Photoperiodic Response of Abrostola Asclepiadis (Lepidoptera: Noctuidae), a Candidate Biological Control Agent for Swallow- Worts (Vincetoxicum, Apocynaceae)

Total Page:16

File Type:pdf, Size:1020Kb

Photoperiodic Response of Abrostola Asclepiadis (Lepidoptera: Noctuidae), a Candidate Biological Control Agent for Swallow- Worts (Vincetoxicum, Apocynaceae) The Great Lakes Entomologist Manuscript 2340 Photoperiodic Response of Abrostola asclepiadis (Lepidoptera: Noctuidae), a Candidate Biological Control Agent for Swallow- worts (Vincetoxicum, Apocynaceae) Lindsey R. Milbrath Margarita Dolgovskaya Mark Volkovitsh René F.H. Sforza Jeromy Biazzo Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Milbrath et al.: Abrostola asclepiadis Photoperiod Response 2019 THE GREAT LAKES ENTOMOLOGIST 71 Photoperiodic Response of Abrostola asclepiadis (Lepidoptera: Noctuidae), a Candidate Biological Control Agent for Swallow-worts (Vincetoxicum, Apocynaceae) Lindsey R. Milbrath1*, Margarita Dolgovskaya2, Mark Volkovitsh2, René F.H. Sforza3, Jeromy Biazzo1 1 United States Department of Agriculture, Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, 538 Tower Road, Ithaca, NY 14853, USA 2 Zoological Institute, Russian Academy of Sciences, 199034, St. Petersburg, Russia 3 USDA-ARS European Biological Control Laboratory, CS 90013 Montferrier-sur-Lez, 34988 St Gély du Fesc, France *Corresponding author: (email: [email protected]) Abstract A biological control program is in development for two swallow-wort species (Vince- toxicum, Apocynaceae), European vines introduced into northeastern North America. One candidate agent is the defoliator Abrostola asclepiadis (Denis and Schiffermüller) (Lepi- doptera: Noctuidae). The moth reportedly has up to two generations in parts of its native range. We assessed the potential multivoltinism of Russian and French populations of the moth by rearing them under constant and changing photoperiods, ranging from 13:11 to 16:8 hour (L:D). The French population was also reared outdoors under naturally-changing day lengths at a latitude similar to northern New York State. Less than six adult moths emerged, with one exception, for any photoperiod treatment. We expect A. asclepiadis to be univoltine if it were to be released into North America, limiting its potential impact on swallow-worts. It should therefore be given a lower priority for release. Keywords: Cynanchum rossicum, Cynanchum louiseae, swallow-wort, weed biolog- ical control, photoperiod Understanding the potential efficacy (Apocynaceae-subfamily Asclepiadoideae) of a candidate weed biological control agent are European twining vines introduced into has become more prominent in recent years, North America in the mid- to late-1800s. especially pre-release studies of an agent’s They have become invasive over the last 40 impact on plant performance (e.g., Grevstad years in a variety of natural areas and pe- et al. 2013, Reddy and Mehelis 2015). Such rennial cropping systems, ranging from open assessments have been proposed for prior- fields to forest understories. The primary itizing agents for further study or release, infestations occur in southeastern Canada in order to enhance the success rate of weed and the northeastern United States, with biological control programs (Balciunas and increasing concerns in the Midwest, includ- Coombs 2004, McClay and Balciunas 2005). ing states and provinces of the Great Lakes The seasonal duration and amount of dam- Basin (DiTommaso et al. 2005, Averill et age that an agent might inflict on a targeted al. 2011, USDA/NRCS 2019). Both species invasive plant will depend in part on the are long-lived, herbaceous perennials that number of agent generations (voltinism) spread via wind-dispersed seeds. Floral and produced in the area of release. The induc- faunal communities are negatively affected tion of diapause in an insect population is a by swallow-worts, including the globally-rare key component determining the number of alvar ecosystems of the Lake Ontario basin generations and seasonality of insect activ- (DiTommaso et al. 2005, Ernst and Cap- ity. For many insects of temperate zones, puccino 2005). Broad-spectrum herbicides photoperiod is a primary cue for diapause have been the main management tool, but induction (Tauber et al. 1986). are not necessarily desired in natural areas. Mechanical control is generally unsatisfac- Black swallow-wort [Vincetoxicum tory in reducing swallow-wort densities and nigrum (L.) Moench = Cynanchum loui- cover (DiTommaso et al. 2013). A biological seae Kartesz and Gandhi] and pale swal- control program has been in development low-wort [V. rossicum (Kleopow) Barbar. = for several years, but to date only the moth Cynanchum rossicum (Kleopow) Borhidi] Hypena opulenta (Christoph) (Lepidoptera: Published by ValpoScholar, 1 Submission to The Great Lakes Entomologist 72 THE GREAT LAKES ENTOMOLOGIST Vol. 52, Nos. 3–4 Erebidae) has been released in Canada dage, France (44°42.033’ N, 05°37.000' E). (2013) and more recently in the U.S. (Weed Larvae were reared on V. hirundinaria at et al. 2011b, Young and Weed 2014, Milbrath the European Biological Control Laboratory and Biazzo 2016). (EBCL), Montferrier-sur-Lez, France, under One candidate biological control agent a 10:14 hour (L:D) photoperiod to induce is the defoliating moth Abrostola asclepiadis diapause and pupae were shipped to the (Denis and Schiffermüller) (Lepidoptera: senior author. Voucher specimens have been Noctuidae). It is widely distributed in deposited with the Cornell University Insect Europe in open field to shaded habitats. Collection, Department of Entomology, Itha- In some years and locations it defoliates ca, NY (under Lot Number 1263). entire stands of Vincetoxicum hirundina- Diapausing pupae were overwintered ria Medik., its primary host plant (Förare at 5°C and a 10:14 hour (L:D) photoperiod for 1995, Leimu and Lehtilä 2006). The moth up to 9 months. Pupae were then transferred overwinters as a pupa in leaf litter and has to a chamber set at 14:10 hour (L:D) and one-two generations per year. Two genera- 25:20°C for adult emergence, mating, and tions have been reported in some areas of oviposition. Two groups of adult moths were central Europe (Förare 1995) that would held in 60 3 60 3 60 cm aluminum-mesh cag- have similar latitudes to northern New York es containing honey-water and potted pale and southern Ontario. Abrostola asclepiadis or black swallow-wort plants for oviposition. appears to be host specific to Vincetoxicum Leaves with egg masses were collected daily spp. (Hazlehurst 2011). However, a single (< 24 hour post-oviposition) to minimize the defoliation of black or pale swallow-wort time at a non-experimental photoperiod. has a limited effect on the plants (Weed et Initial diapause test. Neonate lar- al. 2011a, Milbrath et al. 2019). A bivoltine vae (1st laboratory generation) were placed population of A. asclepiadis that can damage individually into ventilated 0.25 liter plastic the plants over a greater duration of the vials and randomly assigned to custom-made season is therefore desired for release into programmable chambers set to 20 or 25˚C North America. Many noctuid species have a and one of six photoperiod treatments facultative diapause, in which the number of at each temperature (hours, L:D): 13:11, generations produced depends in part on the 16:8, 13:11 to 16:8 fast, 16:8 to 13:11 fast, response of populations at a given latitude 13:11 to 16:8 slow, or 16:8 to 13:11 slow. A to environmental cues such as photoperiod short day of 13 hours represents natural (Tauber et al. 1986, Saulich et al. 2017). day lengths in the North Caucasus in ear- No diapause-induction studies have been ly-April or early-September, and a long day conducted with A. asclepiadis. of 16 hours exceeds the longest summer Our objective was to determine the day length (sunrise to sunset, Fig. 1). For potential number of generations of different the fast photoperiod change, larvae were populations of A. asclepiadis that could oc- transferred to the alternate photoperiod at cur in the invasive range of swallow-worts. approximately the third instar or halfway Populations were exposed to photoperiods through their larval development (day 11 at they would typically experience during the 20°C, day 8 at 25˚C). For the slow change, growing season in the northeastern U.S. day length was increased (or decreased) daily and southeastern Canada. The results were in a stepwise fashion over a 5 day (20°C) or to be used in concert with separate impact 3 day (25°C) period. Ten larvae were used studies and a population matrix model for per treatment combination for each of the swallow-worts (Milbrath et al. 2018, 2019) to two Russian populations for a total of 240 predict the efficacy of this candidate agent. larvae. Larvae were fed excised leaves from Vincetoxicum sp. plants that had also been Materials and Methods collected from the North Caucasus region. The larvae were checked daily and leaves Insect cultures. Eggs of Russian A. were replaced. Upon pupation, pupae were asclepiadis were collected 29 May–6 June maintained under their same experimental 2013 from Vincetoxicum spp. leaves in the rearing conditions for an additional 40 days, Russian North Caucasus, near Kislovodsk which is over twice the expected time for (43°56.400' N, 42°41.734' E) and Borgus- emergence from non-diapausing pupae (L. tanskaya (44°02.0436' N, 42°30.161' E). Eggs Milbrath, unpublished data). Live pupae were transported to the Zoological Institute, that had not emerged as adults at the end Russian Academy of Sciences, St. Petersburg of this period were considered to be in dia- for the first diapause experiment (see Ini- pause. Temperature, photoperiod and source tial diapause test). Diapausing pupae were population were treated as a single combined subsequently shipped to the senior author factor and tested against the categorical data for additional experiments described below. of diapause (yes or no) using the G-test with Eggs of French A.
Recommended publications
  • Fauna Lepidopterologica Volgo-Uralensis" 150 Years Later: Changes and Additions
    ©Ges. zur Förderung d. Erforschung von Insektenwanderungen e.V. München, download unter www.zobodat.at Atalanta (August 2000) 31 (1/2):327-367< Würzburg, ISSN 0171-0079 "Fauna lepidopterologica Volgo-Uralensis" 150 years later: changes and additions. Part 5. Noctuidae (Insecto, Lepidoptera) by Vasily V. A n ik in , Sergey A. Sachkov , Va d im V. Z o lo t u h in & A n drey V. Sv ir id o v received 24.II.2000 Summary: 630 species of the Noctuidae are listed for the modern Volgo-Ural fauna. 2 species [Mesapamea hedeni Graeser and Amphidrina amurensis Staudinger ) are noted from Europe for the first time and one more— Nycteola siculana Fuchs —from Russia. 3 species ( Catocala optata Godart , Helicoverpa obsoleta Fabricius , Pseudohadena minuta Pungeler ) are deleted from the list. Supposedly they were either erroneously determinated or incorrect noted from the region under consideration since Eversmann 's work. 289 species are recorded from the re­ gion in addition to Eversmann 's list. This paper is the fifth in a series of publications1 dealing with the composition of the pres­ ent-day fauna of noctuid-moths in the Middle Volga and the south-western Cisurals. This re­ gion comprises the administrative divisions of the Astrakhan, Volgograd, Saratov, Samara, Uljanovsk, Orenburg, Uralsk and Atyraus (= Gurjev) Districts, together with Tataria and Bash­ kiria. As was accepted in the first part of this series, only material reliably labelled, and cover­ ing the last 20 years was used for this study. The main collections are those of the authors: V. A n i k i n (Saratov and Volgograd Districts), S.
    [Show full text]
  • The Moths Fauna (Lepidoptera) of Şile in the Asian Part of Istanbul Province, Turkey (Pl
    Esperiana Band 14: 545-558 Schwanfeld, 19. Dezember 2008 ISBN 3-938249-08-0 The Moths Fauna (Lepidoptera) of Şile in the Asian Part of Istanbul Province, Turkey (pl. 39) Thomas BARON Key Words: Lepidoptera, Noctuoidea, Turkey, Istanbul Stichworte: Lepidoptera, Noctuoidea, Türkei, Istanbul Deutsche Zusammenfassung Der vorliegende Artikel berichtet über die Fangergebnisse von Noctuoiden und anderen Nachtfaltern in Şile, einer Kleinstadt am Schwarzen Meer in Westanatolien / Türkei. Der Ort und der Landkeis Şile sind Teil der Provinz Istanbul. Einige weitere Fangergeb- nisse des Autors in anderen Teilen der Provinz Istanbul sind ebenfalls aufgeführt. Betrachtet wurden Arten der Familien Notodontidae, Nolidae, Arctiidae, Lymantriidae, Erebidae, Noctuidae, Sphingidae, Lasiocam- pidae, Saturniidae, Drepanidae und Thyatiridae. Nicht berücksichtigt wurden Microlepidoptera und Geometridae. Die Artenliste wurde, wo nötig oder sinnvoll, mit einigen zusätzlichen Angaben angereichert, die allgemeine Verbreitung, ähnliche Arten oder das Vorkommen in Şile und anderen Teilen der Provinz Istanbul kommentieren. Für jede Art wird mit römischen Ziffern angegeben, in welchem Monat die Fänge erfolgt sind. Hierbei bedeutet (b) Anfang, (m) Mitte und (e) Ende des Monats. Die Zahl der gefangenen Spezimens wurde als grober Schätzwert für die tatsächliche Häufigkeit verwandt und die Arten dement- sprechend in vier Kategorien eingeteilt: vc – sehr häufig c – häufig s - vereinzelt r – selten Es wird deutlich, dass die Fauna Istanbuls derjenigen Rumäniens und mehr noch derjenigen Bulgariens ähnelt, beides Länder, die ebenfalls am Schwarzen Meer liegen. Da Istanbul aber auch mediterranen Einflüssen unterliegt, ist eine stärkere Vertretung des mediterranen Faunenelementes zu beobachten. Nur eine der festgestellten Arten wurde bisher in Bulgarien noch nicht gefunden, für Rumänien sind es einige mehr.
    [Show full text]
  • Field Bindweed (Convolvulus Arvensis): “All ” Tied Up
    Weed Technology Field bindweed (Convolvulus arvensis): “all ” www.cambridge.org/wet tied up Lynn M. Sosnoskie1 , Bradley D. Hanson2 and Lawrence E. Steckel3 1 2 Intriguing World of Weeds Assistant Professor, School of Integrative Plant Science, Cornell University, Geneva, NY USA; Cooperative Extension Specialist, Department of Plant Science, University of California – Davis, Davis, CA, USA and 3 Cite this article: Sosnoskie LM, Hanson BD, Professor, Department of Plant Sciences, University of Tennessee, Jackson, TN, USA Steckel LE (2020) Field bindweed (Convolvulus arvensis): “all tied up”. Weed Technol. 34: 916–921. doi: 10.1017/wet.2020.61 Received: 22 March 2020 Revised: 2 June 2020 But your snobbiness, unless you persistently root it out like the bindweed it is, sticks by you till your Accepted: 4 June 2020 grave. – George Orwell First published online: 16 July 2020 The real danger in a garden came from the bindweed. That moved underground, then surfaced and took hold. Associate Editor: Strangling plant after healthy plant. Killing them all, slowly. And for no apparent reason, except that it was Jason Bond, Mississippi State University nature. – Louise Penny Author for correspondence: Lynn M. Sosnoskie, Cornell University, 635 W. Introduction North Avenue, Geneva, NY 14456. (Email: [email protected]) Field bindweed (Convolvulus arvensis L.) is a perennial vine in the Convolvulaceae, or morning- glory family, which includes approximately 50 to 60 genera and more than 1,500 species (Preston 2012a; Stefanovic et al. 2003). The family is in the order Solanales and is characterized by alternate leaves (when present) and bisexual flowers that are 5-lobed, folded/pleated in the bud, and trumpet-shaped when emerged (Preston 2012a; Stefanovic et al.
    [Show full text]
  • Acronicta Rubticoma Guenee. Black Light; Lakehurst, June 4. Acronicta Dactylina Grote, Melanic Form
    VOLUME 24, NUMBER 1 3 NOcruIDAE Acronicta rubTicoma Guenee. Black light; Lakehurst, June 4. Acronicta dactylina Grote, melanic form. Black light; Lebanon, June 27. A new record for the State. Eurois occulta Linnaeus. Black light; Montague, August 27. Oncocnemis saundersiana Grote. Black light; Lebanon, October 28. Agrotis buchholzi Barnes & Benjamin. Black light, Lakehurst, June 4. Eupsilia morrisoni Grote. Black light; Lebanon, November 18 and 23. Neperigea costa Barnes & Benjamin. Black light; Montague, July 27. A new record for the State. Magusa orbifera, "divaricata" Grote. Black light, Lebanon, August 21. Amolita roseola Smith. Black light; Montague, July 30. A new record for the State. Abrostola urentis Guenee. Black light; Montague, October 10. Catocala maestosa Hulst. Bait trap; Lebanon, August 28. A new record for the State. Zale phaeocapna Franclemont. Black light; Lebanon, April 27. Deter­ mined by genitalic dissection. A new record for the State. Zale metatoides McDunnough. Black light; Montague, June 10. A new record for the State. Gabara pulverosalis Walker. Black light; Lakehurst August 14. A new record for the State. Rivula propinqaZis Guenee. Black light; Lebanon, October 28. I wish to thank C. F. dos Passos and A. E. Brower for determining some of the specimens. A NEW SUBSPECIES OF BREPHIDIUM EXILIS FROM YUCATAN (LEPIDOPTERA: LYCAENIDAE) HARTIY K. CLENCH Carnegie Museum, Pittsburgh, Pennsylvania 15213 Some years ago Eduardo C. Welling, of Merida, Yucatan, Mexico, sent me a few specimens of a Brephidium he had taken on the north coast of Yucatan. It was obvious, as soon as they had been examined genitalically, that they represented exilis Boisduval, but they belonged to 4 JOURNAL OF THE LEPIDOPTERISTS' SOCIETY Fig.
    [Show full text]
  • Recerca I Territori V12 B (002)(1).Pdf
    Butterfly and moths in l’Empordà and their response to global change Recerca i territori Volume 12 NUMBER 12 / SEPTEMBER 2020 Edition Graphic design Càtedra d’Ecosistemes Litorals Mediterranis Mostra Comunicació Parc Natural del Montgrí, les Illes Medes i el Baix Ter Museu de la Mediterrània Printing Gràfiques Agustí Coordinadors of the volume Constantí Stefanescu, Tristan Lafranchis ISSN: 2013-5939 Dipòsit legal: GI 896-2020 “Recerca i Territori” Collection Coordinator Printed on recycled paper Cyclus print Xavier Quintana With the support of: Summary Foreword ......................................................................................................................................................................................................... 7 Xavier Quintana Butterflies of the Montgrí-Baix Ter region ................................................................................................................. 11 Tristan Lafranchis Moths of the Montgrí-Baix Ter region ............................................................................................................................31 Tristan Lafranchis The dispersion of Lepidoptera in the Montgrí-Baix Ter region ...........................................................51 Tristan Lafranchis Three decades of butterfly monitoring at El Cortalet ...................................................................................69 (Aiguamolls de l’Empordà Natural Park) Constantí Stefanescu Effects of abandonment and restoration in Mediterranean meadows .......................................87
    [Show full text]
  • Contribution to the Knowledge of the Fauna of Bombyces, Sphinges And
    driemaandelijks tijdschrift van de VLAAMSE VERENIGING VOOR ENTOMOLOGIE Afgiftekantoor 2170 Merksem 1 ISSN 0771-5277 Periode: oktober – november – december 2002 Erkenningsnr. P209674 Redactie: Dr. J–P. Borie (Compiègne, France), Dr. L. De Bruyn (Antwerpen), T. C. Garrevoet (Antwerpen), B. Goater (Chandlers Ford, England), Dr. K. Maes (Gent), Dr. K. Martens (Brussel), H. van Oorschot (Amsterdam), D. van der Poorten (Antwerpen), W. O. De Prins (Antwerpen). Redactie-adres: W. O. De Prins, Nieuwe Donk 50, B-2100 Antwerpen (Belgium). e-mail: [email protected]. Jaargang 30, nummer 4 1 december 2002 Contribution to the knowledge of the fauna of Bombyces, Sphinges and Noctuidae of the Southern Ural Mountains, with description of a new Dichagyris (Lepidoptera: Lasiocampidae, Endromidae, Saturniidae, Sphingidae, Notodontidae, Noctuidae, Pantheidae, Lymantriidae, Nolidae, Arctiidae) Kari Nupponen & Michael Fibiger [In co-operation with Vladimir Olschwang, Timo Nupponen, Jari Junnilainen, Matti Ahola and Jari- Pekka Kaitila] Abstract. The list, comprising 624 species in the families Lasiocampidae, Endromidae, Saturniidae, Sphingidae, Notodontidae, Noctuidae, Pantheidae, Lymantriidae, Nolidae and Arctiidae from the Southern Ural Mountains is presented. The material was collected during 1996–2001 in 10 different expeditions. Dichagyris lux Fibiger & K. Nupponen sp. n. is described. 17 species are reported for the first time from Europe: Clostera albosigma (Fitch, 1855), Xylomoia retinax Mikkola, 1998, Ecbolemia misella (Püngeler, 1907), Pseudohadena stenoptera Boursin, 1970, Hadula nupponenorum Hacker & Fibiger, 2002, Saragossa uralica Hacker & Fibiger, 2002, Conisania arida (Lederer, 1855), Polia malchani (Draudt, 1934), Polia vespertilio (Draudt, 1934), Polia altaica (Lederer, 1853), Mythimna opaca (Staudinger, 1899), Chersotis stridula (Hampson, 1903), Xestia wockei (Möschler, 1862), Euxoa dsheiron Brandt, 1938, Agrotis murinoides Poole, 1989, Agrotis sp.
    [Show full text]
  • Check List of Noctuid Moths (Lepidoptera: Noctuidae And
    Бiологiчний вiсник МДПУ імені Богдана Хмельницького 6 (2), стор. 87–97, 2016 Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 6 (2), pp. 87–97, 2016 ARTICLE UDC 595.786 CHECK LIST OF NOCTUID MOTHS (LEPIDOPTERA: NOCTUIDAE AND EREBIDAE EXCLUDING LYMANTRIINAE AND ARCTIINAE) FROM THE SAUR MOUNTAINS (EAST KAZAKHSTAN AND NORTH-EAST CHINA) A.V. Volynkin1, 2, S.V. Titov3, M. Černila4 1 Altai State University, South Siberian Botanical Garden, Lenina pr. 61, Barnaul, 656049, Russia. E-mail: [email protected] 2 Tomsk State University, Laboratory of Biodiversity and Ecology, Lenina pr. 36, 634050, Tomsk, Russia 3 The Research Centre for Environmental ‘Monitoring’, S. Toraighyrov Pavlodar State University, Lomova str. 64, KZ-140008, Pavlodar, Kazakhstan. E-mail: [email protected] 4 The Slovenian Museum of Natural History, Prešernova 20, SI-1001, Ljubljana, Slovenia. E-mail: [email protected] The paper contains data on the fauna of the Lepidoptera families Erebidae (excluding subfamilies Lymantriinae and Arctiinae) and Noctuidae of the Saur Mountains (East Kazakhstan). The check list includes 216 species. The map of collecting localities is presented. Key words: Lepidoptera, Noctuidae, Erebidae, Asia, Kazakhstan, Saur, fauna. INTRODUCTION The fauna of noctuoid moths (the families Erebidae and Noctuidae) of Kazakhstan is still poorly studied. Only the fauna of West Kazakhstan has been studied satisfactorily (Gorbunov 2011). On the faunas of other parts of the country, only fragmentary data are published (Lederer, 1853; 1855; Aibasov & Zhdanko 1982; Hacker & Peks 1990; Lehmann et al. 1998; Benedek & Bálint 2009; 2013; Korb 2013). In contrast to the West Kazakhstan, the fauna of noctuid moths of East Kazakhstan was studied inadequately.
    [Show full text]
  • Ecology and Management of Field Bindweed (Convolvulus Arvensis
    United States Department of Agriculture NATURAL RESOURCES CONSERVATION SERVICE Invasive Species Technical Note No. MT-9 February 2007 Ecology and Management of field bindweed [Convolvulus arvensis L.] by Jim Jacobs, NRCS Invasive Species Specialist, Bozeman, Montana Figure 1. Field bindweed forms mats of trailing, twining vines. Abstract Field bindweed is a persistent perennial weed in the Convolvulaceae taxonomic family found on cultivated fields, orchards, plantations, pastures, lawns, gardens, roadsides and along railways. It is listed as one of the ten most serious weed problems worldwide. Its extensive, competitive root system is capable of vegetative reproduction. This combined with long-lived seeds makes it difficult to manage. Dense tangled mats formed from the trailing vines, and vines climbing on crops, reduce crop yields and increase production costs. Over 500 seeds per plant can be produced from the funnel-shaped flowers. Field bindweed is native to the Mediterranean region and was first recorded in the United States in 1739. In Montana, it was first collected in 1891 from Missoula County near the University of Montana, and by 2001 it had been reported from all Montana Counties except Richland and Fallon (http://invader.dbs.umt.edu). Propagules of field bindweed migrate as contaminants of crop seed and hay, when attached to farming equipment, and they have been intentionally introduced as ornamental or medicinal plants. Once established, field bindweed will persist after most control applications. However, the leaves are not shade tolerant and competitive plants will suppress field bindweed and reduce its seed production. On croplands, frequent cultivations will reduce root reserves; however infestations can increase under no-till or reduced till management.
    [Show full text]
  • Towards Biological Control of Swallow-Worts: the Ugly, the Bad and the Good
    200 Session 4 Target and Agent Selection Towards Biological Control of Swallow-Worts: The Ugly, the Bad and the Good R. Sforza1, M. Augé1, M.-C. Bon1, R. Dolgovskaya2, Y. Garnier1, M. Jeanneau1, J. Poidatz1, S. Reznik2, O. Simonot1, M. Volkovitch2 and L. R. Milbrath3 1USDA-ARS European Biological Control Laboratory, CS 90013 Montferrier sur Lez, 34988 St Gély du Fesc, France [email protected] 2Zoological Institute, Anglijskij prospect, 32, St.Petersburg 190121, Russia 3USDA Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, 538 Tower Road, Ithaca, NY 14853, USA Abstract Native to Eurasia, swallow-worts (“the ugly:” Vincetoxicum rossicum (Kleopov) Barbarich and V. nigrum L. - Apocynaceae) have invaded forested landscapes and prevented native plant regeneration in eastern North America. We first aimed to understand where the invasive populations of both species come from, and then evaluated the impact of potential biological control agents (BCAs). The following phytophagous BCAs have been studied since 2009: Chrysochus asclepiadeus (Pallas) (Col., Chrysomelidae), Abrostola asclepiadis (Denis & Schiffermuller) and Abrostola clarissa (Staudinger) (Lep., Noctuidae). Adults of the beetle feed on leaves while larvae are root feeders, and Abrostola spp. larvae are foliage feeders. Genetically, none of the native V. nigrum populations analyzed to date possesses exactly the major multilocus genotype detected in the invasive North American populations, in contrast to V. rossicum, for which source populations of the invasion are found to be in Ukraine. We performed choice and no-choice specificity tests with French and Russian populations of C. asclepiadeus. We evaluated adult herbivory in no-choice tests on three Vincetoxicum spp., as controls, and seven Asclepias spp.: C.
    [Show full text]
  • Monitoring Report Spring/Summer 2015 Contents
    Wimbledon and Putney Commons Monitoring Report Spring/Summer 2015 Contents CONTEXT 1 A. SYSTEMATIC RECORDING 3 METHODS 3 OUTCOMES 6 REFLECTIONS AND RECOMMENDATIONS 18 B. BIOBLITZ 19 REFLECTIONS AND LESSONS LEARNT 21 C. REFERENCES 22 LIST OF FIGURES Figure 1 Location of The Plain on Wimbledon and Putney Commons 2 Figure 2 Experimental Reptile Refuge near the Junction of Centre Path and Somerset Ride 5 Figure 3 Contrasting Cut and Uncut Areas in the Conservation Zone of The Plain, Spring 2015 6/7 Figure 4 Notable Plant Species Recorded on The Plain, Summer 2015 8 Figure 5 Meadow Brown and white Admiral Butterflies 14 Figure 6 Hairy Dragonfly and Willow Emerald Damselfly 14 Figure 7 The BioBlitz Route 15 Figure 8 Vestal and European Corn-borer moths 16 LIST OF TABLES Table 1 Mowing Dates for the Conservation Area of The Plain 3 Table 2 Dates for General Observational Records of The Plain, 2015 10 Table 3 Birds of The Plain, Spring - Summer 2015 11 Table 4 Summary of Insect Recording in 2015 12/13 Table 5 Rare Beetles Living in the Vicinity of The Plain 15 LIST OF APPENDICES A1 The Wildlife and Conservation Forum and Volunteer Recorders 23 A2 Sward Height Data Spring 2015 24 A3 Floral Records for The Plain : Wimbledon and Putney Commons 2015 26 A4 The Plain Spring and Summer 2015 – John Weir’s General Reports 30 A5 a Birds on The Plain March to September 2015; 41 B Birds on The Plain - summary of frequencies 42 A6 ai Butterflies on The Plain (DW) 43 aii Butterfly long-term transect including The Plain (SR) 44 aiii New woodland butterfly transect
    [Show full text]
  • Botolph's Bridge, Hythe Redoubt, Hythe Ranges West And
    Folkestone and Hythe Birds Tetrad Guide: TR13 G (Botolph’s Bridge, Hythe Redoubt, Hythe Ranges West, and Nickolls Quarry) The tetrad TR13 G contains a number of major local hotspots, with Nickolls Quarry, the Botolph’s Bridge area and part of Hythe Ranges located within its boundaries. As a consequence the tetrad has the richest diversity of breeding birds in the local area, with 71 species having a status of at least possible in the latest BTO Atlas survey. It also had the highest total of species (125) in the winter Atlas survey. Sadly a major housing development is now in progress at the Nickolls Quarry site and much of the best habitat is now being disturbed or lost. Nickolls Quarry has been watched since the late 1940s, though early coverage was patchy, particularly in the 1960s and 1970s. As a working quarry the site has undergone significant changes during this time, expanding from two small pits to a much larger area of open water, some of which has since been backfilled. During 2001 to 2004 a series of shallow pools were created which proved particularly attractive to waders. Nickolls Quarry in 1952 Nickolls Quarry in 1998 Looking roughly northwards across the 'old pit' Looking south-west across the site towards the Hythe Roughs towards Dungeness Although a major housing development is underway on the site it still contains some interesting habitats. The lake is easily the largest area of open water in the local area and so remains one of the best areas for wildfowl, particularly during cold weather, for example in December 2010 when there were peak counts of 170 Wigeon, 107 Coot, 104 Pochard, 100 Teal, 53 Tufted Duck, 34 Gadwall, 18 Mute Swan, 12 Pintail, 10 Bewick’s Swan, 8 Shoveler, singles of Goldeneye and Goosander, and 300 White-fronted Geese flew over.
    [Show full text]
  • Biases in Estimation of Insect Herbivory from Herbarium Specimens Mikhail V
    www.nature.com/scientificreports OPEN Biases in estimation of insect herbivory from herbarium specimens Mikhail V. Kozlov 1*, Irina V. Sokolova2, Vitali Zverev 1, Alexander A. Egorov3, Mikhail Y. Goncharov4 & Elena L. Zvereva 1 Information regarding plant damage by insects in the past is essential to explore impacts of climate change on herbivory. We asked whether insect herbivory measured from herbarium specimens refects the levels of herbivory occurring in nature at the time of herbarium sampling. We compared herbivory measurements between herbarium specimens collected by botany students and ecological samples collected simultaneously by the authors by a method that minimized unconscious biases, and asked herbarium curators to select one of two plant specimens, which difered in leaf damage, for their collections. Both collectors and curators generally preferred specimens with lesser leaf damage, but the strength of this preference varied among persons. In addition, the diferences in measured leaf damage between ecological samples and herbarium specimens varied among plant species and increased with the increase in feld herbivory. Consequently, leaf damage in herbarium specimens did not correlate with the actual level of herbivory. We conclude that studies of herbarium specimens produce biased information on past levels of herbivory, because leaf damage measured from herbarium specimens not only underestimates feld herbivory, but it is not proportional to the level of damage occurring in nature due to multiple factors that cannot be controlled in data analysis. Te data on the intensity of biotic interactions during pre-industrial times are badly needed for evaluation of the extent of the pervasive infuence of human-induced global environmental changes on organisms, populations, communities and entire ecosystems.
    [Show full text]