you understand what the forecasters and news reporters are telling you. Tropical Depressions are cyclones with winds of 38 mph. Tropical Storms vary in wind speeds from 39-73 mph while Hurricanes have winds 74 mph and greater. Typically, the upper right quadrant of the storm (the center wrapping around the eye) is the most intense portion of the storm. The greatest threats are damaging winds, storm surge and flooding. This is in part why Hurricane Katrina was so catastrophic when bringing up to 28-foot storm surges onto the Louisiana and Mississippi coastlines. A Tropical Storm Watch is when tropical storm conditions are possible in the area. A Hurricane Watch is when hurricane conditions are possible in the area. Watches are issued 48 hours in advance of the anticipated onset of tropical storm force winds. A Tropical Storm Warning is when tropical storm conditions are expected in the area. A Hurricane Warning is when hurricane conditions are expected in the area. Warnings are issued 36 hours in advance of tropical storm force winds. Here are a few more terms used when discussing hurricanes: Eye: Clear, sometimes well-defined center of the storm with calmer conditions. Eye Wall: Surrounding the eye, contains some of the most severe weather of the storm with the highest wind speed and largest precipitation. Rain Bands: Bands coming off the cyclone that produce severe weather conditions such as heavy rain, wind and tornadoes. -
PRC.15.1.1 a Publication of AXA XL Risk Consulting
Property Risk Consulting Guidelines PRC.15.1.1 A Publication of AXA XL Risk Consulting WINDSTORMS INTRODUCTION A variety of windstorms occur throughout the world on a frequent basis. Although most winds are related to exchanges of energy (heat) between different air masses, there are a number of weather mechanisms that are involved in wind generation. These depend on latitude, altitude, topography and other factors. The different mechanisms produce windstorms with various characteristics. Some affect wide geographical areas, while others are local in nature. Some storms produce cooling effects, whereas others rapidly increase the ambient temperatures in affected areas. Tropical cyclones born over the oceans, tornadoes in the mid-west and the Santa Ana winds of Southern California are examples of widely different windstorms. The following is a short description of some of the more prevalent wind phenomena. A glossary of terms associated with windstorms is provided in PRC.15.1.1.A. The Beaufort Wind Scale, the Saffir/Simpson Hurricane Scale, the Australian Bureau of Meteorology Cyclone Severity Scale and the Fugita Tornado Scale are also provided in PRC.15.1.1.A. Types Of Windstorms Local Windstorms A variety of wind conditions are brought about by local factors, some of which can generate relatively high wind conditions. While they do not have the extreme high winds of tropical cyclones and tornadoes, they can cause considerable property damage. Many of these local conditions tend to be seasonal. Cold weather storms along the East coast are known as Nor’easters or Northeasters. While their winds are usually less than hurricane velocity, they may create as much or more damage. -
Technical Report
Establishing a WMO Sand and Dust Storm Warning Advisory and Assessment System Regional Node for West Asia: Current Capabilities and Needs Technical Report For more information, please contact: World Meteorological Organization Research Department Atmospheric Research and Environment Branch 7 bis, avenue de la Paix – P.O. Box 2300 – CH 1211 Geneva 2 – Switzerland Tel.: +41 (0) 22 730 81 11 – Fax: +41 (0) 22 730 81 81 E-mail: [email protected] Website: http://www.wmo.int/pages/prog/arep/wwrp/new/wwrp_new_en.html WMO-No. 1121 Establishing a WMO Sand and Dust Storm Warning Advisory and Assessment System Regional Node for West Asia: Current Capabilities and Needs Technical Report NOVEMBER 2013 Cover photogtraph:Soil Solutions Ltd. © United Nations Environment Programme, 2013 General disclaimers The views expressed in this publication are those of the authors and do not necessarily reflect the views of the United Nations Environment Programme (UNEP). The opinions, figures and estimates set forth in this publication are not the responsibility of the author, and should not necessarily be considered as reflecting the views or carrying the endorsement of the United Nations Environment Programme. The contents of this publication do not necessarily reflect the views or policies of UNEP or the editors, nor are they an official record. The contents of this publication do not necessarily reflect the views or policies of UNEP or contributory organizations. Technical content disclaimers While reasonable efforts have been made to ensure that the contents of this publication are factually correct and properly referenced, UNEP does not accept responsibility for the accuracy or completeness of the contents, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this publication. -
Lessons for Coastal Cities from Hurricane Sandy (PDF)
NRDC: Preparing for Climate Change - Lessons for Coastal Cities from Hurricane Sandy (PDF) APRIL 2014 NRDC REPORT R:14-04-A Preparing for Climate Change: Lessons for Coastal Cities from Hurricane Sandy AUTHORS: Kim Knowlton, Dr.P.H. Miriam Rotkin-Ellman, M.P.H. Natural Resources Defense Council ACKNOWLEDGMENTS The authors would like to thank Zev Ross and Hollie Kitson of ZevRoss Spatial Analysis, Ithaca, New York, for conducting the mapping of areas in the five boroughs of New York City that were affected by unexpected flooding as a result of Hurricane Sandy in October–November 2012. We would also like to acknowledge the sustainable development project work of Barnard College students Carly Wertheim, Mariah Chen, Reeva Dua, Claudia Mack, Jenny Pensky, and Emilie Schattman (advised by professor Martin Stute), who, in the fall of 2013, developed a preliminary analysis of health and economic costs in areas unexpectedly flooded during Hurricane Sandy. Their work helped shape this issue brief. This work is an outgrowth of a panel presentation titled Climate Change & Public Health Policy Implications of Sandy, given by Kim Knowlton, Dr.P.H., at a Special Session of the 2013 American Public Health Association meeting in Boston. We are grateful to the following colleagues and external peer reviewers who provided invaluable comments on this report: David Abramson of the National Center for Disaster Preparedness; Patrick L. Kinney, director of the Climate and Health Program at the Mailman School of Public Health, Columbia University; Robert Moore and Ben Chou of NRDC’s Climate and Water program; and NRDC colleagues Steve Fleischli, Becky Hammer, Becky Hayat, Theo Spencer and Monty Schmitt. -
A Water Preparedness Guide for State Action a Water Preparedness Guide for State Action
A JOINT EFFORT BY American Rivers Natural Resources Defense Council A Water Preparedness Guide for State Action A Water Preparedness Guide for State Action Authors Fay Augustyn, American Rivers Ben Chou, Natural Resources Defense Council Project Development Christopher E. Williams, American Rivers Steve Fleischli, Natural Resources Defense Council To download the report, please visit www.AmericanRivers.org/ClimateSmart or www.nrdc.org/water/climatesmart 2 SMART About American Rivers American Rivers is the leading organization working ment of Natural Resources), Darcy Nonemacher and to protect and restore the nation’s rivers and streams. Jeff Weber (Oregon Department of Land Conserva- Rivers connect us to each other, nature, and future tion and Development). generations. Since 1973, American Rivers has fought to preserve these connections, helping protect and We also would like to thank the following individuals restore more than 150,000 miles of rivers through ad- at American Rivers and NRDC for their expert guid- vocacy efforts, on-the-ground projects, and the annual ance and input during the development of this report: release of America’s Most Endangered Rivers®. Naveen Adusumilli, Claire Althouse, Seth Atkinson, Katherine Baer, Alison Chase, Stacey Detwiler, Jon About NRDC Devine, David Doniger, Devin Dotson, Mike Fiebig, The Natural Resources Defense Council (NRDC) Eileen Fretz, Emmanuel Hector, Karen Hobbs, Jenny is an international nonprofit environmental organiza- Hoffner, Justin Horner, Alex Kennaugh, Kim Knowlton, tion with more than 1.3 million members and online Amy Kober, Larry Levine, Deron Lovaas, Serena Mc- activists. Since 1970, our lawyers, scientists, and other Clain, Barry Nelson, Matt Nimerski, Ed Osann, Monty environmental specialists have worked to protect the Schmitt, John Seebach, Brian Siu, Theo Spencer, John world’s natural resources, public health, and the envi- Steelman, Sara Strassman, Lisa Suatoni and Jackie ronment. -
Hazardous Weather Hazardous Weather
Texas Division of Emergency Management Texas State Operations Center Situation Awareness Brief Sunday, May 3rd, 2021 As of 0900 CST Incidents Reported to the State Operations Center (last 24 hours) Final DATE SUBJECT LOCATION Report (Y/N) 05/02/21 Initial Report of a Road Closure (US281) Live Oak County N 05/03/21 Preliminary Earthquake Report (M3.4) Culberson County Y 05/03/21 Final Report of a Road Closure (US 281) Live Oak County Y Informational Products Distributed by the State Operations Center DATE SUBJECT 05/03/21 CLEAR Alert Discontinuation - The Colony PD - Walker 05/03/21 AMBER Alert Activation - Austin PD - Wyatt Crowley 05/03/21 CLEAR Alert Activation - Allen Police Department - Bracey 05/03/21 NWS Shreveport Severe Weather Tonight and Tuesday 050321 05/02/21 20-0003 COVID-19 2020 SITREP 409 05/03/21 21-0003 February Winter WEATHER 2021 SITREP 74 Weather Forecast Highs Lows Weather Forecast Wind Speeds Gusts Hazardous Weather Hazardous Weather A High Wind Warning is in effect for Guadalupe Severe thunderstorms are possible this afternoon Pass late this evening through tonight. into this evening across eastern and southern Oklahoma and north Texas. There is the potential for hail up to the size of baseballs and thunderstorm wind gusts of 60 to 80 mph. The tornado risk is still very low and generally confined to southeast Oklahoma. Hazardous Weather Severe storms will be possible this evening and Thunderstorms are expected to move into our early tonight across the northern Big Country, northwest zones later this evening through the to the north of a Hamlin to Albany line. -
Unit, District, and Council General and Contingency Planning Guide for Boy Scouts of America©
Doctorial Project for Completion of the Degree Doctorate, Commissioner’s Science Boy Scouts of America University of Scouting Commissioner’s College Unit, District, and Council General and Contingency Planning Guide for Boy Scouts of America© Version 0.99b 4 February 2010 By Larry D. Hahn, Lt Col, USAF Ret Unit Commissioner Chesapeake Bay District Colonial Virginia Council 2010 - BSA General n Contingency Planning Guide - L. Hahn.docx Approval Letter Advisor Memorandum for Record To: Larry D. Hahn, Unit Commissioner (Doctorial Candidate) From: Ronald Davis, District Commissioner (Candidate’s Advisor) CC: Lloyd Dunnavant, Dean, Commissioners College Date: January 10, 2019 Re: Approval of BSA Scout University Doctorial Project After careful review of the submitted project from Larry D. Hahn for completion of his Commissioner’s College doctorial degree, I grant my approved and acceptance for the degree of Doctorate (PhD) in Commissioner’s Science through the Boy Scouts of America, University of Scouting. As of this date, and as his advisor, I submit this signed letter as official documentation of approval. Ronald Davis Advisor Chesapeake Bay District Commissioner Approval Letter Council Commissioner Memorandum for Record To: Larry D. Hahn, Unit Commissioner (Doctorial Candidate) From: Mike Fry, Council Commissioner CC: Ronald Davis, District Commissioner (Candidate’s Advisor) Date: January 10, 2019 Re: Approval of BSA Scout University Doctorial Project After careful review of the submitted project from Larry D. Hahn for completion of his Commissioner’s College doctorial degree, I grant my approved and acceptance for the degree of Doctorate (PhD) in Commissioner’s Science through the Boy Scouts of America, University of Scouting. -
Taking the Guesswork out of Lightning-Caused Wildfire Marjie Brown US Forest Service, [email protected]
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln JFSP Briefs U.S. Joint Fire Science Program 2008 Taking the Guesswork Out of Lightning-caused Wildfire Marjie Brown US Forest Service, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/jfspbriefs Part of the Forest Biology Commons, Forest Management Commons, Other Forestry and Forest Sciences Commons, and the Wood Science and Pulp, Paper Technology Commons Brown, Marjie, "Taking the Guesswork Out of Lightning-caused Wildfire" (2008). JFSP Briefs. 23. http://digitalcommons.unl.edu/jfspbriefs/23 This Article is brought to you for free and open access by the U.S. Joint Fire Science Program at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in JFSP Briefs by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Lightning and fi re smoke. Taking the Guesswork Out of Lightning-caused Wildfi re Summary Lightning is a natural source of wildfi re ignitions and causes a substantial portion of large wildfi res across the globe. Simple predictions of lightning activity don’t accurately determine fi re ignition potential because fuel conditions must be considered in addition to the fact that most lightning is accompanied by signifi cant rain. Fire operations managers need improved tools for prediction of widespread dry thunderstorms, which are those that occur without signifi cant rainfall reaching the ground. It is these dry storms that generate lightning most likely to result in multiple fi re ignitions, often in remote areas. In previous work the researchers developed a formula that estimates the potential for cloud- to-ground lightning when dry thunderstorms are expected. -
Understanding Storm Surge
The Education Program at the New Jersey Sea Grant Consortium 22 Magruder Road, Fort Hancock, NJ 07732 (732) 872-1300 www.njseagrant.org UNDERSTANDING STORM SURGE OVERVIEW In this climate education module, students will gain an understanding of the term “storm surge” by exploring the meteorological principles that create storms and generate storm surges. Many basics of weather are discussed, including air pressure, air circulation, and the influence of the Coriolis effect on weather. TABLE OF Background……………………………………….......................1-4 CONTENTS Activity #1- Oceans of Pressure …......................................... 5-10 Activity #2- Windy Balloon ……………………….................... 11-13 Activity #3- Density Driven Currents ………………................ 14-18 Activity #4- Coriolis Effect……………………………………. 19-22 Activity #5- Pressure Driven Storms and Surge…………..... 23-25 Activity #6- Surge of the Storm ………................................. 26-34 How Meteorologists’ Measure and Predict Storm Surge…… 35-37 Why should you care about understanding storm surge? ...... 38-39 Storm Surge Watches and Warnings ………………….……. 40-42 NOAA’s Top 10 Tips for Being Ready for a Storm Surge…...... 43 References …............................................................................ 44 OBJECTIVES Following completion of this module, students will be able to: Define storm surge and the factors that influence it Learn how temperature affects air density and the formation of high and low pressure systems in the atmosphere Explore the effect of gravity on air in the atmosphere Discover the role of Earth’s rotation on global and localized wind patterns Examine the effects that air pressure has on storm surge levels Determine how storm surge affects coastal communities Explore the impact of shoreline shape and beach slope on storm surge GRADE LEVEL 5 – 12 The New Jersey Sea Grant Consortium (NJSGC) is an affiliation of colleges, universities and other groups dedicated to advancing knowledge and stewardship of New Jersey’s marine and coastal environment.