Acute Toxicity of Para-Nonylphenol to Saltwater Animals

Total Page:16

File Type:pdf, Size:1020Kb

Acute Toxicity of Para-Nonylphenol to Saltwater Animals Environmental Toxicology and Chemistry, Vol. 19, No. 3, pp. 617±621, 2000 Printed in the USA 0730-7268/00 $9.00 1 .00 ACUTE TOXICITY OF PARA-NONYLPHENOL TO SALTWATER ANIMALS SUZANNE M. LUSSIER,*² DENISE CHAMPLIN,² JOSEPH LIVOLSI,² SHERRY POUCHER,³ and RICHARD J. PRUELL² ²U.S. Environmental Protection Agency, Atlantic Ecology Division, 27 Tarzwell Drive, Narragansett, Rhode Island 02882 ³Science Applications International Corporation, 221 Third Street, Admiral's Gate, Newport, Rhode Island 02840, USA (Received 25 November 1998; Accepted 14 June 1999) AbstractÐpara-Nonylphenol (PNP), a mixture of alkylphenols used in producing nonionic surfactants, is distributed widely in surface waters and aquatic sediments, where it can affect saltwater species. This article describes a database for acute toxicity of PNP derived for calculating a national saltwater quality criterion. Using a ¯ow-through exposure system with measured concen- trations, we tested early life stages of four species of saltwater invertebrates and two species of ®sh. Static 96-h tests were also conducted on zoeal Homarus americanus, embryo-larval Mulinia lateralis, and larval Pleuronectes americanus. The number of organisms surviving the ¯ow-through test was measured at 2, 4, 8, and 12 h and daily through day 7. Mortality for most species plateaued by 96 h. The ranked sensitivities (96-h 50% lethal concentrations, measured in micrograms per liter) for the species tested were 17 for Pleuronectes americanus, 37.9 (48-h 50% effective concentration) for Mulinia lateralis, 59.4 for Paleomonetes vulgaris, 60.6 for Americamysis bahia (formerly Mysidopsis bahia), 61.6 for Leptocheirus plumulosos, 70 for Menidia beryllina, 71 for Homarus americanus, 142 for Cyprinodon variegatus, and .195 for Dyspanopius sayii. Values for the seven most sensitive of these species ranged over a factor of only 4.2. The narrow range of responses for PNP implies that exceeding a threshold concentration would endanger a large proportion of the aquatic community. KeywordsÐpara-Nonylphenol 4-Nonylphenol Acute toxicity Saltwater INTRODUCTION during sewage treatment [9]. Their persistence in sewage ef- para-Nonylphenol (4-nonylphenol, or PNP) is a mixture of ¯uent and industrial wastewater has been recognized for de- alkylphenols that is used in producing nonionic surfactants for cades [10]. Degradation of nonylphenol concentration varies detergents, emulsi®ers, lubricants, and oil additives. Most non- with conditions; biodegradation of free NP is only about 0.06% ylphenols (NPs) are used as intermediates in producing non- per day, especially in the absence of sediments [11]. ylphenol ethoxylates (NPEs) for oil-soluble detergents and for Because NPs are ubiquitous, resist degradation, and bioac- emulsi®ers that can be further re®ned to produce anionic de- cumulate, their ability to produce physiological effects has tergents, lubricants, textile scouring or antistatic agents, emul- been the subject of considerable recent attention [4,12]. For si®ers for agrichemicals, antioxidants in rubber and plastics, example, previous studies have shown that nonylphenol is di- and oil additives [1]. Because NPs are also breakdown products rectly toxic to ®sh and other aquatic animals [13,14]. The goal of alkylphenol polyethoxylates used in detergents, pesticides, of this study was to measure acute toxicity of PNP to organisms herbicides, and toiletries, they are found widely in surface representative of a saltwater community. The species, repre- waters and aquatic sediments [2]. Considerable research has senting early life stages of nine different taxonomic families, indicated that PNP is bioaccumulated [3], estrogenic [4], and were chosen according to the guidelines for deriving numerical highly toxic [5,6]. Consequently, the use of NP polyethoxy- national water quality criteria [15]. Documents for water qual- lates has been banned in several European countries. ity criteria (also called aquatic-life or chemical criteria) for From 1980 to 1988, production of nonylphenol in the Unit- individual substances have been developed to protect fresh- ed States increased by 37% [6]. A 1989 and 1990 study of water and saltwater aquatic life and their uses. The history of river reaches in the continental United States detected non- the development, derivation, and use of water quality criteria ylphenol in 30% of water samples and 71% of sediment sam- has been summarized by Hansen [16]. ples. Its concentrations in water ranged from 0.20 to 0.64 mg/ MATERIALS AND METHODS L and in sediments from 10 to 3,000 mg/kg [2]. Concentrations up to 1,600 mg/L of PNP have been found in water from Biological methods industrial sources [7]. Concentrations in river water down- We determined the acute toxicity of PNP to early life-stages stream from a discharge ranged from 2 to 3,000 mg/L [8]. of four species of saltwater invertebrates (Paleomonetes vul- Nonylphenol and its ethoxylates have also been found in treat- garis, Americamysis bahia, Leptocheirus plumulosos, and ment-plant wastewaters and sewage sludges, where they have Dyspanopeus sayii) and two species of ®sh (Menidia beryllina been produced by microbial breakdown of nonionic surfactants and Cyprinodon variegatus) by using a 7-d ¯ow-through ex- * To whom correspondence may be addressed posure with measured concentrations. The second of these spe- ([email protected]). cies, Americamysis bahia, was formerly known as Mysidopsis Contribution NHEERL-NAR-1992. Although this manuscript was bahia and has been redescribed [17]. All species were cultured reviewed in accordance with of®cial U.S. Environmental Protection on site except L. plumulosos, which was cultured at the SAIC Agency procedures, its content does not necessarily re¯ect U.S. EPA policy. Mentioning of commercial products or facilities does not nec- Environmental Testing Center, Narragansett, Rhode Island, essarily mean that U.S. EPA or the U.S. federal government endorses USA [18±20]. Nauplii of Artemia sp. were fed to cultured and them. test organisms. In accordance with ASTM recommendations 617 618 Environ. Toxicol. Chem. 19, 2000 S.M. Lussier et al. [21], only reference Artemia sp. were fed to organisms during testing. Organisms were exposed simultaneously in duplicate ¯ow- through exposure chambers. Each species was placed into sep- Mulinia lateralis arate containers with glass petri dish bottoms and walls of jars None Nitext screen (mesh size 320 mm, Aquatic Eco-Systems, 3, 8-oz. glass Apopka, FL, USA). Stock solutions were delivered to exposure chambers at each of seven concentrations by a ¯ow-through Ar- diluter exposure system [22]. The surviving organisms were sp. counted at hours 2, 4, 8, 12, and 24 and daily through day 7. Homarus temia To obtain data for lower-temperature species, static tests jars americanus were conducted with zoeal Homarus americanus (96 h, un- 10, 8-oz. glass measured concentrations), larval Pleuronectes americanus (96 h, measured concentrations), and embryo-larval Mulinia lat- eralis (48 h, unmeasured concentrations) [23]. The inhibition of fertilization, rather than survival, was the acute measure of toxicity in the M. lateralis test. Static tests were monitored ter glass dish- es americanus daily. All ¯ow-through and static tests used ®ltered (15 mm) Pleuronectes None Reference 2, 19-cm-diame- seawater at pH levels of 7.8 to 8.2 and salinity of 30 to 31 g/ kg from Narragansett Bay, Rhode Island, following ASTM procedures [24]. The salinity of the M. lateralis test was 32 Ar- g/kg. Exposure conditions for ¯ow-through and static tests are sp. summarized in Table 1. Data on survival were analyzed sta- vulgaris static unmeasured, no renewal. temia tistically using the Trimmed Spearman±Karber method of es- jars Palaemonetes 5 Reference timation with Abbott's correction formula and pooled controls 4, 8-oz. glass [25,26]. Analytical methods Ar- sp. We used 90% para-C9 phenols (CAS 84852-15-3) for all bahia temia tests. The carrier solvent was a solution of 20% acetone and jars Americamysis 80% triethylene glycol. Controls for seawater and for seawater 4, 8-oz. glass with solvent were used in all tests. Final mean concentrations in the ¯ow-through test were 20.2, 21, 29.5, 67.3, 70.5, 117, -nonylphenol multispecies test exposure and 195 mg/L. For the static-measured test with P. americanus, para ®nal mean concentrations were 3.7, 6.9, 16.3, 19.1, 32.3, 73.2, 125, and 163 mg/L. In the static-unmeasured test with H. amer- jars plumulosus Leptocheirus Isochrysis sp. Reference icanus, concentrations were 16, 26, 43, 72, 120, 200, and 330 4, 8-oz. glass static unmeasured, renewed daily; SUN mg/L; and in the M. lateralis test, they were 2.4, 8, 24, 80, 5 240, and 800 mg/L. Before adding organisms, we measured the concentration Ar- of test material in the ¯ow-through diluter and in one exposure sp. chamber per treatment to verify that they were the same. On Menidia beryllina temia netted cups day 4 of the test, we measured the duplicate of each treatment. Table 1. Test conditions for Reference In the static test with P. americanus, we also sampled at the 4, 9-cm-diameter beginning and end of the exposure. The sampling procedure consisted of siphoning 1-L samples Ar- from the ¯ow-through tests into separatory funnels prerinsed sp. with solvent. After internal standards were added, the samples temia netted cups were extracted three times with 50 ml of methylene chloride variegatus static measured, no renewal; SUR Cyprinodon Reference Juvenile Juvenile Adult Postlarvae 1-day Larvae 2-day Larvae 2-day Zoea ®rst stage Embryo 4, 9-cm-diameter and dried with anhydrous sodium sulfate. Each sample was 5 then reduced in volume, exchanged to heptane, and brought to a ®nal volume of 1 ml. The samples were stored in 1.8-ml vials until they were analyzed. Ar- The PNP in samples was measured by using a DB-5 cap- sp. illary fused-silica column in a Hewlett-Packard 5890 gas chro- sayi stage temia jars 2222222103 Dyspanopeus FTM4, 8-oz.
Recommended publications
  • C:\Documents and Settings\Leel\Desktop\WA 2-15 DRP
    DRAFT DETAILED REVIEW PAPER ON MYSID LIFE CYCLE TOXICITY TEST EPA CONTRACT NUMBER 68-W-01-023 WORK ASSIGNMENT 2-15 July 2, 2002 Prepared for L. Greg Schweer WORK ASSIGNMENT MANAGER U.S. ENVIRONMENTAL PROTECTION AGENCY ENDOCRINE DISRUPTOR SCREENING PROGRAM WASHINGTON, D.C. BATTELLE 505 King Avenue Columbus, Ohio 43201 TABLE OF CONTENTS 1.0 EXECUTIVE SUMMARY ....................................................... 1 2.0 INTRODUCTION .............................................................. 2 2.1 DEVELOPING AND IMPLEMENTING THE ENDOCRINE DISRUPTOR SCREENING PROGRAM (EDSP).......................................... 2 2.2 THE VALIDATION PROCESS............................................. 2 2.3 PURPOSE OF THE REVIEW ............................................. 3 2.4 METHODS USED IN THIS ANALYSIS...................................... 4 2.5 ACRONYMS AND ABBREVIATIONS ....................................... 5 3.0 OVERVIEW AND SCIENTIFIC BASIS OF MYSID LIFE CYCLE TOXICITY TEST ........... 6 3.1 ECDYSTEROID SENSITIVITY TO MEASURED ENDPOINTS ................... 9 4.0 CANDIDATE MYSID TEST SPECIES ............................................ 11 4.1 AMERICAMYSIS BAHIA ................................................ 12 4.1.1 Natural History ................................................... 12 4.1.2 Availability, Culture, and Handling .................................. 12 4.1.3 Strengths and Weaknesses ....................................... 13 4.2 HOLMESIMYSIS COSTATA ............................................. 13 4.2.1 Natural History ................................................
    [Show full text]
  • Acute Toxicity Responses of Two Crustaceans, Americamysis Bahia and Daphnia Magna, to Endocrine Disrupters
    Journal of Health Science, 50(1) 97–100 (2004) 97 Acute Toxicity Responses of Two Crustaceans, Americamysis bahia and Daphnia magna, to Endocrine Disrupters Masashi Hirano,a Hiroshi Ishibashi,a Naomi Matsumura,a Yukiko Nagao,a Naoko Watanabe,a Akiko Watanabe,b Norio Onikura,b Katsuyuki Kishi,b and Koji Arizono*, a aFaculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, 3–1–100 Tsukide, Kumamoto 862–8502, Japan and bJapan Pulp and Paper Research Institute Inc., 5–13–11 Tokodai, Tsukuba, Ibaraki 300–26, Japan (Received September 12, 2003; Accepted September 17, 2003; Published online October 7, 2003) The acute toxicity of endocrine disrupters in two screening and testing systems for EDs have been crustaceans, Americamysis bahia (A. bahia) and Daph- established in the OECD (Organization for Eco- nia magna (D. magna), was investigated and the toxi- nomic Cooperation and Development) and U.S. EPA cological responses compared. Bisphenol A had the (Environmental Protection Agency).3,4) lowest toxicity to D. magna, the 48 hr median lethal Under laboratory culture, the mysid shrimp concentrations (LC50) values was 12.8 mg/l. However, Americamysis bahia (A. bahia), reaches sexual ma- the toxic sensitivity of A. bahia to bisphenol A was ap- turity in 12 to 20 days, depending on water tempera- proximately 10-fold higher than for D. magna (48 hr ture and diet.5) Normally, the female will have eggs LC ; 1.34 mg/l). The 48 hr LC of estradiol-17␤ was 50 50 in the ovary at approximately 12 days of age. The 2.97 and 1.69 mg/l in D.
    [Show full text]
  • Toxicity Testing Report Phillips 66 Ferndale Refinery Ferndale, Washington
    TOXICITY TESTING REPORT PHILLIPS 66 FERNDALE REFINERY FERNDALE, WASHINGTON Prepared for Phillips 66 Ferndale Refinery 3901 Unick Road Ferndale, Washington 98248 Prepared by EcoAnalysts, Inc. 4770 NE View Drive PO Box 216 Port Gamble, WA 98364 Submittal Date: April 14, 2017 Client Contract Reference: Contract No. 4523507907 EcoAnalysts Report ID: 032117.01 Toxicity Testing Report Phillips 66 Ferndale Refinery All testing reported herein was performed consistent with our laboratory’s quality assurance program. All results are intended to be considered in their entirety, and EcoAnalysts is not responsible for use of less than the complete report. The test results summarized in this report apply only to the sample(s) evaluated. PREPARED BY ______________________________________ Meg Pinza Program Manager ______________________________________ Brian Hester Quality Assurance Officer Authors: Jay D. Word EcoAnalysts Report #032117.01 i EcoAnalysts, Inc. Toxicity Testing Report Phillips 66 Ferndale Refinery CONTENTS 1. EXECUTIVE SUMMARY 1 2. METHODS 2 2.1 Sample Collection and Storage 2 2.2 Bioassay Testing 4 2.3 Organisms for Testing 4 2.4 Mysid, Inland Silverside, Topsmelt, and Herring Feeding 4 2.5 Water for Bioassay Testing 5 2.6 Sample Adjustment 5 2.7 Survival and Growth Tests 5 2.8 Data Management and Analysis 5 3. RESULTS 6 3.1 Pacific Herring (Clupea pallasii) Larval Chronic Test Results 6 3.2 Topsmelt (Atherinops affinis) Chronic Test Results 9 3.3 Mysid (Americamysis bahia) Chronic Test Results 12 3.4 Inland Silverside (Menidia beryllina) Chronic Test Results 15 4. QUALITY ASSURANCE/QUALITY CONTROL 18 4.1 Study Deviations 19 5. SUMMARY 20 6.
    [Show full text]
  • Federal Register/Vol. 78, No. 119/Thursday, June 20, 2013
    37176 Federal Register / Vol. 78, No. 119 / Thursday, June 20, 2013 / Proposed Rules TABLE 2BTOAPPENDIX A OF SUBPART A—DATA ELEMENTS FOR REPORTING EMISSIONS FROM POINT, NONPOINT, ONROAD MOBILE AND NONROAD MOBILE SOURCES, WHERE REQUIRED BY 40 CFR 51.30—Continued Data elements Point Nonpoint Onroad Nonroad (18) Percent Control Approach Penetration (where applicable) ..................................... .................... Y .................... .................... ■ 12. Amend § 51.122 by: 1. Federal eRulemaking Portal: Architectural Coatings. In the Rules and ■ a. Revising paragraph (c); www.regulations.gov. Follow the on-line Regulations section of this Federal ■ b. Removing and reserving paragraph instructions. Register, we are approving this local (d); and 2. Email: [email protected]. rule in a direct final action without ■ c. Revising paragraph (f). 3. Mail or deliver: Andrew Steckel prior proposal because we believe this The revisions read as follows: (Air-4), U.S. Environmental Protection SIP revision is not controversial. If we Agency Region IX, 75 Hawthorne Street, receive adverse comments, however, we § 51.122 Emissions reporting San Francisco, CA 94105–3901. will publish a timely withdrawal of the requirements for SIP revisions relating to Instructions: All comments will be budgets for NO emissions. direct final rule and address the X included in the public docket without comments in subsequent action based * * * * * change and may be made available on this proposed rule. Please note that (c) Each revision must provide
    [Show full text]
  • Appendix C Toxicity of Malathion to Marine and Estuarine Fish And
    Appendix C Toxicity of Malathion to Marine and Estuarine Fish and Invertebrates This appendix presents results of laboratory toxicity studies that yielded acute and chronic toxicity endpoints for the effects of malathion on marine/estuarine fish, crustaceans, and mollusks. These studies include ones submitted by pesticide registrants for fulfillment of FIFRA testing requirements for pesticide registration as well as comparable studies that have been published in the open literature. Open literature studies are listed when they yielded similar endpoints as a required EPA guideline study, namely an LC50 or EC50 for acute exposure, or an NOAEC and LOAEC for growth, development, or reproduction for chronic studies. We are not attempting to summarize the complete body of toxicity literature on effects to marine and estuarine species. Relevant studies from the open literature were identified from a screen of data in the EPA’s ECOTOX database with toxicity results on malathion. In order to be included in the ECOTOX database, papers must meet the following minimum criteria: 1. The toxic effects are related to single chemical exposure; 2. The toxic effects are on an aquatic or terrestrial plant or animal species; 3. There is a biological effect on live, whole organisms; 4. A concurrent environmental chemical concentration/dose or application rate is reported; and 5. There is an explicit duration of exposure. Data that pass the ECOTOX screen are further evaluated for use in the assessment along with the registrant-submitted data, and may be incorporated qualitatively or quantitatively into this endangered species assessment. Acute Toxicity to Fish Acute toxicity testing with estuarine/marine fish species using the TGAI is required for malathion because the end-use product is intended for direct application to the marine/estuarine environment and the active ingredient is expected to reach this environment because of its use near estuarine environments.
    [Show full text]
  • Biological Effects of Dispersants and Dispersed Oil on Surface and Deep Ocean Species
    Biological Effects of Dispersants and Dispersed Oil on Surface and Deep Ocean Species Ronald Tjeerdema, Ph.D. University of California, Department of Environmental Toxicology Adriana C. Bejarano, Ph.D. Research Planning, Inc. Sara Edge, Ph.D. Florida Atlantic University, Harbor Branch Oceanographic Institute INTRODUCTION Effects of Dispersant Use on Biological Systems Beginning with the use of industrial-strength detergents, dispersing agents have been employed in spill response for decades. The Corexit series of agents in common use today generally consist of non-ionic and/or anionic surfactants in a solvent base designed to enhance miscibility under varying temperature and salinity conditions; cationic surfactants tend to be too toxic for use. While dispersants generally serve to decrease the interfacial surface tension of oil, thus facilitating its weathering under low-energy conditions, their surface-active nature also causes their interaction with cell surfaces – those of single-celled organisms as well as the gills of vertebrates and invertebrates. Knowledge from Previous Oil Spills Biological Impacts Dispersant use is usually considered by spill responders when other means of response, such as containment and removal, are not deemed to be adequate1. For instance, during the Deepwater Horizon (DWH) spill dispersants were quickly employed when it became apparent that other means of response were insufficient2. However, there are usually consequences for both hydrocarbon bioavailability and toxic impacts, thus environmental tradeoffs must be evaluated. For instance, while undispersed oil generally poses the greatest threat to shorelines and surface- dwelling organisms, most dispersed oil remains in the water column where it mainly threatens pelagic and benthic organisms1. This tradeoff was a prime consideration during the DWH spill3.
    [Show full text]
  • Invertebrate ID Guide
    11/13/13 1 This book is a compilation of identification resources for invertebrates found in stomach samples. By no means is it a complete list of all possible prey types. It is simply what has been found in past ChesMMAP and NEAMAP diet studies. A copy of this document is stored in both the ChesMMAP and NEAMAP lab network drives in a folder called ID Guides, along with other useful identification keys, articles, documents, and photos. If you want to see a larger version of any of the images in this document you can simply open the file and zoom in on the picture, or you can open the original file for the photo by navigating to the appropriate subfolder within the Fisheries Gut Lab folder. Other useful links for identification: Isopods http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-33/htm/doc.html http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-48/htm/doc.html Polychaetes http://web.vims.edu/bio/benthic/polychaete.html http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-34/htm/doc.html Cephalopods http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-44/htm/doc.html Amphipods http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-67/htm/doc.html Molluscs http://www.oceanica.cofc.edu/shellguide/ http://www.jaxshells.org/slife4.htm Bivalves http://www.jaxshells.org/atlanticb.htm Gastropods http://www.jaxshells.org/atlantic.htm Crustaceans http://www.jaxshells.org/slifex26.htm Echinoderms http://www.jaxshells.org/eich26.htm 2 PROTOZOA (FORAMINIFERA) ................................................................................................................................ 4 PORIFERA (SPONGES) ............................................................................................................................................... 4 CNIDARIA (JELLYFISHES, HYDROIDS, SEA ANEMONES) ............................................................................... 4 CTENOPHORA (COMB JELLIES)............................................................................................................................
    [Show full text]
  • US EPA-Pesticides; Methomyl
    Text Searchable Document DATA EVALUATION RECORD AQUATIC INVERTEBRATE LIFE CYCLE TElST 3 72-4(b) 1. CHEMICAL: Methomyl PC Code No.: 09030 1 2. TEST MATERIAL: Methomyl technical Purity: 98.6% 3. CITATION: Authors: Ward, T.J., J.P. Magazu and R.L. Boeri Title: Methomyl Technical: Flow-Through Chronic Toxicity to the Mysid, Americamysis bahia (Formerly Kn'own as Mysidopsis bahia). Studv Completion Date: October 1, 1999 Laboratory: T.R. Wilbury Laboratories, Inc. 40 Doaks Lane Marblehead, Massachusetts 0 1945 Sponsor: E.I. DuPont de Nemours and Company Wilmington, Delaware 19898 Laboraton, Report ID: DuPont- 11 57 MRID No.: 45013203 DP Barcode: D264036 4. REVIEWED BY: Gregory S. Hess, Staff Scientist, Dynamac Corporation Signature: Date: 712610 1 APPROVED BY: Kathleen Ferguson, Ph.D., Senior Staff Scientist, Dynamac Corporation Signature: Date: 712610 1 5. APPROVED BY: Todd Phillips, Ph.D., Biologist, OPPIEFEDERBIV Signature: Date:5/13/04 DP Barcode: D264036 MTUD No.: 45013203 6. STUDY PARAMETERS: Scientific Name of Test Organisms: Americamysis bahia Age of Test Organism: <24 Hours old Definitive Test Duration 28 days Study Method: Flow-through Type of Concentrations: Mean-measured 7. CONCLUSIONS: In this 28-day life cycle toxicity test, Americamysis bahia neonates were exposed under flow-through conditions to Methomyl technical (98.6% purity) at mean measured concentrations of 0 (negative control), 0.0 145, 0.0291, 0.0591, 0.1:!1 and 0.253 mg a.i./L. Measured values were 85% to 10 1% of nominal concentrations. Prior to sexual maturity and pairing, there were 60 mysidsltreatment level: 15 mysids/compa~rtment,2 compartments/chamber, and 2 replicate chamberslconcentration.
    [Show full text]
  • Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources
    Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources http://www.dnr.sc.gov/marine/sertc/ Southeastern Regional Taxonomic Center Invertebrate Literature Library (updated 9 May 2012, 4056 entries) (1958-1959). Proceedings of the salt marsh conference held at the Marine Institute of the University of Georgia, Apollo Island, Georgia March 25-28, 1958. Salt Marsh Conference, The Marine Institute, University of Georgia, Sapelo Island, Georgia, Marine Institute of the University of Georgia. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Caprellidea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Gammaridea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1981). Stomatopods. FAO species identification sheets for fishery purposes. Eastern Central Atlantic; fishing areas 34,47 (in part).Canada Funds-in Trust. Ottawa, Department of Fisheries and Oceans Canada, by arrangement with the Food and Agriculture Organization of the United Nations, vols. 1-7. W. Fischer, G. Bianchi and W. B. Scott. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume II. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume III. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico.
    [Show full text]
  • Myogenesis of Malacostraca – the “Egg-Nauplius” Concept Revisited Günther Joseph Jirikowski1*, Stefan Richter1 and Carsten Wolff2
    Jirikowski et al. Frontiers in Zoology 2013, 10:76 http://www.frontiersinzoology.com/content/10/1/76 RESEARCH Open Access Myogenesis of Malacostraca – the “egg-nauplius” concept revisited Günther Joseph Jirikowski1*, Stefan Richter1 and Carsten Wolff2 Abstract Background: Malacostracan evolutionary history has seen multiple transformations of ontogenetic mode. For example direct development in connection with extensive brood care and development involving planktotrophic nauplius larvae, as well as intermediate forms are found throughout this taxon. This makes the Malacostraca a promising group for study of evolutionary morphological diversification and the role of heterochrony therein. One candidate heterochronic phenomenon is represented by the concept of the ‘egg-nauplius’, in which the nauplius larva, considered plesiomorphic to all Crustacea, is recapitulated as an embryonic stage. Results: Here we present a comparative investigation of embryonic muscle differentiation in four representatives of Malacostraca: Gonodactylaceus falcatus (Stomatopoda), Neocaridina heteropoda (Decapoda), Neomysis integer (Mysida) and Parhyale hawaiensis (Amphipoda). We describe the patterns of muscle precursors in different embryonic stages to reconstruct the sequence of muscle development, until hatching of the larva or juvenile. Comparison of the developmental sequences between species reveals extensive heterochronic and heteromorphic variation. Clear anticipation of muscle differentiation in the nauplius segments, but also early formation of longitudinal trunk musculature independently of the teloblastic proliferation zone, are found to be characteristic to stomatopods and decapods, all of which share an egg-nauplius stage. Conclusions: Our study provides a strong indication that the concept of nauplius recapitulation in Malacostraca is incomplete, because sequences of muscle tissue differentiation deviate from the chronological patterns observed in the ectoderm, on which the egg-nauplius is based.
    [Show full text]
  • Embryonic Development of Metamysidopsis Elongata (Crustacea: Mysidae) in the Bay of Mazatlán, Sinaloa, Mexico
    Embryonic development of Metamysidopsis elongata (Crustacea: Mysidae) in the Bay of Mazatlán, Sinaloa, Mexico ARMANDO A. ORTEGA-SALAS*, JUDITH NÚÑEZ-LECUANDA, SERGIO RENDÓN RODRÍGUEZ & ARUTRO NÚÑEZ-PASTÉN Instituto de Ciencias del Mar y Limnología, UNAM. Calz. Joel M. Camarena s/n, Mazatlán 82040, Sinaloa, México. * Corresponding author: [email protected] Abstract. It is important to know the structure of the embryo when it is formed and developed. Therefore, the embryonic development, the morphology of four embryonic stages and a released fifth stage (juvenile) of the captured and cultivated wild mísidos (F1 and F2) of Metamysidopsis elongata were described. Monthly intertidal samples on foot at 0.5 and 1.0 m depth in the sandy area, were taken with a plankton net of a mesh size of 1 000 μm with a mouth opening of 50 cm in diameter from September 2010 to October 2011 in the Bay of Mazatlán, Sinaloa, Mexico. One thousand four hundred mysids were collected. The time from birth to the release of the first offspring of juveniles began at 26 days (F1, first generation), and at 28 days of F1 (F2, second generation). Sexual maturity occurred between 18 and 20 days after release in females (marsupium with eggs) and 12 days after release in males. The sexual rate showed predominance of females: in wild myids, 6.5: 1.0; in the generation F1, 2.3: 1.0; and in F2, 2.1: 1.0. The results indicate that if there are more females, there will be more descendants Key words: Culturing, embryonic development, Metamysidopsis elongata, morphology, sex ratio.
    [Show full text]
  • The Chronic Toxicity of Molybdate to Marine Organisms. I. Generating Reliable Effects Data
    Science of the Total Environment 430 (2012) 260–269 Contents lists available at SciVerse ScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv The chronic toxicity of molybdate to marine organisms. I. Generating reliable effects data D.G. Heijerick a,⁎, L. Regoli b, W. Stubblefield c a ARCHE — Assessing Risks of Chemicals, Stapelplein 70 Bus 104, Gent, Belgium b International Molybdenum Association, 4 Heathfield Terrace, London, W4 4JE, United Kingdom c Oregon State University, Department of Environmental and Molecular Toxicology, 421 Weniger Hall, Corvallis, OR 97331, USA article info abstract Article history: A scientific research program was initiated by the International Molybdenum Association (IMOA) which Received 11 January 2012 2 − addressed identified gaps in the environmental toxicity data for the molybdate ion (MoO4 ). These gaps Received in revised form 19 March 2012 were previously identified during the preparation of EU-REACH-dossiers for different molybdenum com- Accepted 19 March 2012 pounds (European Union regulation on Registration, Evaluation, Authorization and Restriction of Chemical Available online 2 June 2012 substances; EC, 2006). Evaluation of the open literature identified few reliable marine ecotoxicological data that could be used for deriving a Predicted No-Effect Concentration (PNEC) for the marine environment. Keywords: Sodium molybdate Rather than calculating a PNECmarine using the assessment factor methodology on a combined freshwater/ Aquatic toxicity marine dataset, IMOA decided to generate sufficient reliable marine chronic data to permit derivation of a Species sensitivity distribution PNEC by means of the more scientifically robust species sensitivity distribution (SSD) approach (also called the statistical extrapolation approach). Nine test species were chronically exposed to molybdate (added as sodium molybdate dihydrate, Na2MoO4·2H2O) according to published standard testing guidelines that are acceptable for a broad range of regulatory purposes.
    [Show full text]