Invertebrate Community Reassembly and Altered Ecosystem Process Rates Following Experimental Habitat Restoration in a Mined Peat Bog in New Zealand

Total Page:16

File Type:pdf, Size:1020Kb

Invertebrate Community Reassembly and Altered Ecosystem Process Rates Following Experimental Habitat Restoration in a Mined Peat Bog in New Zealand Invertebrate community reassembly and altered ecosystem process rates following experimental habitat restoration in a mined peat bog in New Zealand Corinne H. Watts 2006 Invertebrate community reassembly and altered ecosystem process rates following experimental habitat restoration in a mined peat bog in New Zealand _____________________________________ A Thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy at the University of Canterbury by Corinne H. Watts _____________________________________ University of Canterbury 2006 ABSTRACT I investigated the effects of habitat loss and subsequent restoration on invertebrate community structure and ecosystem functioning in a mined peat bog in the North Island, New Zealand. In an experimental trial, the impact of peat bog habitat loss and isolation on the invertebrate community associated with Sporadanthus ferrugineus (Restionaceae) was investigated. Potted S. ferrugineus plants were exposed to invertebrates at various distances up to 800 m from an intact habitat (the presumed source population) over 18 weeks. Invertebrates rapidly colonised the experimental plants, with all major Orders and trophic groups present on S. ferrugineus within 6 weeks. However, with increasing distance away from the undisturbed habitat, there was a significant decrease in total richness and abundance of invertebrates associated with the potted plants. Additional tests showed that even a moderate degree of isolation (i.e. greater than 400 m) from the intact habitat caused an almost complete failure of ‘Batrachedra’ sp. to colonise its host plant, at least in the short-term. The density of eggs and larvae, and the average larval size of ‘Batrachedra’ sp. (Lepidoptera: Coleophoridae) colonising S. ferrugineus plants, as well as the proportion of S. ferrugineus stems damaged by ‘Batrachedra’ sp. herbivory, all decreased logarithmically with increasing distance from the intact habitat. Surprisingly, though, the rate of recovery of the insect-plant interaction following experimental habitat restoration was remarkably rapid (i.e. between 3½ and 6 years). After just 6 years there was no significant difference in insect-plant interactions between the intact peat bog sites and any of the experimentally restored sites up to 800 m away. These results suggest that the degree of isolation from undisturbed habitat has a major impact on the rate and patterns of restoration recovery in the invertebrate community and that some insect-plant interactions can recover rapidly from habitat loss with restoration management. Restoration of mined peat bogs in northern New Zealand is initiated by establishing a native vegetation cover to minimize further peat degradation. The effects of various restoration techniques on litter decomposition, microbial community activity and beetle community composition were investigated within an experimental trial. These treatments included translocation of peat bog habitat (direct transfer of islands), milled peat islands ii with no seed and milled peat islands with seed, and were compared with an unrestored mined site and an undisturbed peat bog. In all the response variables measured, the undisturbed peat bog sites had significantly higher decomposition rates and microbial respiration rates, and significantly higher abundance and species richness of beetles than any of the restoration treatments. In addition, the technique used to restore mined peatlands had a significant effect on the beetle community composition and litter decomposition processes. Despite a rapid initial change in the beetle community following habitat translocation, the direct transfer islands were still the most similar in beetle species composition to the undisturbed peat bog. Microbial activity and decomposition rates were higher in the direct transfer and mined peat surface after 6 months. However, even after 12 months, decomposition rates in the restored habitats were still far from reaching the levels recorded in the undisturbed peat bog. The results suggest that beetle community structure and ecosystem processes such as decomposition and microbial activity rates may be able to recover faster with certain restoration techniques, such as direct transfer of intact habitat islands. Subsequently, I examined long-term beetle community reassembly on islands that had been restored by creating raised areas of processed peat with the addition of Leptospermum scoparium seed. Monitoring of different-aged restored islands representing the full range of restoration ages (up to 6 years) available at the peat mine, indicated that as the peat islands became older and the vegetation structure became more complex, the abundance, species richness and composition of the beetle community became increasingly similar to the community in the undisturbed peat bog. Despite this, distinct differences between the intact peat bog and older restored peat islands still persisted, even after 6 years, particularly at an individual species level. However, it is predicted that within 12 years the restored peat islands will share 100% of beetle species in common with the undisturbed peat bog. Taken together, these results indicate that restoration is effective in initiating the recovery of beetle assemblages and ecosystem processes (such as litter decomposition and microbial community activity) in cut-over peat bogs. However, it is estimated to take at iii least 12 years before pre-mining communities and functions are attained, and ongoing monitoring to develop an understanding of the longer-term dynamics of such ecosystems and processes is clearly required. Keywords peat bog, wetland, peat mining, habitat loss, peat bog restoration, New Zealand, Restionaceae, Sporadanthus ferrugineus, insect-plant interaction, predator-prey ratio, beetle community, litter decomposition, microbial community recovery iv ACKNOWLEDGEMENTS First, I would like to acknowledge the effort and experience of my supervisors, Raphael Didham, Bruce Burns and Richard Harris, and thank them for their help, editing comments, and encouragement. I am particularly indebted to Raphael who provided assistance with some analyses, critically reviewed the thesis and, more importantly, was patient. Numerous people assisted with fieldwork, including Danny Thornburrow, Bev Clarkson, Neil Fitzgerald, Maja Vojvodic-Vukovic, Craig Briggs, Daniel Rutledge, Shaun Awatere, Katie Cartner, Mark Smale, Fiona Clarkson, Trina Watts, Julie Zanders, Lynne Baxter, Suzanne Jonker and Nadiene Berry. Other technical assistance was provided by Maja Vojvodic-Vukovic, Greg Arnold, David Hunter, John Claydon, Lynne Baxter, Louise Hunter, and Alex McGill. I am grateful to Danny and John Thornburrow for emergence trap design and construction. I thank Russell Gamman (Gamman Mining) for kindly providing a study site and logistical support. Landcare Research is gratefully acknowledged for providing funding and assistance to undertake this thesis as part of my work commitments. In addition, the company also willingly provided logistical and other support during the study. Anne Austin, David Wardle, William Lee, Graham Sparling, Louis Schipper, Gary Barker, George Gibbs, Louise Hunter and Deb Wotton provided helpful comments on the earlier drafts of this thesis (or parts of it). I am thankful to Stephen Thorpe for numerous beetle identifications, Jo Berry for identifying wasps, and Rosa Henderson for identifying aphids. In particular, I thank Robert Hoare and John Dugdale for their taxonomic expertise in identifying Lepidoptera and, v more importantly, their never-ending wit and humour when discovering and describing ‘Fred the Thread’. Thanks to my colleagues who have provided assistance, interest, and support throughout this thesis. I would like to extend my gratitude and love to my family (including the furry ones!) and friends who have provided support and encouragement throughout this ordeal, even if it was from remote corners of the world. Finally, I would like to thank Danny Thornburrow, who has endured the worst parts (hot, dusty field days and erratic behaviour) of my years of study without complaint (almost). You know the extent of your support and I doubt that this would have been possible without you. We have both been through some challenging times together and survived, this was one of those. All my love goes to you in thanks. So many people have helped make this thesis, both from a personal and scientific viewpoint. Now that I have an opportunity to express to thanks, I realise just how difficult it is to put my appreciation into words. Thank you all. vi TABLE OF CONTENTS Abstract .........................................................................................................................ii Acknowledgements ...............................................................................................................v Table of Contents.................................................................................................................vii List of Figures.......................................................................................................................ix List of Tables........................................................................................................................xi List of Appendices...............................................................................................................xii Declaration ......................................................................................................................xiv
Recommended publications
  • SYSTEMATICS of the MEGADIVERSE SUPERFAMILY GELECHIOIDEA (INSECTA: LEPIDOPTEA) DISSERTATION Presented in Partial Fulfillment of T
    SYSTEMATICS OF THE MEGADIVERSE SUPERFAMILY GELECHIOIDEA (INSECTA: LEPIDOPTEA) DISSERTATION Presented in Partial Fulfillment of the Requirements for The Degree of Doctor of Philosophy in the Graduate School of The Ohio State University By Sibyl Rae Bucheli, M.S. ***** The Ohio State University 2005 Dissertation Committee: Approved by Dr. John W. Wenzel, Advisor Dr. Daniel Herms Dr. Hans Klompen _________________________________ Dr. Steven C. Passoa Advisor Graduate Program in Entomology ABSTRACT The phylogenetics, systematics, taxonomy, and biology of Gelechioidea (Insecta: Lepidoptera) are investigated. This superfamily is probably the second largest in all of Lepidoptera, and it remains one of the least well known. Taxonomy of Gelechioidea has been unstable historically, and definitions vary at the family and subfamily levels. In Chapters Two and Three, I review the taxonomy of Gelechioidea and characters that have been important, with attention to what characters or terms were used by different authors. I revise the coding of characters that are already in the literature, and provide new data as well. Chapter Four provides the first phylogenetic analysis of Gelechioidea to include molecular data. I combine novel DNA sequence data from Cytochrome oxidase I and II with morphological matrices for exemplar species. The results challenge current concepts of Gelechioidea, suggesting that traditional morphological characters that have united taxa may not be homologous structures and are in need of further investigation. Resolution of this problem will require more detailed analysis and more thorough characterization of certain lineages. To begin this task, I conduct in Chapter Five an in- depth study of morphological evolution, host-plant selection, and geographical distribution of a medium-sized genus Depressaria Haworth (Depressariinae), larvae of ii which generally feed on plants in the families Asteraceae and Apiaceae.
    [Show full text]
  • Ants in French Polynesia and the Pacific: Species Distributions and Conservation Concerns
    Ants in French Polynesia and the Pacific: species distributions and conservation concerns Paul Krushelnycky Dept of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, Hawaii Hervé Jourdan Centre de Biologie et de Gestion des Populations, INRA/IRD, Nouméa, New Caledonia The importance of ants • In most ecosystems, form a substantial portion of a communities’ biomass (1/3 of animal biomass and ¾ of insect biomass in Amazon rainforest) Photos © Alex Wild The importance of ants • In most ecosystems, form a substantial portion of a communities’ biomass (1/3 of animal biomass and ¾ of insect biomass in Amazon rainforest) • Involved in many important ecosystem processes: predator/prey relationships herbivory seed dispersal soil turning mutualisms Photos © Alex Wild The importance of ants • Important in shaping evolution of biotic communities and ecosystems Photos © Alex Wild Ants in the Pacific • Pacific archipelagoes the most remote in the world • Implications for understanding ant biogeography (patterns of dispersal, species/area relationships, community assembly) • Evolution of faunas with depauperate ant communities • Consequent effects of ant introductions Hypoponera zwaluwenburgi Ants in the Amblyopone zwaluwenburgi Pacific – current picture Ponera bableti Indigenous ants in the Pacific? Approx. 30 - 37 species have been labeled “wide-ranging Pacific natives”: Adelomyrmex hirsutus Ponera incerta Anochetus graeffei Ponera loi Camponotus chloroticus Ponera swezeyi Camponotus navigator Ponera tenuis Camponotus rufifrons
    [Show full text]
  • Variation in the Persistence and Effects of Argentine Ants Throughout Their Invaded Range in New Zealand
    Variation in the persistence and effects of Argentine ants throughout their invaded range in New Zealand A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Ecology and Biodiversity at Victoria University of Wellington January 2012 by Meghan Dawn Cooling School of Biological Sciences Victoria University of Wellington, New Zealand Abstract Invasive ants are a serious ecological problem around the world. The Argentine ant has had devastating effects on resident ant communities and may negatively impact other invertebrates in its introduced range. First detected in Auckland in 1990, this invader has since spread widely around the country. The effect of Argentine ants on invertebrates in New Zealand was investigated by comparing ground-dwelling arthropod species richness and abundance between and among paired uninvaded and invaded sites in seven cities across this invader’s New Zealand range. In order to study density-dependent effects, invaded sites were chosen so as to differ in Argentine ant population density. The effects of rainfall and mean maximum temperature on Argentine ant abundance and the species richness and abundance were also examined. Argentine ant population persistence in New Zealand was examined by re-surveying sites of past infestation across this species range. The influence of climate on population persistence was investigated, and how this effect may vary after climate change. Additionally, the potential of community recovery after invasion was also examined. Epigaeic (above ground foraging) ant species richness and abundance was negatively associated with Argentine ant abundance; however, no discernable impact was found on hypogaeic (below ground foraging) ant species.
    [Show full text]
  • The Beetle Fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and Distribution
    INSECTA MUNDI, Vol. 20, No. 3-4, September-December, 2006 165 The beetle fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and distribution Stewart B. Peck Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada stewart_peck@carleton. ca Abstract. The beetle fauna of the island of Dominica is summarized. It is presently known to contain 269 genera, and 361 species (in 42 families), of which 347 are named at a species level. Of these, 62 species are endemic to the island. The other naturally occurring species number 262, and another 23 species are of such wide distribution that they have probably been accidentally introduced and distributed, at least in part, by human activities. Undoubtedly, the actual numbers of species on Dominica are many times higher than now reported. This highlights the poor level of knowledge of the beetles of Dominica and the Lesser Antilles in general. Of the species known to occur elsewhere, the largest numbers are shared with neighboring Guadeloupe (201), and then with South America (126), Puerto Rico (113), Cuba (107), and Mexico-Central America (108). The Antillean island chain probably represents the main avenue of natural overwater dispersal via intermediate stepping-stone islands. The distributional patterns of the species shared with Dominica and elsewhere in the Caribbean suggest stages in a dynamic taxon cycle of species origin, range expansion, distribution contraction, and re-speciation. Introduction windward (eastern) side (with an average of 250 mm of rain annually). Rainfall is heavy and varies season- The islands of the West Indies are increasingly ally, with the dry season from mid-January to mid- recognized as a hotspot for species biodiversity June and the rainy season from mid-June to mid- (Myers et al.
    [Show full text]
  • Elachista Saccharella (Lepidoptera: Elachistidae), a Leafminer Infesting Sugarcane in Louisiana
    792 Florida Entomologist 90(4) December 2007 ELACHISTA SACCHARELLA (LEPIDOPTERA: ELACHISTIDAE), A LEAFMINER INFESTING SUGARCANE IN LOUISIANA W. H. WHITE1, T. E. REAGAN2, C. CARLTON2, W. AKBAR2 AND J. M. BEUZELIN2 1USDA, ARS, Sugarcane Research Laboratory, Houma, LA 2Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA A leafminer was discovered infesting sugar- Elachista saccharella was first reported in sug- cane (interspecific hybrids of Saccharum spp.) in arcane in the U.S. in Florida in 1982 (Hall 1984). Terrebonne Parish (near Schriever, LA, 29.38°N, It was previously reported in Cuba by Scara- 90.50°W) during the summer of 2006. Larvae muzza & Barry (1959). An unidentified elachistid were collected from the field, returned to the lab- also was found in sugarcane in Papua New oratory, and placed on sugarcane borer, Diatraea Guinea by Bourke (1968). Elachista saccharella saccharalis (F.), meridic diet (Southland Products, also has been reported in reed grass, Phragmites Lake Village, AR). Emerged adults were identified australis (Cav) Trin ex Steud, a plant invader of as Elachista saccharella (Busck) (Lepidoptera: salt marshes along the east coast of North Amer- Elachistidae) (Fig. 1a). Elachista saccharella is a ica (Gratton & Denno 2005). blotch leafminer. Each leaf mine begins as a longi- We initiated a survey of sugarcane growing ar- tudinal mine on the underside of a sugarcane leaf eas of Louisiana on 16 Aug 2006. Twenty parishes that sometimes extends 12 cm or more in length were surveyed by sampling 4 sites per parish for and terminates in a leaf blotch (Fig. 1b). These the presence of the leafminer.
    [Show full text]
  • Larvae of Ataenius (Coleoptera: Scarabaeidae: Aphodiinae
    Eur. J. Entomol. 96: 57—68, 1999 ISSN 1210-5759 Larvae ofAtaenius (Coleóptera: Scarabaeidae: Aphodiinae): Generic characteristics and species descriptions José R. VERDÚ and E duardo GALANTE Departamento de Ciencias Ambientales y Recursos Naturales, Universidad de Alicante, E-03080 Alicante, Spain Key words.Scarabaeidae, Aphodiinae, Ataenius, larvae, description, key, dung beetles, turfgrass beetles, taxonomy Abstract. We compared the larval morphology of the genera Ataenius and Aphodius. The third larval instars of five Ataenius species: Ataenius opatrinus Harold, A. picinus Harold, A. platensis (Blanchard), A. simulator Harold and A. strigicauda Bates, are described or redescribed and illustrated. The most important morphological characteristics of the larvae of Ataenius are found in the respiratory plate of thoracic spiracle, the setation of venter of the last abdominal segment, the setation of the epicranial region and the morphology of the epipharynx. A key to larvae of the known species of Ataenius is included. INTRODUCTION del Sacramento (Uruguay). For the purpose of laboratory studies, a total of 10 to 20 adult specimens of each species were The genus Ataenius Harold comprises 320 species, of kept in cylindrical plastic breeding cages (20 cm high, 10 cm which 228 species are found in America, 49 in Australia, wide) with moist soil and dry cow dung from which they had 11 in Africa, 6 in East Asia, 2 in Madagascar, and single been collected. The lid was an opening (6 cm diameter) covered species in India, Sri Lanka, Turkestan, Japan, Hawaii and with gauze screen. These breeding cages were maintained in an Sumatra, respectively (Dellacasa, 1987). Despite the rich­ environmental chamber at 25 : 20°C (L : D), 80 ± 5% RH, with ness of this genus and its worldwide distribution, the lar­ a photoperiod of 15 : 9 (L : D).
    [Show full text]
  • Definition of the Elachista Puplesisi Sruoga Complex (Lepidoptera, Gelechioidea, Elachistidae), with Description of a New Species
    Zootaxa 3821 (5): 583–589 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3821.5.6 http://zoobank.org/urn:lsid:zoobank.org:pub:94D1D19B-9372-4DFC-985A-A4F450023F56 Definition of the Elachista puplesisi Sruoga complex (Lepidoptera, Gelechioidea, Elachistidae), with description of a new species LAURI KAILA1,3 & VIRGINIJUS SRUOGA2 1Finnish Museum of Natural History, Zoology Unit, FI-00014 University of Helsinki, Finland. E-mail: [email protected] 2Division of Biosystematics Research, Department of Biology, Lithuanian University of Educational Sciences, LT-08106 Vilnius, Lit- huania. E-mail: [email protected] 3Corresponding author Abstract The Elachista puplesisi group is defined. Its characterization is based on two species, E. puplesisi Sruoga, 2000, known from the holotype collected in Turkmenistan and E. helia sp. nov., from Rhodos, Greece. The group is assigned to the subgenus Atachia of Elachista, but its affinities within Atachia remain unknown. Key words: Elachistinae, Elachista, Atachia Introduction Elachista puplesisi Sruoga, 2000 was described on the basis of a single male specimen collected from the Karakum desert in Turkmenistan. The species appeared bizarre in its morphology, and its systematic position was left unresolved in the original description, with the remark that it likely represents a separate species group within Elachista, or even a new genus (Sruoga 2000). The species indeed possesses features rare among Elachista, as well as an unusual combination of characters, which did not make it straightforward to place this species in the phylogenetic concept of Elachistinae of Kaila (1999).
    [Show full text]
  • Disruption of Foraging by a Dominant Invasive Species to Decrease Its Competitive Ability
    Disruption of Foraging by a Dominant Invasive Species to Decrease Its Competitive Ability Fabian Ludwig Westermann1*, David Maxwell Suckling2, Philip John Lester1 1 School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand, 2 The New Zealand Institute for Plant & Food Research, Christchurch, New Zealand Abstract Invasive species are a major threat to biodiversity when dominant within their newly established habitat. The globally distributed Argentine ant Linepithema humile has been reported to break the trade-off between interference and exploitative competition, achieve high population densities, and overpower nests of many endemic ant species. We have used the sensitivity of the Argentine ant to the synthetic trail pheromone (Z)-9-hexadecanal to investigate species interactions for the first time. We predicted that disrupting Argentine ant trail following behaviour would reduce their competitive ability and create an opportunity for three other resident species to increase their foraging success. Argentine ant success in the control was reduced with increasing pheromone concentration, as predicted, but interactions varied among competing resident species. These behavioural variations provide an explanation for observed differences in foraging success of the competing resident species and how much each of these individual competitors can increase their foraging if the competitive ability of the dominant invader is decreased. The mechanism for the observed increase in resource acquisition of resident species appears to be a decrease in aggressive behaviour displayed by the Argentine ant, which may create an opportunity for other resident species to forage more successfully. Our demonstration of species interactions with trail pheromone disruption is the first known case of reduced dominance under a pheromone treatment in ants.
    [Show full text]
  • Hymenoptera: Formicidae
    16 The Weta 30: 16-18 (2005) Changes to the classification of ants (Hymenoptera: Formicidae) Darren F. Ward School of Biological Sciences, Tamaki Campus, Auckland University, Private Bag 92019, Auckland ([email protected]) Introduction This short note aims to update the reader on changes to the subfamily classification of ants (Hymenoptera: Formicidae). Although the New Zealand ant fauna is very small, these changes affect the classification and phylogeny of both endemic and exotic ant species in New Zealand. Bolton (2003) has recently proposed a new subfamily classification for ants. Two new subfamilies have been created, a revised status for one, and new status for four. Worldwide, there are now 21 extant subfamilies of ants. The endemic fauna of New Zealand is now classified into six subfamilies (Table 1), as a result of three subfamilies, Amblyoponinae, Heteroponerinae and Proceratiinae, being split from the traditional subfamily Ponerinae. Bolton’s (2003) classification also affects several exotic species in New Zealand. Three species have been transferred from Ponerinae: Amblyopone australis to Amblyoponinae, and Rhytidoponera chalybaea and R. metallica to Ectatomminae. Currently there are 28 exotic species in New Zealand (Table 1). Eighteen species have most likely come from Australia, where they are native. Eight are global tramp species, commonly transported by human activities, and two species are of African origin. Nineteen of the currently established exotic species are recorded for the first time in New Zealand as occurring outside their native range. This may result in difficulty in obtaining species-specific biological knowledge and assessing their likelihood of becoming successful invaders. In addition to the work by Bolton (2003), Phil Ward and colleagues at UC Davis have started to resolve the phylogenetic relationships among subfamilies and genera of all ants using molecular data (Ward et al, 2005).
    [Show full text]
  • Floral Volatiles Play a Key Role in Specialized Ant Pollination Clara De Vega
    FLORAL VOLATILES PLAY A KEY ROLE IN SPECIALIZED ANT POLLINATION CLARA DE VEGA1*, CARLOS M. HERRERA1, AND STEFAN DÖTTERL2,3 1 Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avenida de Américo Vespucio s/n, 41092 Sevilla, Spain 2 University of Bayreuth, Department of Plant Systematics, 95440 Bayreuth, Germany 3 Present address: University of Salzburg, Organismic Biology, Hellbrunnerstr. 34, 5020 Salzburg, Austria Running title —Floral scent and ant pollination * For correspondence. E-mail [email protected] Tel: +34 954466700 Fax: + 34 954621125 1 ABSTRACT Chemical signals emitted by plants are crucial to understanding the ecology and evolution of plant-animal interactions. Scent is an important component of floral phenotype and represents a decisive communication channel between plants and floral visitors. Floral 5 volatiles promote attraction of mutualistic pollinators and, in some cases, serve to prevent flower visitation by antagonists such as ants. Despite ant visits to flowers have been suggested to be detrimental to plant fitness, in recent years there has been a growing recognition of the positive role of ants in pollination. Nevertheless, the question of whether floral volatiles mediate mutualisms between ants and ant-pollinated plants still remains largely unexplored. 10 Here we review the documented cases of ant pollination and investigate the chemical composition of the floral scent in the ant-pollinated plant Cytinus hypocistis. By using chemical-electrophysiological analyses and field behavioural assays, we examine the importance of olfactory cues for ants, identify compounds that stimulate antennal responses, and evaluate whether these compounds elicit behavioural responses. Our findings reveal that 15 floral scent plays a crucial role in this mutualistic ant-flower interaction, and that only ant species that provide pollination services and not others occurring in the habitat are efficiently attracted by floral volatiles.
    [Show full text]
  • Terrestrial Arthropod Surveys on Pagan Island, Northern Marianas
    Terrestrial Arthropod Surveys on Pagan Island, Northern Marianas Neal L. Evenhuis, Lucius G. Eldredge, Keith T. Arakaki, Darcy Oishi, Janis N. Garcia & William P. Haines Pacific Biological Survey, Bishop Museum, Honolulu, Hawaii 96817 Final Report November 2010 Prepared for: U.S. Fish and Wildlife Service, Pacific Islands Fish & Wildlife Office Honolulu, Hawaii Evenhuis et al. — Pagan Island Arthropod Survey 2 BISHOP MUSEUM The State Museum of Natural and Cultural History 1525 Bernice Street Honolulu, Hawai’i 96817–2704, USA Copyright© 2010 Bishop Museum All Rights Reserved Printed in the United States of America Contribution No. 2010-015 to the Pacific Biological Survey Evenhuis et al. — Pagan Island Arthropod Survey 3 TABLE OF CONTENTS Executive Summary ......................................................................................................... 5 Background ..................................................................................................................... 7 General History .............................................................................................................. 10 Previous Expeditions to Pagan Surveying Terrestrial Arthropods ................................ 12 Current Survey and List of Collecting Sites .................................................................. 18 Sampling Methods ......................................................................................................... 25 Survey Results ..............................................................................................................
    [Show full text]
  • Biodiversity Summary: Port Phillip and Westernport, Victoria
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]