Bachelor Thesis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
COLOR SPACE MODELS for VIDEO and CHROMA SUBSAMPLING
COLOR SPACE MODELS for VIDEO and CHROMA SUBSAMPLING Color space A color model is an abstract mathematical model describing the way colors can be represented as tuples of numbers, typically as three or four values or color components (e.g. RGB and CMYK are color models). However, a color model with no associated mapping function to an absolute color space is a more or less arbitrary color system with little connection to the requirements of any given application. Adding a certain mapping function between the color model and a certain reference color space results in a definite "footprint" within the reference color space. This "footprint" is known as a gamut, and, in combination with the color model, defines a new color space. For example, Adobe RGB and sRGB are two different absolute color spaces, both based on the RGB model. In the most generic sense of the definition above, color spaces can be defined without the use of a color model. These spaces, such as Pantone, are in effect a given set of names or numbers which are defined by the existence of a corresponding set of physical color swatches. This article focuses on the mathematical model concept. Understanding the concept Most people have heard that a wide range of colors can be created by the primary colors red, blue, and yellow, if working with paints. Those colors then define a color space. We can specify the amount of red color as the X axis, the amount of blue as the Y axis, and the amount of yellow as the Z axis, giving us a three-dimensional space, wherein every possible color has a unique position. -
Cielab Color Space
Gernot Hoffmann CIELab Color Space Contents . Introduction 2 2. Formulas 4 3. Primaries and Matrices 0 4. Gamut Restrictions and Tests 5. Inverse Gamma Correction 2 6. CIE L*=50 3 7. NTSC L*=50 4 8. sRGB L*=/0/.../90/99 5 9. AdobeRGB L*=0/.../90 26 0. ProPhotoRGB L*=0/.../90 35 . 3D Views 44 2. Linear and Standard Nonlinear CIELab 47 3. Human Gamut in CIELab 48 4. Low Chromaticity 49 5. sRGB L*=50 with RGB Numbers 50 6. PostScript Kernels 5 7. Mapping CIELab to xyY 56 8. Number of Different Colors 59 9. HLS-Hue for sRGB in CIELab 60 20. References 62 1.1 Introduction CIE XYZ is an absolute color space (not device dependent). Each visible color has non-negative coordinates X,Y,Z. CIE xyY, the horseshoe diagram as shown below, is a perspective projection of XYZ coordinates onto a plane xy. The luminance is missing. CIELab is a nonlinear transformation of XYZ into coordinates L*,a*,b*. The gamut for any RGB color system is a triangle in the CIE xyY chromaticity diagram, here shown for the CIE primaries, the NTSC primaries, the Rec.709 primaries (which are also valid for sRGB and therefore for many PC monitors) and the non-physical working space ProPhotoRGB. The white points are individually defined for the color spaces. The CIELab color space was intended for equal perceptual differences for equal chan- ges in the coordinates L*,a* and b*. Color differences deltaE are defined as Euclidian distances in CIELab. This document shows color charts in CIELab for several RGB color spaces. -
Dance and the Imagination an Inspiration Turned Into a Fantasy
Twelve Conceptions of Imagination – by Leslie Stevenson (1) The ability to think of something not presently perceived, but spatio‐ temporally real. (2) The ability to think of whatever one acknowledges as possible in the spatio‐temporal world. (3) The ability to think of something that the subject believes to be real, but which is not. (4) The ability to think of things that one conceives of as fictional. (5) The ability to entertain mental images. (6) The ability to think of anything at all. (7) The non‐rational operations of the mind, that is, those explicable in terms of causes rather than reasons. (8) The ability to form perceptual beliefs about public objects in space and time. (9) The ability to sensuously appreciate works of art or objects of natural beauty without classifying them under concepts or thinking of them as useful. (10) The ability to create works of art that encourage such sensuous appreciation. (11) The ability to appreciate things that are expressive or revelatory of the meaning of human life. (12) The ability to create works of art that express something deep about the meaning of life. Dance and the Imagination An inspiration turned into a fantasy based reality A dream envisioned and resourcefully staged Mental creative pictures coming to life Inventiveness using human movement in space Innovation and individuality whether improvised or more formally choreographed Expressive bodily ideas Experiential corporal representations Artistic power and ingenuity transposed into physical form Presentational musculo-skeletal -
Tracking and Automation of Images by Colour Based
Vol 11, Issue 8,August/ 2020 ISSN NO: 0377-9254 TRACKING AND AUTOMATION OF IMAGES BY COLOUR BASED PROCESSING N Alekhya 1, K Venkanna Naidu 2 and M.SunilKumar 3 1PG student, D.N.R College of Engineering, ECE, JNTUK, INDIA 2 Associate Professor D.N.R College of Engineering, ECE, JNTUK, INDIA 3Assistant Professor Sir CRR College of Engineering , EEE, JNTUK, INDIA [email protected], [email protected] ,[email protected] Abstract— Now a day all application sectors are mostly image analysis involves maneuver the moving for the automation processing and image data to conclude exactly the information sensing . for example image processing in compulsory to help to answer a computer imaging medical field ,in industrial process lines , object problem. detection and Ranging application, satellite Digital image processing methods stems from two imaging Processing ,Military imaging etc, In principal application areas: improvement of each and every application area the raw images pictorial information for human interpretation, and are to be captured and to be processed for processing of image data for tasks such as storage, human visual inspection or digital image transmission, and extraction of pictorial processing systems. Automation applications In information this proposed system the video is converted into The remaining paper is structured as follows. frames and then it is get divided into sub bands Section 2 deals with the existing method of Image and then background is get subtracted, then the Processing. Section 3 deals with the proposed object is get identified and then it is tracked in method of Image Processing. Section 4 deals the the framed from the video .This work presents a results and discussions. -
Accurately Reproducing Pantone Colors on Digital Presses
Accurately Reproducing Pantone Colors on Digital Presses By Anne Howard Graphic Communication Department College of Liberal Arts California Polytechnic State University June 2012 Abstract Anne Howard Graphic Communication Department, June 2012 Advisor: Dr. Xiaoying Rong The purpose of this study was to find out how accurately digital presses reproduce Pantone spot colors. The Pantone Matching System is a printing industry standard for spot colors. Because digital printing is becoming more popular, this study was intended to help designers decide on whether they should print Pantone colors on digital presses and expect to see similar colors on paper as they do on a computer monitor. This study investigated how a Xerox DocuColor 2060, Ricoh Pro C900s, and a Konica Minolta bizhub Press C8000 with default settings could print 45 Pantone colors from the Uncoated Solid color book with only the use of cyan, magenta, yellow and black toner. After creating a profile with a GRACoL target sheet, the 45 colors were printed again, measured and compared to the original Pantone Swatch book. Results from this study showed that the profile helped correct the DocuColor color output, however, the Konica Minolta and Ricoh color outputs generally produced the same as they did without the profile. The Konica Minolta and Ricoh have much newer versions of the EFI Fiery RIPs than the DocuColor so they are more likely to interpret Pantone colors the same way as when a profile is used. If printers are using newer presses, they should expect to see consistent color output of Pantone colors with or without profiles when using default settings. -
Iec 61966-2-4
This is a preview - click here to buy the full publication IEC 61966-2-4 Edition 1.0 2006-01 INTERNATIONAL STANDARD Multimedia systems and equipment – Colour measurement and management – Part 2-4: Colour management – Extended-gamut YCC colour space for video applications – xvYCC INTERNATIONAL ELECTROTECHNICAL COMMISSION PRICE CODE R ICS 33.160.40 ISBN 2-8318-8426-8 This is a preview - click here to buy the full publication – 2 – 61966-2-4 IEC:2006(E) CONTENTS FOREWORD...........................................................................................................................3 INTRODUCTION.....................................................................................................................5 1 Scope...............................................................................................................................6 2 Normative references .......................................................................................................6 3 Terms and definitions.........................................................................................................6 4 Colorimetric parameters and related characteristics .........................................................7 4.1 Primary colours and reference white........................................................................7 4.2 Opto-electronic transfer characteristics ...................................................................7 4.3 YCC (luma-chroma-chroma) encoding methods.......................................................8 -
246E9QSB/00 Philips LCD Monitor with Ultra Wide-Color
Philips LCD monitor with Ultra Wide-Color E Line 24 (23.8" / 60.5 cm diag.) Full HD (1920 x 1080) 246E9QSB Stunning color, stylish design The Philips E line monitor features stylish design with extraordinary picture performance. A narrow border Full HD display with Ultra Wide-Color brings you to real true-to-life visuals. Enjoy superior viewing in a stylish design. Superb Picture Quality • Ultra Wide-Color wider range of colors for a vivid picture • IPS LED wide view technology for image and color accuracy • 16:9 Full HD display for crisp detailed images Features designed for you • Narrow border display for a seamless appearance • Less eye fatigue with Flicker-free technology • LowBlue Mode for easy on-the-eyes productivity • EasyRead mode for a paper-like reading experience Greener everyday • Eco-friendly materials meet major international standards • Low power consumption saves energy bills LCD monitor with Ultra Wide-Color 246E9QSB/00 E Line 24 (23.8" / 60.5 cm diag.), Full HD (1920 x 1080) Highlights Ultra Wide-Color Technology 16:9 Full HD display a new solution to regulate brightness and reduce flicker for more comfortable viewing. LowBlue Mode Ultra Wide-Color Technology delivers a wider Picture quality matters. Regular displays deliver spectrum of colors for a more brilliant picture. quality, but you expect more. This display Ultra Wide-Color wider "color gamut" features enhanced Full HD 1920 x 1080 produces more natural-looking greens, vivid resolution. With Full HD for crisp detail paired Studies have shown that just as ultra-violet rays reds and deeper blues. -
A Critical Skill for Learning Scott Barry Kaufman in Recent Years, Schools
Imagination: A Critical Skill for Learning Scott Barry Kaufman In recent years, schools have become increasingly focused on developing “executive functions” in students. These functions—which include the ability to concentrate, ignore distractions, regulate emotions, and integrate complex information in working memory—are certainly important contributors to learning. However, I believe that in our school’s excitement over executive functions, we’ve missed out on the why of education. Another class of functions have been recently discovered by cognitive neuroscientists that-- when combined with executive functioning—contribute to deep, personally meaningful learning, long-term retention, compassion, and creativity. Dubbed the “default mode network” by cognitive scientists, the following imagination-related functions have been associated with this network: daydreaming, imagining and planning the future, retrieving deeply personal memories, making meaning out of experiences, monitoring one’s emotional state, reading fiction, reflective compassion, and perspective taking. This is an important set of skills to fall by the wayside among our students! In fact, by constantly demanding the executive attention of students for the purposes of abstract learning, we are actively robbing students of the opportunity to use the limited resource of attention for the purposes of personal reflection, meaning-making, and compassionate perspective taking. Let’s be clear: both executive functions and imagination-related cognitive processes are critical to learning. However, when these networks couple together, we can get the best learning outcomes out of students. People who live a meaningful life of creativity and accomplishment combine dreaming with doing. A common thread that runs through both grit and imagination is trial-and-error: the ability to dream, to set concrete goals, to construct various strategies to reach the goal, to tinker with alternative approaches to reaching the goal, and to constantly revise approaches where necessary. -
Specification of Srgb
How to interpret the sRGB color space (specified in IEC 61966-2-1) for ICC profiles A. Key sRGB color space specifications (see IEC 61966-2-1 https://webstore.iec.ch/publication/6168 for more information). 1. Chromaticity co-ordinates of primaries: R: x = 0.64, y = 0.33, z = 0.03; G: x = 0.30, y = 0.60, z = 0.10; B: x = 0.15, y = 0.06, z = 0.79. Note: These are defined in ITU-R BT.709 (the television standard for HDTV capture). 2. Reference display‘Gamma’: Approximately 2.2 (see precise specification of color component transfer function below). 3. Reference display white point chromaticity: x = 0.3127, y = 0.3290, z = 0.3583 (equivalent to the chromaticity of CIE Illuminant D65). 4. Reference display white point luminance: 80 cd/m2 (includes veiling glare). Note: The reference display white point tristimulus values are: Xabs = 76.04, Yabs = 80, Zabs = 87.12. 5. Reference veiling glare luminance: 0.2 cd/m2 (this is the reference viewer-observed black point luminance). Note: The reference viewer-observed black point tristimulus values are assumed to be: Xabs = 0.1901, Yabs = 0.2, Zabs = 0.2178. These values are not specified in IEC 61966-2-1, and are an additional interpretation provided in this document. 6. Tristimulus value normalization: The CIE 1931 XYZ values are scaled from 0.0 to 1.0. Note: The following scaling equations can be used. These equations are not provided in IEC 61966-2-1, and are an additional interpretation provided in this document. 76.04 X abs 0.1901 XN = = 0.0125313 (Xabs – 0.1901) 80 76.04 0.1901 Yabs 0.2 YN = = 0.0125313 (Yabs – 0.2) 80 0.2 87.12 Zabs 0.2178 ZN = = 0.0125313 (Zabs – 0.2178) 80 87.12 0.2178 7. -
Psychovisual Evaluation of the Effect of Color Spaces and Color Quantification in Jpeg2000 Image Compression
PSYCHOVISUAL EVALUATION OF THE EFFECT OF COLOR SPACES AND COLOR QUANTIFICATION IN JPEG2000 IMAGE COMPRESSION Mohamed-Chaker Larabi, Christine Fernandez-Maloigne and Noel¨ Richard IRCOM-SIC Laboratory, University of Poitiers BP 30170 - 86962 Futuroscope cedex FRANCE Email : [email protected] ABSTRACT 4]. Figure 1 shows the fundamental building blocks of a typical JPEG2000 is an emerging standard for still image compres- JPEG2000 encoder as described by Rabbani[4]. sion. It is not only intended to provide rate-distortion and subjective image quality performance superior to existing standards, but also to provide features and additional func- tionalities that current standards can not address sufficiently such as lossless and lossy compression, progressive trans- mission by pixel accuracy and by resolution, etc. Currently the JPEG2000 standard is set up for use with the sRGB three-component color space.the aim of this research is to Fig. 1. JPEG2000 fundamental building blocks. determine thanks to psychovisual experiences whether or Color management in JPEG2000 was an important topic in not the color space selected will significantly improve the the development of the standard and the issue of present- image compression. The RGB, XYZ, CIELAB, CIELUV, ing color properly is becoming more and more important as YIQ, YCrCb and YUV color spaces were examined and com- systems get better and as a wider range of systems are doing pared. In addition, we started a psychovisual evaluation similar things. In the past, color has been targeted as an area on the effect of color quantification on JPEG2000 image of least concern with the overall presentation. -
Destination Imagination Is Proud to Host Our Annual Education Conference at the Westin Park Central Hotel in Dallas, TX, July 25-26, 2014
Destination Imagination is proud to host our annual education conference at the Westin Park Central Hotel in Dallas, TX, July 25-26, 2014. This year, Ignite will feature more than 30 different workshops and learning opportunities for educators that focus on emerging trends and proven strategies for engaging students in innovative and creative learning. Below are just a few of the more than 30 sessions that will be available to educators at the Ignite 2014 Innovation for Education Conference. The Invention Experience How do you inspire and excite students in the classroom? Use the Invention Experience! In this workshop, teachers will be trained on the successful 6-step invention process used by startups and technology inventors across the world. Each workshop is a hands-on guided tour through the process of invention and entrepreneurship. Teachers will learn how to fit their existing lesson plans into an “invention mindset” and use the simple 6 step process to engage students in any content area you’re teaching! At the conclusion of the workshop, teachers will leave with an Invention Guidebook and a set of worksheets that they can use with their students that will turn any lesson plan, into a hands-on, exciting experience for students of any age! The Invention Experience was developed by two Silicon Valley education entrepreneurs with the support of Microsoft and the Lemelson Foundation. Playful Learning: Bringing Game-Based Learning to Your Classroom! Play is how we learn best. An entire world of games exists to support learning that hasn't been at a teacher’s fingertips—until now. -
Introduction
Cambridge University Press 978-0-521-86288-2 - Memory in Autism Edited by Jill Boucher and Dermot Bowler Excerpt More information Part I Introduction © Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-86288-2 - Memory in Autism Edited by Jill Boucher and Dermot Bowler Excerpt More information 1 Concepts and theories of memory John M. Gardiner Concept. A thought, idea; disposition, frame of mind; imagination, fancy; .... an idea of a class of objects. Theory. A scheme or system of ideas or statements held as an explan- ation or account of a group of facts or phenomena; a hypothesis that has been confirmed or established by observation or experiment, and is propounded or accepted as accounting for the known facts; a statement of what are known to be the general laws, principles, or causes of some- thing known or observed. From definitions given in the Oxford English Dictionary The Oxford Handbook of Memory, edited by Endel Tulving and Fergus Craik, was published in the year 2000. It is the first such book to be devoted to the science of memory. It is perhaps the single most author- itative and exhaustive guide as to those concepts and theories of memory that are currently regarded as being most vital. It is instructive, with that in mind, to browse the exceptionally comprehensive subject index of this handbook for the most commonly used terms. Excluding those that name phenomena, patient groups, parts of the brain, or commonly used exper- imental procedures, by far the most commonly used terms are encoding and retrieval processes.