Fossil Evidence of Avian Crops from the Early Cretaceous of China

Total Page:16

File Type:pdf, Size:1020Kb

Fossil Evidence of Avian Crops from the Early Cretaceous of China Fossil evidence of avian crops from the Early Cretaceous of China Xiaoting Zhenga,b, Larry D. Martinc, Zhonghe Zhoud,1, David A. Burnhamc, Fucheng Zhangd, and Desui Miaoc aInstitute of Geology and Paleontology, Linyi University, Linyi, Shandong 276000, China; bShandong Tianyu Museum of Nature, Pingyi, Shandong 273300, China; cDivision of Vertebrate Paleontology, Biodiversity Institute, University of Kansas, Lawrence, KS 66045; and dKey Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China Contributed by Zhonghe Zhou, August 3, 2011 (sent for review July 13, 2011) The crop is characteristic of seed-eating birds today, yet little is A number of other Mesozoic birds and their theropod relatives known about its early history despite remarkable discoveries of have recently been reported with gizzard stones (gastroliths), in- many Mesozoic seed-eating birds in the past decade. Here we re- cluding the basal ornithurines Yanornis (8) and Archaeorhynchus port the discovery of some early fossil evidence for the presence of (9), the oviraptosaur Caudipteryx, and the ornithomimosaur a crop in birds. Two Early Cretaceous birds, the basal ornithurine Shenzhousaurus (10), confirming that the presence of a muscular Hongshanornis and a basal avian Sapeornis, demonstrate that an grinding stomach is primitive for birds. It may well have occurred essentially modern avian digestive system formed early in avian in most species but is only documented in forms that foraged evolution. The discovery of a crop in two phylogenetically remote on the ground and thereby came into contact with small stones. lineages of Early Cretaceous birds and its absence in most inter- The discovery of crops in combination with stomach stones vening forms indicates that it was independently acquired as a spe- demonstrates the presence at an early date of an essentially cialized seed-eating adaptation. Finally, the reduction or loss of modern avian digestive system. teeth in the forms showing seed-filled crops suggests that grani- vory was possibly one of the factors that resulted in the reduction Description and Comparison of teeth in early birds. Among the avian specimens we examined at the Tianyu Museum of Nature, at least three preserve clear evidence of a crop. Of EVOLUTION paleornithology | feeding these, Sapeornis chaoyangensis (2, 3) is the most basal bird that preserves this structure, and we discovered two examples (STM espite the discoveries of more than 30 genera of fossil birds 15-15 and STM 15-29). STM 15-29 (Fig. 2 A and B) is a semi- from the Early Cretaceous lacustrine deposits in north- articulated skeleton with the neck and head pulled away from the D z eastern China and many examples of dietary adaptations (1), it body for 5 cm. The skeleton is exposed dorsolaterally, with the remains unknown whether a crop was present in these birds. wings folded. The right manus has moved away from the body. Recently we examined hundreds of Early Cretaceous birds The sacrum is viewed dorsally, but the legs are laterally exposed. The crop is represented by a roughly circular mass (z3cmin housed at the Tianyu Museum of Nature in Shandong Province, diameter) of seeds. The outside was rimmed by a layer of larger China, and found several specimens belonging to two taxa with seeds ranging from 4 to 6 mm in diameter, and the anterior unequivocal evidence of crops. One of them is Sapeornis, one of portion of this layer had floated out, spreading over an area of the basal birds presumed to have an herbivorous diet (2, 3), and some 9 × 2.5 cm (Fig. 2B). The center of the mass is densely the second taxon is the basal ornithurine Hongshanornis (4). packed with more than 70 smaller seeds showing an individual Both have preserved seeds in the anatomical location of the crop diameter of z2 mm. The seed mass was inset against the front of in extant birds. In some cases, even the soft tissue outline of the the furcula as in modern birds. The second specimen, STM 15-15 crop can be observed and resembles closely the structure in (Fig. 2 C and D) shows a cylindrical discoloration (darkening) of modern birds. the sediments just below the ventral surface of the cervical ver- In extant birds a crop is a ventral pouch of the esophagus tebrae, extending a few centimeters anteriorly. This seems to be and is situated anterior to the shoulder girdle just in front of a trace of the esophagus, and it is faintly visible around the seed the furcula (5) (Fig. 1). In fossils its position is indicated by mass. The seeds were closely packed one against the other, in- a roughly spherical mass of seeds that is easily discriminated dicating that there was little or no fleshy surface around them. from stomach contents by its location outside of the ribcage. The postcranial skeleton is nearly intact, with the ribcage still in The discovery of a crop in two phylogenetically separate avian its original position. Counting five vertebrae posterior to the end lineages opens a window for our understanding of dietary ad- of the neck and within the ribcage there is a small mass of pol- aptation in the early avian radiation and may also help us better ished stones. A few of the stones are scattered away from the understand the great diversity in the Early Cretaceous, which main concentration. The main mass indicates the position of the occurred approximately 20 million years after the earliest bird, gizzard. Just posteroventral to this mass is a pocket of coprolitic Archaeopteryx (6, 7). material in the position of the intestines. The outline of the In modern seed-eating birds the crop provides storage, so that skeleton and positioning of the crop and gizzard is remarkably similar to that found in modern birds (Fig. 2). a number of seeds can be gathered quickly and then processed fi later in a more secure location without interference from com- The skeleton of Sapeornis,asinArchaeopteryx, lacks an ossi ed petitors and/or predators. The mucus in the crop softens hard sternum, but the maxilla was edentulous, whereas the premaxilla has a small number of teeth that are elongated anteroposteriorly. seeds so that they are more easily ground by the gizzard. The The mandible was toothless and covered by a horny bill, as was gizzard may be a more basal feature for birds, because it is widely distributed in sister groups, such as modern crocodilians. In re- cent birds the gizzard is posterior to the proventriculus or glan- Author contributions: X.Z., L.D.M., and Z.Z. designed research; X.Z., L.D.M., Z.Z., and D.M. dular part of the stomach. The practice of collecting large performed research; X.Z., D.A.B., and F.Z. contributed new reagents/analytic tools; D.A.B. numbers of small stones in the gizzard is characteristic of seed and F.Z. analyzed data; and L.D.M., Z.Z., and D.M. wrote the paper. eaters among modern birds and is often correlated with a well- The authors declare no conflict of interest. developed crop. 1To whom correspondence should be addressed. E-mail: [email protected]. www.pnas.org/cgi/doi/10.1073/pnas.1112694108 PNAS Early Edition | 1of4 Downloaded by guest on September 30, 2021 Fig. 1. Relative position of the crop (c) and gizzard (g) in a modern bird (some skeletal elements removed for clarity). e, esophagus. probably also the case with the maxilla. It seems that the pre- maxillary teeth in Sapeornis were suitable for cutting fibrous material, such as stems attached to seeds, and this was likely the use of the horny bill as well. One specimen of the basal ornithurine bird Hongshanornis longicresta (4) (STM 35-3; Fig. 3) shows a seed mass in front of the furcula that extends under the anterior sternum, a position Fig. 2. Photographs of two specimens of Sapeornis chaoyangensis housed similar to that for the crop in the modern hoatzin. Hongshanornis at the Tianyu Museum of Nature with preservation of a crop. (A) STM 15-29, is a small ornithurine characterized by a short wing and the total a partially articulated skeleton. (B) Close-up view of the crop region anterior to the furcula on the counterslab of STM 15-29. (C) STM 15-15, a nearly loss of teeth. It was thought in some ways to be more basal than complete articulated skeleton. (D) Close-up view of the crop region anterior Yanornis (9). There are more than 20 seeds in STM 35-3, and to the furcula in STM 15-15. Arrows point to seeds in the crop. c, crop; cv, they are all of one type, being oval and approximately 4 mm long cervical vertebrae; f, furcula; gs, gizzard stone; se, seed. and 2 mm wide (Fig. 3B). Posteriorly, below the position of the fifth dorsal vertebra, there is a mass of more than 50 small (1-mm) gastroliths, indicating a muscular gizzard at approxi- independently several times in various lineages of early avian mately the usual position in birds. evolution [e.g., Sapeornis, Zhongjianornis (14), Confuciusornithidae (15), Enantiornithes (16) and Ornithurae (4, 9)]. All birds from Discussion the beginning of the Cenozoic are toothless. Although reduction Most modern birds with crops are seed eaters and use crops to of body weight has often been cited as an important factor for store and soften foods and regulate their flow through the di- reduction or loss of teeth in birds, we believe the dietary adap- gestive tract before they pass to a powerfully muscled portion of tation was probably an equally if not more important factor in the stomach, the gizzard (5).
Recommended publications
  • Late Cretaceous)
    Netherlands Journal of Geosciences — Geologie en Mijnbouw | 87 - 4 | 353 - 358 | 2008 Geo (Im) pulse Bird remains from the Maastrichtian type area (Late Cretaceous) G.J. Dyke1*, A.S. Schulp2 & J.W.M. Jagt2 1 School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Ireland. 2 Natuurhistorisch Museum Maastricht, De Bosquetplein 6-7, NL-6211KJ Maastricht, the Netherlands. * Corresponding author. Email: [email protected] Manuscript received: June 2007; accepted: October 2008 Abstract Remains of Late Cretaceous birds are rare, which is especially true for Europe and the type area of the Maastrichtian Stage (southeast Netherlands, northeast Belgium) in particular. In the present paper, we record new remains (isolated tarsometatarsus and radius) that document the presence of both enantiornithine and ornithurine birds in the Maastrichtian area. These fossils, although fragmentary, are important in view of their stratigraphic age: all bird remains discovered to date in the Maastricht area are amongst the youngest 'non-modern' avians known, originating from strata deposited less than 500,000 years prior to the end of the Cretaceous Period. Keywords: Aves, Enantiornithes, Ornithurae, Maastrichtian, Late Cretaceous, the Netherlands, Belgium Introduction In general, the fossil record of birds from the latest stages of the Cretaceous is more scanty and less well understood than Despite more than 250 years of intensive collecting effort in that of the Lower and 'Middle' Cretaceous (Chiappe & Dyke, shallow marine sediments in the type area of the Maastrichtian 2002; Chiappe & Witmer, 2002; Fountaine et al, 2005). In Stage (southeast Netherlands, northeast Belgium; Fig. 1), the particular, Late Cretaceous birds are rare in Europe (see Dyke first bird remains to be recognised from this part of Europe et al, 2002; Rees & Lindgren, 2005): the bulk of the material have been described only relatively recently.
    [Show full text]
  • New Oviraptorid Dinosaur (Dinosauria: Oviraptorosauria) from the Nemegt Formation of Southwestern Mongolia
    Bull. Natn. Sci. Mus., Tokyo, Ser. C, 30, pp. 95–130, December 22, 2004 New Oviraptorid Dinosaur (Dinosauria: Oviraptorosauria) from the Nemegt Formation of Southwestern Mongolia Junchang Lü1, Yukimitsu Tomida2, Yoichi Azuma3, Zhiming Dong4 and Yuong-Nam Lee5 1 Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China 2 National Science Museum, 3–23–1 Hyakunincho, Shinjukuku, Tokyo 169–0073, Japan 3 Fukui Prefectural Dinosaur Museum, 51–11 Terao, Muroko, Katsuyama 911–8601, Japan 4 Institute of Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China 5 Korea Institute of Geoscience and Mineral Resources, Geology & Geoinformation Division, 30 Gajeong-dong, Yuseong-gu, Daejeon 305–350, South Korea Abstract Nemegtia barsboldi gen. et sp. nov. here described is a new oviraptorid dinosaur from the Late Cretaceous (mid-Maastrichtian) Nemegt Formation of southwestern Mongolia. It differs from other oviraptorids in the skull having a well-developed crest, the anterior margin of which is nearly vertical, and the dorsal margin of the skull and the anterior margin of the crest form nearly 90°; the nasal process of the premaxilla being less exposed on the dorsal surface of the skull than those in other known oviraptorids; the length of the frontal being approximately one fourth that of the parietal along the midline of the skull. Phylogenetic analysis shows that Nemegtia barsboldi is more closely related to Citipati osmolskae than to any other oviraptorosaurs. Key words : Nemegt Basin, Mongolia, Nemegt Formation, Late Cretaceous, Oviraptorosauria, Nemegtia. dae, and Caudipterygidae (Barsbold, 1976; Stern- Introduction berg, 1940; Currie, 2000; Clark et al., 2001; Ji et Oviraptorosaurs are generally regarded as non- al., 1998; Zhou and Wang, 2000; Zhou et al., avian theropod dinosaurs (Osborn, 1924; Bars- 2000).
    [Show full text]
  • Appendix A. Supplementary Material
    Appendix A. Supplementary material Comprehensive taxon sampling and vetted fossils help clarify the time tree of shorebirds (Aves, Charadriiformes) David Cernˇ y´ 1,* & Rossy Natale2 1Department of the Geophysical Sciences, University of Chicago, Chicago 60637, USA 2Department of Organismal Biology & Anatomy, University of Chicago, Chicago 60637, USA *Corresponding Author. Email: [email protected] Contents 1 Fossil Calibrations 2 1.1 Calibrations used . .2 1.2 Rejected calibrations . 22 2 Outgroup sequences 30 2.1 Neornithine outgroups . 33 2.2 Non-neornithine outgroups . 39 3 Supplementary Methods 72 4 Supplementary Figures and Tables 74 5 Image Credits 91 References 99 1 1 Fossil Calibrations 1.1 Calibrations used Calibration 1 Node calibrated. MRCA of Uria aalge and Uria lomvia. Fossil taxon. Uria lomvia (Linnaeus, 1758). Specimen. CASG 71892 (referred specimen; Olson, 2013), California Academy of Sciences, San Francisco, CA, USA. Lower bound. 2.58 Ma. Phylogenetic justification. As in Smith (2015). Age justification. The status of CASG 71892 as the oldest known record of either of the two spp. of Uria was recently confirmed by the review of Watanabe et al. (2016). The younger of the two marine transgressions at the Tolstoi Point corresponds to the Bigbendian transgression (Olson, 2013), which contains the Gauss-Matuyama magnetostratigraphic boundary (Kaufman and Brigham-Grette, 1993). Attempts to date this reversal have been recently reviewed by Ohno et al. (2012); Singer (2014), and Head (2019). In particular, Deino et al. (2006) were able to tightly bracket the age of the reversal using high-precision 40Ar/39Ar dating of two tuffs in normally and reversely magnetized lacustrine sediments from Kenya, obtaining a value of 2.589 ± 0.003 Ma.
    [Show full text]
  • Diversity of Late Cretaceous Dinosaurs from Mexico. Boletín Geológico Y Minero, 126 (1): 63-108 ISSN: 0366-0176
    Articulo 4_ART. El material tipo de la 25/03/15 08:29 Página 63 Ramírez-Velasco, A. A. and Hernández-Rivera, R., 2015. Diversity of late cretaceous dinosaurs from Mexico. Boletín Geológico y Minero, 126 (1): 63-108 ISSN: 0366-0176 Diversity of late cretaceous dinosaurs from Mexico A. A. Ramírez-Velasco(1) and R. Hernández-Rivera(2) (1) Posgrado Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Circuito de Investigación Científica, Ciudad Universitaria. Delegación Coyoacán, México Distrito Federal, 04510. (2) Departamento de Paleontología, Instituto de Geología, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria. Delegación Coyoacán, México Distrito Federal, 04510. [email protected] ABSTRACT For many years the diversity of dinosaurs of Mexico during the Late Cretaceous has been poorly understood. This is due to the limited taxonomical determinations and the abundant undescribed material. This paper presents a new review of the up-to-date osteological record of Late Cretaceous dinosaurs from Mexico, based on published papers, unpublished data and direct observation of the material housed in Mexican paleonto- logical collections and in the field. Some diagnostic dinosaur bones were taxonomically reassigned and oth- ers reported in the literature were located in collections. We document new localities with dinosaur remains in Fronteras Sonora, Manuel Benavides and Jiménez Chihuahua, General Cepeda and Saltillo Coahuila. Additionally we report new material relating to tyrannosaurids, ornithomimids, ankylosaurs, ceratopsids and hadrosaurids which extends their geographic and temporal distribution in Mexico. This investigation has revealed a dinosaur faunal assemblage consistent with others studies of North American Late Cretaceous fau- nas, abundant large bodied dinosaurs and poorly represented small dinosaurs.
    [Show full text]
  • Sind Vögel Dinosaurier? Eine Kritische Analyse Fossiler Befunde
    W+W Special Paper B-19-4 SIND VÖGEL DINOSAURIER? EINE KRITISCHE ANALYSE FOSSILER BEFUNDE Reinhard Junker August 2019 https://www.wort-und-wissen.de/artikel/sp/b-19-4_dinos-voegel.pdf Bild: Ein rekonstruiertes und künstlerisch dargestelltes Paar von Microraptor gui (Dromaeosauridae , Micro raptorinae). (durbed.deviantart.com, CC BY-SA 3.0) Sind Vögel Dinosaurier? Inhalt 1. Einleitung ...................................................................................... 3. kompakt ..................................................................................................... 4 Methodische Vorbemerkungen ............................................................................... 5 Zitate zu schrittweisem Erwerb von Vogelmerkmalen ...................................................... 6 2. Vogelmerkmale bei Theropoden: Vorläufer oder Konvergenzen ............................................................................... 9 2.1 Federtypen und Flugfähigkeit ..................................................................... 9 2.2 Zähne und Schnabel ................................................................................ 14 Zitate zu Konvergenzen bei Zahnverlust und Ausbildung eines Schnabels ................15 2.3 Gehirn und EQ ........................................................................................ 17 2.4 Furkula ..................................................................................................... 18 2.5 Gastralia, Rippenkorb, Brustbein ..............................................................
    [Show full text]
  • The Oldest Record of Ornithuromorpha from the Early Cretaceous of China
    ARTICLE Received 6 Jan 2015 | Accepted 20 Mar 2015 | Published 5 May 2015 DOI: 10.1038/ncomms7987 OPEN The oldest record of ornithuromorpha from the early cretaceous of China Min Wang1, Xiaoting Zheng2,3, Jingmai K. O’Connor1, Graeme T. Lloyd4, Xiaoli Wang2,3, Yan Wang2,3, Xiaomei Zhang2,3 & Zhonghe Zhou1 Ornithuromorpha is the most inclusive clade containing extant birds but not the Mesozoic Enantiornithes. The early evolutionary history of this avian clade has been advanced with recent discoveries from Cretaceous deposits, indicating that Ornithuromorpha and Enantiornithes are the two major avian groups in Mesozoic. Here we report on a new ornithuromorph bird, Archaeornithura meemannae gen. et sp. nov., from the second oldest avian-bearing deposits (130.7 Ma) in the world. The new taxon is referable to the Hongshanornithidae and constitutes the oldest record of the Ornithuromorpha. However, A. meemannae shows few primitive features relative to younger hongshanornithids and is deeply nested within the Hongshanornithidae, suggesting that this clade is already well established. The new discovery extends the record of Ornithuromorpha by five to six million years, which in turn pushes back the divergence times of early avian lingeages into the Early Cretaceous. 1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China. 2 Institue of Geology and Paleontology, Linyi University, Linyi, Shandong 276000, China. 3 Tianyu Natural History Museum of Shandong, Pingyi, Shandong 273300, China. 4 Department of Biological Sciences, Faculty of Science, Macquarie University, Sydney, New South Wales 2019, Australia.
    [Show full text]
  • Anatomical Network Analyses Reveal Oppositional Heterochronies in Avian Skull Evolution ✉ Olivia Plateau1 & Christian Foth 1 1234567890():,;
    ARTICLE https://doi.org/10.1038/s42003-020-0914-4 OPEN Birds have peramorphic skulls, too: anatomical network analyses reveal oppositional heterochronies in avian skull evolution ✉ Olivia Plateau1 & Christian Foth 1 1234567890():,; In contrast to the vast majority of reptiles, the skulls of adult crown birds are characterized by a high degree of integration due to bone fusion, e.g., an ontogenetic event generating a net reduction in the number of bones. To understand this process in an evolutionary context, we investigate postnatal ontogenetic changes in the skulls of crown bird and non-avian ther- opods using anatomical network analysis (AnNA). Due to the greater number of bones and bone contacts, early juvenile crown birds have less integrated skulls, resembling their non- avian theropod ancestors, including Archaeopteryx lithographica and Ichthyornis dispars. Phy- logenetic comparisons indicate that skull bone fusion and the resulting modular integration represent a peramorphosis (developmental exaggeration of the ancestral adult trait) that evolved late during avialan evolution, at the origin of crown-birds. Succeeding the general paedomorphic shape trend, the occurrence of an additional peramorphosis reflects the mosaic complexity of the avian skull evolution. ✉ 1 Department of Geosciences, University of Fribourg, Chemin du Musée 6, CH-1700 Fribourg, Switzerland. email: [email protected] COMMUNICATIONS BIOLOGY | (2020) 3:195 | https://doi.org/10.1038/s42003-020-0914-4 | www.nature.com/commsbio 1 ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-0914-4 fi fi irds represent highly modi ed reptiles and are the only length (L), quality of identi ed modular partition (Qmax), par- surviving branch of theropod dinosaurs.
    [Show full text]
  • Of All the Early Birds, Only One Lineage Survived by Susan Milius
    DINO DOOMSDAY LuckyThe Ones Of all the early birds, only one lineage survived By Susan Milius he asteroid strike (or was it the roiling volcanoes?) avian (in the Avialae/Aves group) by about 165 million to that triggered dino doomsday 66 million years ago 150 million years ago. That left plenty of time for bona fide also brought an avian apocalypse. Birds had evolved birds to diversify before the great die-off. T by then, but only some had what it took to survive. The bird pioneers included the once widespread and abun- Biologists now generally accept birds as a kind of dinosaur, dant Enantiornithes, or “opposite birds.” Compared with just as people are a kind of mammal. Much of what we think modern birds, their ball-and-socket shoulder joints were of as birdlike traits — bipedal stance, feathers, wishbones and “backwards,” with ball rather than socket on the scapula. so on — are actually dinosaur traits that popped up here and These ancient alt birds may have gone down in the big there in the vast doomed branches of the dino family tree. In extinction that left only fish, amphibians, mammals and a the diagram at right, based on one from paleontologist few reptile lineages (including birds) among vertebrates. Stephen Brusatte of the University of Edinburgh and col- There’s not a lot of information to go on. “The fossil record leagues, anatomical icons give a rough idea of when some of of birds is pretty bad,” Brusatte says. “But I think those lin- these innovations emerged. eages that go up to the red horizontal line of doom in my fig- One branch of the dinosaur tree gradually turned arguably ure are ones that died in the impact chaos.” s 1 2 Microraptor dinosaurs were relatives of the velociraptors that (in ridiculously oversized form) put the screaming gotchas into Jurassic Park.
    [Show full text]
  • Postcranial Skeletal Anatomy of the Holotype and Referred
    Postcranial skeletal anatomy of the holotype and referred specimens of Buitreraptor gonzalezorum Makovicky, Apesteguı´a and Agnolı´n 2005 (Theropoda, Dromaeosauridae), from the Late Cretaceous of Patagonia Federico A. Gianechini1, Peter J. Makovicky2,*, Sebastia´n Apesteguı´a3,* and Ignacio Cerda4,* 1 Instituto Multidisciplinario de Investigaciones Biolo´gicas (IMIBIO-SL), CONICET— Universidad Nacional de San Luis, San Luis, Argentina 2 Section of Earth Sciences, Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA 3 CONICET, Fundacio´n de Historia Natural ‘Fe´lix de Azara’, CEBBAD, Universidad Maimo´nides, Buenos Aires, Argentina 4 CONICET, Instituto de Investigacio´n en Paleobiologı´a y Geologı´a, Universidad Nacional de Rı´o Negro, General Roca, Rı´o Negro, Argentina * These authors contributed equally to this work. ABSTRACT Here we provide a detailed description of the postcranial skeleton of the holotype and referred specimens of Buitreraptor gonzalezorum. This taxon was recovered as an unenlagiine dromaeosaurid in several recent phylogenetic studies and is the best represented Gondwanan dromaeosaurid discovered to date. It was preliminarily described in a brief article, but a detailed account of its osteology is emerging in recent works. The holotype is the most complete specimen yet found, so an exhaustive description of it provides much valuable anatomical information. The Submitted 18 January 2018 holotype and referred specimens preserve the axial skeleton, pectoral and pelvic Accepted 9 March 2018 girdles, and both fore- and hindlimbs. Diagnostic postcranial characters of this taxon Published 26 March 2018 include: anterior cervical centra exceeding the posterior limit of neural arch; eighth Corresponding author and ninth cervical vertebral centra with lateroventral tubercles; pneumatic foramina Federico A.
    [Show full text]
  • Avialan Status for Oviraptorosauria
    Avialan status for Oviraptorosauria TERESA MARYAŃSKA, HALSZKA OSMÓLSKA, and MIECZYSŁAW WOLSAN Maryańska, T., Osmólska, H., and Wolsan, M. 2002. Avialan status for Oviraptorosauria. Acta Palaeontologica Polonica 47 (1): 97–116. Oviraptorosauria is a clade of Cretaceous theropod dinosaurs of uncertain affinities within Maniraptoriformes. All pre− vious phylogenetic analyses placed oviraptorosaurs outside a close relationship to birds (Avialae), recognizing Dromaeo− sauridae or Troodontidae, or a clade containing these two taxa (Deinonychosauria), as sister taxon to birds. Here we pres− ent the results of a phylogenetic analysis using 195 characters scored for four outgroup and 13 maniraptoriform (ingroup) terminal taxa, including new data on oviraptorids. This analysis places Oviraptorosauria within Avialae, in a sister−group relationship with Confuciusornis. Archaeopteryx, Therizinosauria, Dromaeosauridae, and Ornithomimosauria are suc− cessively more distant outgroups to the Confuciusornis−oviraptorosaur clade. Avimimus and Caudipteryx are succes− sively more closely related to Oviraptoroidea, which contains the sister taxa Caenagnathidae and Oviraptoridae. Within Oviraptoridae, “Oviraptor” mongoliensis and Oviraptor philoceratops are successively more closely related to the Conchoraptor−Ingenia clade. Oviraptorosaurs are hypothesized to be secondarily flightless. Emended phylogenetic defi− nitions are provided for Oviraptoridae, Caenagnathidae, Oviraptoroidea, Oviraptorosauria, Avialae, Eumaniraptora, Maniraptora, and Maniraptoriformes.
    [Show full text]
  • The Origin and Diversification of Birds
    Current Biology Review The Origin and Diversification of Birds Stephen L. Brusatte1,*, Jingmai K. O’Connor2,*, and Erich D. Jarvis3,4,* 1School of GeoSciences, University of Edinburgh, Grant Institute, King’s Buildings, James Hutton Road, Edinburgh EH9 3FE, UK 2Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China 3Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA 4Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA *Correspondence: [email protected] (S.L.B.), [email protected] (J.K.O.), [email protected] (E.D.J.) http://dx.doi.org/10.1016/j.cub.2015.08.003 Birds are one of the most recognizable and diverse groups of modern vertebrates. Over the past two de- cades, a wealth of new fossil discoveries and phylogenetic and macroevolutionary studies has transformed our understanding of how birds originated and became so successful. Birds evolved from theropod dino- saurs during the Jurassic (around 165–150 million years ago) and their classic small, lightweight, feathered, and winged body plan was pieced together gradually over tens of millions of years of evolution rather than in one burst of innovation. Early birds diversified throughout the Jurassic and Cretaceous, becoming capable fliers with supercharged growth rates, but were decimated at the end-Cretaceous extinction alongside their close dinosaurian relatives. After the mass extinction, modern birds (members of the avian crown group) explosively diversified, culminating in more than 10,000 species distributed worldwide today. Introduction dinosaurs Dromaeosaurus albertensis or Troodon formosus.This Birds are one of the most conspicuous groups of animals in the clade includes all living birds and extinct taxa, such as Archaeop- modern world.
    [Show full text]
  • A New Specimen of the Early Cretaceous Bird Hongshanornis Longicresta: Insights Into the Aerodynamics and Diet of a Basal Ornithuromorph
    A new specimen of the Early Cretaceous bird Hongshanornis longicresta: insights into the aerodynamics and diet of a basal ornithuromorph Luis M. Chiappe1, Zhao Bo2, Jingmai K. O’Connor3, Gao Chunling2, Wang Xuri2,4, Michael Habib5, Jesus Marugan-Lobon6, Meng Qingjin7 and Cheng Xiaodong2 1 Dinosaur Institute, Natural History Museum of Los Angeles County, Los Angeles, CA, USA 2 Dalian Natural History Museum, District Dalian, PR China 3 Institute of Vertebrate Paleontology and Paleoanthroplogy, Beijing, PR China 4 Institute of Geology, Chinese Academy of Geological Sciences, Beijing, PR China 5 University of Southern California, Health Sciences Campus, Los Angeles, CA, USA 6 Unidad de Paleontolog´ıa, Dpto. Biolog´ıa, Universidad Autonoma´ de Madrid, Cantoblanco, Spain 7 Beijing Natural History Museum, Beijing, PR China ABSTRACT The discovery of Hongshanornis longicresta, a small ornithuromorph bird with un- usually long hindlimb proportions, was followed by the discovery of two closely related species, Longicrusavis houi and Parahongshanornis chaoyangensis. Together forming the Hongshanornithidae, these species reveal important information about the early diversity and morphological specialization of ornithuromorphs, the clade that contains all living birds. Here we report on a new specimen (DNHM D2945/6) referable to Hongshanornis longicresta that contributes significant information to bet- ter understand the morphology, trophic ecology, and aerodynamics of this species, as well as the taxonomy of the Hongshanornithidae. Most notable are the well- preserved wings and feathered tail of DNHM D2945/6, which afford an accurate reconstruction of aerodynamic parameters indicating that as early as 125 million Submitted 30 August 2013 years ago, basal ornithuromorphs had evolved aerodynamic surfaces comparable in Accepted 11 December 2013 Published 2 January 2014 size and design to those of many modern birds, and flight modes alike to those of some small living birds.
    [Show full text]