Heat Treating Buyers Guide 1998

Total Page:16

File Type:pdf, Size:1020Kb

Heat Treating Buyers Guide 1998 _-------------,COMPANiYII,NDEX-------------- Welcume to the CompanyIndell of the 1998 GtllI' TKhno/OfY Directory Whil. wa hava made every etton to ,Rlilr. th .. Clllllpny na_ aad of H... TreatingSelVic... Use tltislilt 10 locate tit. compl.te contact infor- addrtlSlll ara correct. w. cannot be held rnpanslble for amll'l of fact or mation for lach company liltad in the S'lVic .. Ind.x. GtllI' TKhnology ominion. " YOlirCompIlIY was Rot lilted indlis directory,Ind you WOIIld like advlrti.. n are shown in boldface type. Tofind lb. peg.. on which dleir Ids to b. incilided in '999, pi.... c.1I 847-4371&14. appear.... dI. Adv.rtisers Ind.x on page .... Farmingdale, NY 11735 Applied Process Inc. 1101 E. 55th SI. 516-249-1660 12238 Newburgh Rd. Cleveland, OH 44103 i Fax: 516-249-7889 Livonia, MI48150-1046 216-881-8100 Abbou Furnace Company 734-464-2030 Fax: 216-881-6811 1068 Trout RIm Road Alliance Metal Treating Fax: 734-464-6314 P: O. Box 967 P.O, Bo)(68 E-mail: jl<[email protected] Br-azing & Metal Treating of KY Saint Marys •.PA 15847 Eola, lL 60519 Web: www.appliedproces~.com Div, of HI TecMetal Group 814-781-735S 630-851·5880 1.379 Jamike Ln. Fa.>t: 814-781-7334 Fax: 630-851-0733 Atmosphere Annealing Inc. Erlanger. KY 41018 E-mail: [email protected] E-mail: [email protected] 1300 Industrial Dr. 6Q6.647.1115 Web: llltp:lldn.J. ncentra]. com-abbon N. Vernon, IN 47265 Pux: 006-647-1165 Allread Products 812-346-1275 ABS Metallurgical Processors Inc. 22 S. Main St. : Fax: 812-346-4534 Brazing & Metal Treating of MN 4313 E. Magnolia SL Terryville, cr 06786 2501 Hi fee Avenue Phoenix. AZ 85034 860.589-3566 Albert. U:8, MN 56007 602-437-3008 Fax: 860·589-.3566 (507) 373-9630 Fax: 60247()'()309 Pax: 507) 373-3771 Alpha Heat Treaters Beehive Heal Treating Inc. A«!U'l!,te Ion Technology 270 Emil! Rd. 132 Water SI. Brite Brazing 10010 Miller WilY P.O. Box 23 S. Norwalk, cr 06854 5476 Lake CI. : South Gllte, eA 90280 York County Industrial Park 203-866-1635 Cleveland, OH 44114 562-9.28·1868: Emigsville, PA 17318 Fax: 203-855·9327 216-881·8100 Fax: 562-927.8591 717-767·6757 Fax: 216-881-6811 Fax: 717·764·0129 Benedict-Miller Inc. Accurate Steel Treating Marin Ave. & Orient Way Brite Metal Treating Inc. 10008 Miller Way I AmericanBrazing Lyndhurst, NJ 07071-0912 8640 Bessemer Ave. South Gate, CA 90280 Div, of Paulo Products Co. 201-438-3000 Cleveland, OH 44127 562-927-6528 4428 Hamann Pkwy. FlU: 2-01438·3137 216-341.2266 Fax: 310-927-8591 , WiUougbby, OH 44094 E-mail: [email protected] Fax: 216-341-4273 440-946·5900 Web: www.benedict-miller.com Advanced Heat Treat Corp. Fax: 440-946-3091 Bucyrus International, Inc. 1625 Rose St. E·mail: MEmerson@Pauio·U$.com Bennett Heal Treating & Brazing Co. 1100 Milwaukee Ave, Monroe, M148162 '690 Ferry St. S. Milwaukee, W153172 734·243,(>063 American Heat Tieating Newark, NJ 07105 414.768-4000 Fax: 734-2.43-4066 1346 Moms A.ve. 201·589-0590 Pax: 414-768-5221 Web:. ", ........ahtweb.com Dayton, oa 45408 PM: 201-589"6518 937·461·1121 Burbank Steel Treating Advanced Heal Treating Inc. FlU: 937-461-1166 BodycotelHJnde.liter Thermal Processing 415 S. Varney Sl. l'rout Run Rd. 2005 Montgomery St. Burbank. CA91502 SL Marys, PA 15857 American Metal Processing Co. Fort Worth, TIC 76107 213-849-7480 or 818-842-0975 814-:781-3744 22720. Nagel 817-737-6651 1',": 213·849-3739 Fax: 814-:781-3230 Warren, MJ 48089 FM: 817-377-9601 E-mail: cherrytencentral.com 810-757-7337 Fax: 81O·7SJ·8232 Bomak Corp. Advanced Heat Trent Corp. Six Jefferson Ave. 2839 Burton Ave. American Melal Trea.ling Co. I Woburn •.MA 01801 Cal-Doran Division Waterloo, ]A 50703 1043 E. 62nd SI. 617-935-4100 1804 Cleveland Ave. 3 [9-232-5221 CleveJ·and. OR 44103 Fax: 617-932-0542 ational Cil}', CA 91950 Fax; 3 L9-232-4952 Zi6-431.44n E-mail;[email protected] 619-477-2121 E-mail: [email protected]'g.cotn Fax.: 216-431.1508, Fax: 619-477-3219' Web: www.ahtweb.com Bona] Technologies Inc. American Metal Treating Inc. 21178 Bridge SL California Surface Hardening Inc. Advanced Metallurgical Technology 500 Manley Ill. Southfleld, Ml48034 1315 S. Alameda, Sf. 212 Page Ave. P.O. Box 4157 248-353-2041 P.O. Boll. 736 Fort Worth, TX 76110 Hlgh Point. NC 27260 Fax: 248-353-2028 Compton, CA 90223 817·921·5100 336-889·3277 E-mail: [email protected] 310-608-5576 Fax: 817-921-5372 Pax: 336-889-7950 Web: wwwbonal.com FOIl<:310-608-2072 Advanced Thermal Technologies, Inc. AMT Monroe Inc. The Bowdil Co. Calumet Surface Hardening I P;O. Elo~ 875 61S Harbor Ave. 2030, Industrial Place S.E. 6805 McCook Ave. Kendallville, IN 46755 Monroe. M148162-5601 Canton, OH 44701 Hammond, IN 46323 219-347·1203 313-242-1733 216-456-7176 219-844-5600 Fax: 219-347-3568 Fax: 313-242·0993 Fax: 216-456-4625 Fax: 219·845·1046 Ajax Magnelhermic Corp. AP Westsbore, Inc. Braddock Metallurgical Carolin.u Commercial Heal treating 1745 O" ..rll!..!!dAve, 4000 State Hwy.91 14600 Duval Place West P.O. Drawer 1368 Wamm, OH 4448·3, Oshkosh, WI 54904-9217 Jacksonville, FL 32218 Fou nrain Inn, SC 29644 l16-J72~S.511 920-235-2001 904·741-4777 803-862-3516 Fu: 216-37.2-8608: Pax: 920-235-2701 Fax: 904-741-4813 Fa.>t: 803·862-4466 E·mail: [email protected] Albany Mew Treating Web: www.apptiedproces s,com Braddock Metallurgical Alabama Caterpillar Industrial Products Inc. 400 S. Dowden Ave. 3008 Red Morris Pkwy. 100 N.' . Adams St, Albany, IN 47320 Applied Cryogenics Inc. Anniston, A.L 36207 I Peoria,1L 61629-4375 317·189,6470 1.191 Chestnut SI. 205-831-5199 309-675-5451 Fax: 317-789-6839 Newton. MA02164 Fax: 205-831-5680 Fax: 309·675·6457 617-%9·6490 E-mail: CQlg~Qrs @Cal.~-mait.com Alee Heal TTealiog Corp. Fax: 617-969-6266 Brazing & Metal Treating 130 Verdi St. E-mail: [email protected] Div, of HI TecMetal Group 24 GEAR TECHNOLOGY CenlUl")lSun Me!aI Treatmg Fax: 317-1179-2484 Flame Metals Processing Corp'. 2411 Aero Park CI. We t 7317 W. Lake' SI. Travcl!l>eCily. MI 4%86 Cooperheat Inc. Minnltllpoli". MN 55426-4 96 616-941-78001 410 Wirol Rd. wi Carolin~ Mew Treating Inc. 612-929-7815 f!lll: 616-941·2346 Wc.tlak:c. LA 10669 I Q] 0 S. Saunders si, Fax: 612·925-0572 Web: www.Unlllry-SWLCOIII 318·-882-.1800 Raleigh, NC 27603 Fu; 318-882· 1821 919"834-2100 fluJ!!r01 ManwlIC!l!mlg Inc. Gel1.if'led Heat 1'rnling !.nc. Fax; 919-833-1764 1388 Atl.ntic Blvd. 1200 E. First : I- CUSlOmHcal Trculi:ng o, E-mail: rrx:k)'111 un/_m," Auburn HUb, MI 41132ti Dayton. OH 4S40J 4117 Meadow Lane 1110- 93-2000 937-461-2844 Bessler Cily, LAnlll w!·Lind Hea! Treat Fu: UO-391..[J2-77 fu: 9)7-461519' 3111-742-6662 32045 Dequindre FlU; 318-742-4'135 Madison Heiglll.!" Ml 48071 Fo~. Steel 1'reating Co. Cel1.ified Mew Craft !.nc. 248-585-1415 2220 OraliO! Ave 877 Vemoo Way Fax: 248-S 5-3045 DclroiL MI 48207 EI CaJOn. CA 92020 .E-mail: ~asllil1d@(Jol.co." 888.818-0808 619-593-.3636 Fa:!:: 313·568-0143 fllll: 619-593-3635 Delaven Steel TIle ling Operation Eckel Heal Treal E-mail: cr'lICj@c~rrifi~dMnaIcrrift.colf! 2250 Fuller Road IIOOS W. County Rd. FPM Heal Ttearing Web: www.cmif1~~la1aaft·.rumlt:md West. De Moine • IA 50265 Ode-sa, TX 79764 1501 S. Lively Blvd. S 15-22S-6S65 9.15-362-4336 Ik Grove. IL 600017 Oka 0 fllIJIIC Hanlcniltg Co. Fax: 5 15-226-8772 Fax; 915-362-1827 847-228-2525 5200 Railroad Av !Ill: 847·228·9887 EaSI Chicago. IN 46312 Delphi Engineering & Contracting Inc. Edwards Heal Trealing 219-397-647.5 131 Blackwood BlIlIISboro Rd. 642 McCormid: 51. Fax: 219-397-4029 Sewell. NJ 0 San Leandro, CA94.577 609-468-4339 51 0-638-4140 Chicago Inducticn Fax: 609-22&-93S4 Fax: 510-638-1438 3305 W. Harrison E-mail; d~c7(j aoLcom 'Chiago, IL 60624 Web: ............,lklpli1l'llgillrring.com Elmira He I Tresting lee, n3-R26-1213 401 S. Kinyon St. fPM Milwaukee Fax: 773-826-11, 7 Delroil Aame Hmleni!l-ll Elmira. NY 1.4904 11201W. Call1Jt'lel ltd. E-mail: ,amy tillIflaoLcom 17644, ~L !ElJiou 607·134-1577 Milwaukee. WI 53223 Delroit. 1><1]" 212 FIlA:607-732-2572 4,14-355·1900 'ClnCll!!lall flame Hanlcning Co. 313-891-2'936 E-11IIli I: eiu!arm:[email protected]'om :,ax: 414·355-4719 37S Security Dr. Fu; 313·891·3150 Fairfield. OH 45014 E-mail: ,dfUl~ ItlJnhlink..1IL1 Enginetre.d HeaC l'IDt Inc. Franklin Steel Treating Co. SI3~942-1400 Web: ~(kIorldJ(XJ().comldl'rfIl:)me 31.171 Stepht'D5l!n H I070 Ridge 51. FIlA: :513-942-1414 Madison Hel!lhU. 1\'11411071 Columbus, OH 43215·1190 De!roil SI«I Treating Co. 24s.~5UI. 6:14-488-2556 Cincinnati Gear C-D. 1631 Highwood Wi F1IlI:: 248·51111. 533 1:11: 614-486-9489 5657 Woosler Pike Pontiac. MI' 48340 E·mall; ehlrp@aoLoom Cincinnati, OH 4S227 248-334-7436 W~h: ehl~lll~.~(jm 513-271-2700 Fu! 2-48-334-7891 Fax: 513-271-0049 E·It13.lI: 871652 llbLcom 'Erie Steel Tie ting Inc.
Recommended publications
  • Troubleshooting Decorative Electroplating Installations, Part 5
    Troubleshooting Decorative Electroplating Installations, Part 5: Plating Problems Caused Article By Heat & Bath Temperature Fluctuations by N.V. Mandich, CEF, AESF Fellow Technical Technical In previous parts of this series, emphasis was given The fast-machining steels must then be carburized to troubleshooting of the sequences for pre-plating or case-hardened to obtain a surface with the hardness and electroplating over metals, Parts 1 and 2;1 required to support the top chromium electroplate. the causes, symptoms and troubleshooting for Case hardening is the generic term covering several pores, pits, stains, blistering and “spotting-out” processes applicable to steel or ferrous alloys. It changes phenomena, Part 3;2 and troubleshooting plating on the surface composition of the top layer, or case, by plastic systems, Part 4.3 Here in Part 5, causes and adsorption of carbon, nitrogen or a mixture of the two. some typical examples of problems that occur in By diffusion, a concentration gradient is created. The electroplating as a result of a) thermal, mechanical heat-treatments and the composition of the steel are surface treatments, b) the metallurgy of the part to additional variables that should be addressed and taken be plated or c) effects of plating bath temperature into account in the electroplating procedure. on plating variables and quality of the deposits When discussing the effect of heat-treatment on are discussed. subsequent electroplating processes it is necessary to zero in on the type of heat-treatment involved. We Nearly every plater has at one time or another had the can defi ne the heat-treatment process as changing the experience of trying to plate parts that simply would characteristics of the parts by heating above a certain not plate.
    [Show full text]
  • Ats 34 and 154 Cm Stainless Heat Treat Procedure
    ATS 34 AND 154 CM STAINLESS HEAT TREAT PROCEDURE This is an oil hardening grade of steel which will require oil quenching. The oil should be a warm, thin quenching oil that contains a safe flash point. Olive oil has been used as a sub­ stitute. As a rule of thumb, there should be a gallon of oil for each pound of steel. For , warming the oil before quenching, you may heat a piece of steel and drop it in the oil. 1.) Wrap blades in stainless tool wrap and leave an extra two inches on each end of the package. (This will be for handling purposes going into the quench as described below.) We suggest a double wrap for this grade. The edges of the foil should be double crimped, being careful to avoid hav­ ing even a pin hole in the wrap. 2 . ) Place in the furnace and heat to 1900"F. After reaching this temperature, immediately start timing the soak time of 25-30 minutes. 3.) After the soak time has elapsed, very quickly and carefully pull the package out with tongs~ place over the quench tank and snip the end of the package allowing the blades to drop into the oil. You should have a wire basket in the quench tank for raising and lowering the blades rather than have them lie s till. Gases are released in the quench and would form a "trap" around the steel unless you keep them movi~g for a minute or so. *IMPORTANT--It is very important that the blades enter the oil quench as quickly as possible after leaving the furnace ! Full hardness would not be reached if this step is not followed.
    [Show full text]
  • Aluminum Alloy AA-6061 and RSA-6061 Heat Treatment for Large Mirror Applications
    Utah State University DigitalCommons@USU Space Dynamics Lab Publications Space Dynamics Lab 1-1-2013 Aluminum Alloy AA-6061 and RSA-6061 Heat Treatment for Large Mirror Applications T. Newsander B. Crowther G. Gubbels R. Senden Follow this and additional works at: https://digitalcommons.usu.edu/sdl_pubs Recommended Citation Newsander, T.; Crowther, B.; Gubbels, G.; and Senden, R., "Aluminum Alloy AA-6061 and RSA-6061 Heat Treatment for Large Mirror Applications" (2013). Space Dynamics Lab Publications. Paper 102. https://digitalcommons.usu.edu/sdl_pubs/102 This Article is brought to you for free and open access by the Space Dynamics Lab at DigitalCommons@USU. It has been accepted for inclusion in Space Dynamics Lab Publications by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Aluminum alloy AA-6061 and RSA-6061 heat treatment for large mirror applications T. Newswandera, B. Crowthera, G. Gubbelsb, R. Sendenb aSpace Dynamics Laboratory, 1695 North Research Park Way, North Logan, UT 84341;bRSP Technology, Metaalpark 2, 9936 BV, Delfzijl, The Netherlands ABSTRACT Aluminum mirrors and telescopes can be built to perform well if the material is processed correctly and can be relatively low cost and short schedule. However, the difficulty of making high quality aluminum telescopes increases as the size increases, starting with uniform heat treatment through the thickness of large mirror substrates. A risk reduction effort was started to build and test a ½ meter diameter super polished aluminum mirror. Material selection, the heat treatment process and stabilization are the first critical steps to building a successful mirror. In this study, large aluminum blanks of both conventional AA-6061 per AMS-A-22771 and RSA AA-6061 were built, heat treated and stress relieved.
    [Show full text]
  • Heat Treating of Aluminum Alloys
    ASM Handbook, Volume 4: Heat Treating Copyright © 1991 ASM International® ASM Handbook Committee, p 841-879 All rights reserved. DOI: 10.1361/asmhba0001205 www.asminternational.org Heat Treating of Aluminum Alloys HEAT TREATING in its broadest sense, • Aluminum-copper-magnesium systems The mechanism of strengthening from refers to any of the heating and cooling (magnesium intensifies precipitation) precipitation involves the formation of co- operations that are performed for the pur- • Aluminum-magnesium-silicon systems herent clusters of solute atoms (that is, the pose of changing the mechanical properties, with strengthening from Mg2Si solute atoms have collected into a cluster the metallurgical structure, or the residual • Aluminum-zinc-magnesium systems with but still have the same crystal structure as stress state of a metal product. When the strengthening from MgZn2 the solvent phase). This causes a great deal term is applied to aluminum alloys, howev- • Aluminum-zinc-magnesium-copper sys- of strain because of mismatch in size be- er, its use frequently is restricted to the tems tween the solvent and solute atoms. Conse- specific operations' employed to increase quently, the presence of the precipitate par- strength and hardness of the precipitation- The general requirement for precipitation ticles, and even more importantly the strain hardenable wrought and cast alloys. These strengthening of supersaturated solid solu- fields in the matrix surrounding the coher- usually are referred to as the "heat-treat- tions involves the formation of finely dis- ent particles, provide higher strength by able" alloys to distinguish them from those persed precipitates during aging heat treat- obstructing and retarding the movement of alloys in which no significant strengthening ments (which may include either natural aging dislocations.
    [Show full text]
  • Fundamentals of Heat Treating and Plating
    SEMINARS FOR ENGINEERS Fundamentals of Heat Treating and Plating Fasteners and Other Small Components About the Seminar: Benefits of Attending This two-day seminar was developed for engineers and technical Gain an understanding of what is occurring when a fastener is heat treated personnel to gain a high level, broad understanding of why and Become familiar with the common heat treating processes how fasteners and other similar items are heat treated and plated for fasteners or coated. The demands on today’s fasteners are ever increasing Understand when to specify specific processes or equipment and these two process steps play a critical role in how well the Recognize potential failures modes fastener will perform its intended function. Gain an understanding of the benefits of different platings and coating This seminar will begin by exploring the fundamental metallurgical Understand when to specify certain plating or coating pro- transformations and principals that yield the mechanical changes cesses desired by the fastener designer or engineer. Each process will Gain insight into plating and coating performance and rela- be examined in greater detail to understand how the process tive cost to achieve these goals achieves these underlying principals and what practical effects it Explore current issues in regulation and environmental protection has on the fastener. Control points will be investigated to gain an understanding of, not only how the process remains in control, but also how it can go wrong and the consequences when it does. Concepts Covered Day two will explore platings and coatings. There are a multitude Metallurgical transitions of good options today and this seminar shall look at those favored Hardenability by large fastener consuming industries.
    [Show full text]
  • Bringing You up to Speed on Steel, Aluminum, Manufactured Components, and the Htsuses Vocabulary
    Bringing You Up To Speed On Steel, Aluminum, Manufactured Components, and the HTSUSes Vocabulary (b) (6) 1 What the Next 3 Hours Will Attempt To Do • Background on Steel and Aluminum and Their Alloys • Terminology Overview • Metallurgy, Processing, Manufacturing, Shapes, Standards and Specs • Going Over The Exclusion Request and Objection Forms • What does THAT word mean??!?! • HTSUS 72 and 73 for Steel • HTSUS 76 for Aluminum PLEASE interrupt me for questions!! 2 U.S. Department of Commerce International Trade Administration Nuggets of Wisdom • HTSUS categories seem to be a combo of • Chemistry – broad categories of alloy, non-alloy, etc • Shape – all three dimensions plus hollow-ness • Somewhat intended use, tied to shape (finished products) • NOT mechanical properties except one value for steel • Keep calm, and read the submission. 3 Metal Terminology Overview • What is a Metal and an Alloy? • Alloy Microstructure Terminology • Alloy Chemistry Terminology • Heat Treating Terminology • Processing Terminology • Mechanical Properties Terminology • Shape and Dimension Definitions • Standards and Specifications 4 U.S. Department of Commerce International Trade Administration What is a metal? • Metals and alloys are made of crystals • The crystals are called grains, and have a grain size • The grains meet at grain boundaries • If the metal has more than one type of crystal, these are each called a phase of the alloy – multiphase alloy • Each has a different orientation, shape, size, purpose • Each crystal is a spring of atomic bonds • When
    [Show full text]
  • Heat Treating
    Heat Treating Critical manufacturing processes for the Medical Device Industry Bruce Dall, Stryker MedAccred Heat Treatment Task Group Chairman Senior Metallurgist - Stryker Global Supply, Kalamazoo Campus 13 Years in Medical Device and Aerospace Special Process Management Stryker, Northrop Grumman Heat Treatment, Welding, Forging, Casting, PCBs Supplier Process Assessment/Development Experienced Material Failure Analyst Certified Lead Quality Systems Auditor ISO13485, AS9100, ISO17025 University of Michigan, Ann Arbor Bachelors of Materials Science and Engineering 1 Edward Engelhard, Solar Atmospheres Vice President of Corporate Quality - Jan 2015 to present Corporate Quality Manager – March 2012 to Jan 2015 Owner/operator of commercial heat treat company – 1991 to Feb 2012 Process Metallurgist and General Manager at commercial heat treat company – 1978 to 1991 B.S., Metallurgy and Materials Science - Lehigh University 40 years - heat treat process metallurgy in aerospace, medical, transportation, energy production, and commercial manufacturing 15 years – establishment, maintenance and operations within ISO9001/AS9100 QMS environment 20 years – establishment, maintenance and operations within Nadcap accredited environment 2 years – establishment, maintenance and operations within MedAccred accredited environment 2 Marcel Cuperman, PRI Performance Review Institute (PRI), Staff Engineer 32 years of experience in the Heat Treating industry Extensive experience with Special Processes projects Pyrometry Instructor Goodrich Corporation, Chief
    [Show full text]
  • Carpenter Micro Melt
    Micro-Melt® A11 Tool Steel Identification UNS Number • T30311 AISI Number • A11 Type Analysis Carbon 2.45 % Manganese 0.50 % Sulfur 0.080 % Silicon 0.90 % Chromium 5.30 % Molybdenum 1.30 % Vanadium 9.50 % Iron 79.97 % General Information Description Carpenter Micro-Melt® A11 tool steel is a high vanadium tool steel produced using the Carpenter Micro-Melt powder metal process. This grade possesses wear resistance superior to most other tool steels, including the high speed steels, along with good strength and toughness characteristics. Many of the benefits realized in the use of Micro-Melt powder metals, such as Micro-Melt A11 alloy, are a direct result of the refined microstructure (smaller, more uniformly distributed carbide particles and a finer grain size) and the lack of segregation in the powder metallurgy product. These advantages include ease of grinding, improved response to heat treatment, greater wear resistance, and increased toughness of the finished tool. Micro-Melt A11 Tool Steel is equivalent in hardness, wear resistance and heat treating response to CPM 10V* alloy. * CPM and 10V are registered trademarks of Crucible Materials Corporation. Applications Carpenter Micro-Melt A11 tool steel may be considered for many applications requiring excellent wear resistance at moderate working temperatures. Possible applications for this alloy may include: Punches Dies for blanking Piercing dies Forming rolls and dies Cold heading Woodworking tools Cold extrusion Slitter knives Shears Pellitizer blades Nozzles Cold extrusion barrels
    [Show full text]
  • Heat Treating
    Heat Treating Heat Treating is a process that involves heating and cooling a solid metal or alloy in a controlled manner in order to change the physical properties of the material being heated or cooled. There are basically three steps in heat treating: heating a metal or alloy part to a controlled temperature; holding (soaking) the temperature for a defined length of time; then cooling the part rapidly or slowly at a controlled rate. This process results is changing the material’s microstructure, which changes the material’s mechanical properties such as strength, ductility, toughness, and wear resistance. The question as to why do we need to heat treat a part or parts is somewhat depended on the manufacturing process and what the part may be used for. Heat treating is used to: − Removing stresses such as those that typically developed in the initial machining of a part, − Enhance the properties of metal parts, − Add wear resistance to the surface of a part by increasing its hardness and, at the same time, increase its resistance to impacts, − Increase toughness by providing a combination of high tensile strength and good ductility to enhance impact strength, − Improve the cutting properties of tool steels, − Enhance electrical properties of materials. While the heating treating process is rather simple, and the different heat treating processes are basically the same, the difference is related to the required temperature needed for the different metal or alloy being heat treated. The metal or alloy is heated to a temperature range, which is called the “Phase transformation range.” It is when the metal or alloy is heated to this phase transformation range, the materials microstructure changes.
    [Show full text]
  • Heat Treating Copper Beryllium Parts
    Tech Brief Heat Treating Copper Beryllium Parts Heat treating is key to the ver- satility of the copper beryllium alloy system Unlike other copper base alloys which acquire their strength through cold work alone, wrought copper beryllium obtains its high strength, conductivity, and hardness through a combina- tion of cold work and a thermal process called age hardening. 800.375.4205 | materion.com/copperberyllium Age hardening is often referred to as precipitation hardening strength with moderate to good conductivity; and High or heat treating. The ability of these alloys to accept this Conductivity Copper Beryllium features maximum conduc- heat treatment results in forming and mechanical property tivity and slightly lower strength levels. advantages not available in other alloys. For example, Both the High Strength and High Conductivity Copper intricate shapes can be fabricated when the material is in Beryllium are available as strip in the heat treatable and its ductile, as rolled state and subsequently age hardened to mill hardened tempers. Mill hardened tempers are supplied the highest strength and hardness levels of any copper base in the heat treated condition and require no further heat alloy. treatment. Heat treating the copper beryllium alloys is a two step pro- Copper beryllium is produced in tempers ranging from cess which consists of solution annealing and age hardening. solution annealed (A) to an as rolled condition (H). Heat Because Materion Brush Performance Alloys performs the treating maximizes the strength and conductivity of these required solution anneal on all wrought products prior alloys. The temper designations of the standard age harden- to shipping, most fabricators’ primary concern is the age able copper beryllium tempers are shown in Table 2.
    [Show full text]
  • Alliance LLC Aluminum Extrusion Process
    Alliance LLC Aluminum Extrusion Process The Aluminum extrusion process is simple in overview, however it is very complex in each area of production: 1. Process starts with Aluminum Billets, which must be heated to about 800-925 ° F. Aluminum extrusions are made from solid aluminum cylinders called billets, which are continuously cast from molten aluminum. Billets are available in a wide variety of alloys, pretreatments and dimensions, depending upon the requirements of the manufacturer. 2. After a billet reaches the desired temperature, it is transferred to the loader where a thin film of smut or lubricant is added Preparation of Billets to the billet and to the ram. The smut acts as a parting agent (lubricant) which keeps the two parts from sticking together. 3. The billet is transferred to the cradle. 4. The ram applies pressure to the dummy block which, in turn, pushes the billet until it is inside the container. 5. Under pressure the billet is crushed against the die, becoming shorter and wider until it has full contact with the container walls. Extruder Cavity While the aluminum is pushed through the die, liquid nitrogen flows around some sections of the die to cool it. This increases the life of the die and creates an inert atmosphere which keeps oxides from forming on the shape being extruded. In some cases nitrogen gas is used in place of liquid nitrogen. Dummy Block Nitrogen gas does not cool the die but does create an inert atmosphere. 6. As a result of the pressure Stem added to the billet, the soft Ram but solid metal begins to Billet squeeze through the die Die opening.
    [Show full text]
  • Heat Treating
    DRAFT Metal Working Tip Sheet Heat Treating Metal Working Tip Sheet Series 1. Heat Treating 2. Fluids Heat treating refers to the heating and cooling operations performed on metal workpieces to change their mechanical properties, metallurgical structure, or residual stress state. Heat treating includes stress relief treating, normalizing, annealing, austenitizing, hardening, quenching, tempering, and cold treating. Annealing, as an example, involves heating a metallic material to, and holding it at, a suitable temperature, followed by furnace cooling at an appropriate rate. Steel castings may be annealed to facilitate cold working or machining to improve mechanical or electrical properties, or to promote dimensional stability. Gray iron castings may be annealed to soften them, or to minimize or eliminate massive eutectic carbides, thus improving their machinability. PROCESS DESCRIPTION Heating, quenching, descaling, cleaning, and masking operations generate most of the waste in the heat treating industry. Table 1 lists the waste generating processes and waste characteristics. Table 1 Waste Generating Processes Process Waste Heat treating Refractory material Case hardening Spent salt baths Quenching Spent quenchants Descaling Spent abrasive media Cleaning and masking Solvents, abrasives, copper plating waste Heat Treating Other Than Case Hardening Heat treating is performed in conventional furnaces, or salt bath or fluidized bed furnaces. The basic conventional furnace consists of an insulated chamber with an external reinforced steel shell, a heating system for the chamber, and one or more access doors to the heated chamber. Heating systems are direct fired or indirect heated. In direct fired furnace equipment, the work being processed is directly exposed to the products of combustion, which are generally referred to as flue products.
    [Show full text]