Chapter 8 Insects of Canola, Mustard, and Flax in Canadian Grasslands
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Entomology of the Aucklands and Other Islands South of New Zealand: Lepidoptera, Ex Cluding Non-Crambine Pyralidae
Pacific Insects Monograph 27: 55-172 10 November 1971 ENTOMOLOGY OF THE AUCKLANDS AND OTHER ISLANDS SOUTH OF NEW ZEALAND: LEPIDOPTERA, EX CLUDING NON-CRAMBINE PYRALIDAE By J. S. Dugdale1 CONTENTS Introduction 55 Acknowledgements 58 Faunal Composition and Relationships 58 Faunal List 59 Key to Families 68 1. Arctiidae 71 2. Carposinidae 73 Coleophoridae 76 Cosmopterygidae 77 3. Crambinae (pt Pyralidae) 77 4. Elachistidae 79 5. Geometridae 89 Hyponomeutidae 115 6. Nepticulidae 115 7. Noctuidae 117 8. Oecophoridae 131 9. Psychidae 137 10. Pterophoridae 145 11. Tineidae... 148 12. Tortricidae 156 References 169 Note 172 Abstract: This paper deals with all Lepidoptera, excluding the non-crambine Pyralidae, of Auckland, Campbell, Antipodes and Snares Is. The native resident fauna of these islands consists of 42 species of which 21 (50%) are endemic, in 27 genera, of which 3 (11%) are endemic, in 12 families. The endemic fauna is characterised by brachyptery (66%), body size under 10 mm (72%) and concealed, or strictly ground- dwelling larval life. All species can be related to mainland forms; there is a distinctive pre-Pleistocene element as well as some instances of possible Pleistocene introductions, as suggested by the presence of pairs of species, one member of which is endemic but fully winged. A graph and tables are given showing the composition of the fauna, its distribution, habits, and presumed derivations. Host plants or host niches are discussed. An additional 7 species are considered to be non-resident waifs. The taxonomic part includes keys to families (applicable only to the subantarctic fauna), and to genera and species. -
Is Diadegma Insulare Or Microplitis Plutellae a More Effective Parasitoid of the Diamondback Moth, Plutella Xylostella ?
War of the Wasps: Is Diadegma insulare or Microplitis plutellae a More Effective Parasitoid of the Diamondback Moth, Plutella xylostella ? ADAMO YOUNG 108 Homestead Street, Ottawa Ontario K2E 7N6 Canada; email: [email protected] Young, Adamo. 2013. War of the wasps: is Diadegma insulare or Microplitis plutellae a more effective parasitoid of the Dia - mondback Moth, Plutella xylostella ? Canadian Field-Naturalist 127(3): 211–215. Parasitism levels by Diadegma insulare (Muesebeck) (Hymenoptera: Ichneumonidae) and Microplitis plutellae (Haliday) (Hymenoptera: Braconidae) at various densities of their host, Plutella xylostella (L.) (Lepidoptera: Plutellidae), were assessed. Cages with densities of 10 hosts, 20 hosts, and 40 hosts were set up, with the cage volume (40 500 cm 3) and number of wasps (2 females) remaining constant. The host populations were also exposed to the wasps for two different exposure times: 1 day and 3 days. The study showed that D. insulare was a better parasitoid overall, achieving a level of parasitism equal to or higher than M. plutellae at all densities. Microplitis plutellae performed best at a lower host density (76% ± 9% of 10 hosts vs. 43% ± 3% of 40 hosts). Diadegma insulare performed similarly at all densities tested (75% ± 5% of 10 hosts, 83% ± 4% of 20 hosts, and 79% ± 6% of 40 hosts). This suggests that D. insulare may be the better parasitoid overall and should be applied in severe, large-scale infestations, while M. plutellae may be better for small-scale infestations. Key Words: Diamondback Moth; Plutella xylostella; Microplitis plutellae; Diadegma insulare; parasitoids; biological control Introduction ical control can provide better control than pesticides. -
1 Appendix 3. Grasslands National Park Taxonomy Report
Appendix 3. Grasslands National Park Taxonomy Report Class Order Family Genus Species Arachnida Araneae Araneidae Metepeira Metepeira palustris Neoscona Neoscona arabesca Clubionidae Clubiona Clubiona kastoni Clubiona mixta Clubiona moesta Clubiona mutata Gnaphosidae Drassodes Drassodes neglectus Micaria Micaria gertschi Nodocion Nodocion mateonus Linyphiidae Erigone Erigone aletris Spirembolus Spirembolus mundus Lycosidae Alopecosa Alopecosa aculeata Pardosa Pardosa mulaiki Schizocosa Schizocosa mccooki Mimetidae Mimetus Mimetus epeiroides Philodromidae Ebo Ebo iviei Philodromus Philodromus cespitum Philodromus histrio Philodromus praelustris Titanebo Titanebo parabolis Salticidae Euophrys Euophrys monadnock 1 Habronattus Habronattus sp. 2GAB Phidippus Phidippus purpuratus Tetragnathidae Tetragnatha Tetragnatha laboriosa Thomisidae Mecaphesa Mecaphesa carletonica Xysticus Xysticus ampullatus Xysticus ellipticus Xysticus emertoni Xysticus luctans Mesostigmata Blattisociidae Cheiroseius Parasitidae Phytoseiidae Opiliones Phalangiidae Phalangium Phalangium opilio Sclerosomatidae Togwoteeus Trombidiformes Anystidae Bdellidae Erythraeidae Abrolophus Leptus Eupodidae Hydryphantidae Pionidae Piona Pygmephoridae Stigmaeidae Collembola Entomobryomorpha Entomobryidae Entomobrya Entomobrya atrocincta Lepidocyrtus Lepidocyrtus cyaneus Symphypleona Bourletiellidae Insecta Coleoptera Anthribidae 2 Brentidae Kissingeria Kissingeria extensum Microon Microon canadensis Trichapion Trichapion centrale Trichapion commodum Cantharidae Dichelotarsus Dichelotarsus -
Improving Integrated Crop Management by Conserving Natural Enemies of Insect Pests
Improving Integrated Crop Management by Conserving Natural Enemies of Insect Pests Dr. Lloyd Dosdall, Department of Agricultural, Food and Nutritional Science, University of Alberta and Doug Moisey, Canola Council of Canada Project Code: CARP 2004-01 Final Report: March 2007 Field studies were undertaken in southern Alberta and Saskatchewan during the 2006 field season to investigate different management strategies for enhancing the effectiveness of natural enemies of cabbage seedpod weevil and diamondback moth in canola. The study showed that the level of parasitism of the cabbage seedpod weevil has increased dramatically in recent years, and the hymenopteran wasp, Diadegma insulare, is capable of causing significant reductions in diamondback moth populations. Canola growers in regions infested with damaging infestations of cabbage seedpod weevil should maintain recommended seeding rates 2.5 to 4.5 lb/acre (3 to 5 kg/ha) for optimal yields and consistent times to crop maturity. However, early seeding (late April) predisposes the crop to greater attack by the cabbage seedpod weevil and should be avoided. Canola insect pests are subject to attack by a wide range of natural enemies, comprising parasitoids, predators, and pathogens, many of which help limit or reduce pest populations. However, in spite of their economic importance, comparatively little is known of their biology and the factors that can enhance their effectiveness. The cabbage seedpod weevil, Ceutorhynchus obstrictus and the diamondback moth, Plutella xylostella are two important insect pests of canola in western Canada that can be subject to considerable population mortality by natural enemies. In this project, field studies were conducted in southern Alberta and Saskatchewan during the 2006 field season to investigate aspects of improved integrated crop management by conserving natural enemies of the cabbage seedpod weevil and the diamondback moth. -
1997 Biological Control of Insect Pests in Canola
Biological Control of Insect Pests in Canola: A case study with Bertha Armyworm. Martin Erlandson and Peter Mason, Agriculture and Agri-Food Canada Saskatoon Research Centre, 107 Science Place, Saskatoon, Saskatchewan S7N OX2 Introduction to Biological Control Biological control is “the use of natural enemies, including microorganisms and parasites & predators, to control pests. The objective is to reduce a pest population to below the economic threshold. Chemical insecticides have become less acceptable due to a range concerns, including: i) human health problems due to acute and sublethal toxicity; ii) environmental problems due to the broad target-spectrum of chemical pesticides and the subsequent negative impacts on invertebrate and vertebrate non-target species; and iii) development of insecticide-resistant pests. The host-specificity of most biological control agentsis positive from the point of view of environmental and human health safety issues. Their target specificity also makes them excellent candidates for use in integrated pest management programs. Strategies for control of insect pest populations have to be viewed as ecological manipulations based on economic action thresholds. An integrated approach to insect pest management, “the practical control of insect populations by bringing together the best aspects of all control methods (chemical, biological, cultural, and cultivar resistance) in an ecologically sound manner”, is the best strategy for insect control in modem agricultural systems. Regulation by Natural Enemies Insect pest populations fluctuate in response to biotic (natural enemies, competition with other species and food quality) and abiotic (climate and habitat) factors. If one or more of these 1400 _ factors favour population growth -e- Pest *‘s ..O.- Natwa Natural Enemy I pest outbreaks occur. -
Zoogeography of the Holarctic Species of the Noctuidae (Lepidoptera): Importance of the Bering Ian Refuge
© Entomologica Fennica. 8.XI.l991 Zoogeography of the Holarctic species of the Noctuidae (Lepidoptera): importance of the Bering ian refuge Kauri Mikkola, J, D. Lafontaine & V. S. Kononenko Mikkola, K., Lafontaine, J.D. & Kononenko, V. S. 1991 : Zoogeography of the Holarctic species of the Noctuidae (Lepidoptera): importance of the Beringian refuge. - En to mol. Fennica 2: 157- 173. As a result of published and unpublished revisionary work, literature compi lation and expeditions to the Beringian area, 98 species of the Noctuidae are listed as Holarctic and grouped according to their taxonomic and distributional history. Of the 44 species considered to be "naturall y" Holarctic before this study, 27 (61 %) are confirmed as Holarctic; 16 species are added on account of range extensions and 29 because of changes in their taxonomic status; 17 taxa are deleted from the Holarctic list. This brings the total of the group to 72 species. Thirteen species are considered to be introduced by man from Europe, a further eight to have been transported by man in the subtropical areas, and five migrant species, three of them of Neotropical origin, may have been assisted by man. The m~jority of the "naturally" Holarctic species are associated with tundra habitats. The species of dry tundra are frequently endemic to Beringia. In the taiga zone, most Holarctic connections consist of Palaearctic/ Nearctic species pairs. The proportion ofHolarctic species decreases from 100 % in the High Arctic to between 40 and 75 % in Beringia and the northern taiga zone, and from between 10 and 20 % in Newfoundland and Finland to between 2 and 4 % in southern Ontario, Central Europe, Spain and Primorye. -
Examining Population Structure of a Bertha Armyworm, Mamestra
RESEARCH ARTICLE Examining population structure of a bertha armyworm, Mamestra configurata (Lepidoptera: Noctuidae), outbreak in western North America: Implications for gene flow and dispersal 1☯³ 1☯³ 1 1 Martin A. ErlandsonID *, Boyd A. MoriID , Cathy CoutuID , Jennifer HolowachukID , 1 2 1 a1111111111 Owen O. Olfert , Tara D. Gariepy , Dwayne D. HegedusID * a1111111111 a1111111111 1 Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK CANADA, 2 London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON CANADA a1111111111 a1111111111 ☯ These authors contributed equally to this work. ³ These authors are co-first authors on this work. * [email protected] (MAE); [email protected] (DDH) OPEN ACCESS Abstract Citation: Erlandson MA, Mori BA, Coutu C, Holowachuk J, Olfert OO, Gariepy TD, et al. (2019) The bertha armyworm (BAW), Mamestra configurata, is a significant pest of canola (Bras- Examining population structure of a sica napus L. and B. rapa L.) in western North America that undergoes cyclical outbreaks bertha armyworm, Mamestra configurata every 6±8 years. During peak outbreaks millions of dollars are spent on insecticidal control (Lepidoptera: Noctuidae), outbreak in western North America: Implications for gene flow and and, even with control efforts, subsequent damage can result in losses worth millions of dol- dispersal. PLoS ONE 14(6): e0218993. https://doi. lars. Despite the importance of this pest insect, information is lacking on the dispersal ability org/10.1371/journal.pone.0218993 of BAW and the genetic variation of populations from across its geographic range which Editor: Tzen-Yuh Chiang, National Cheng Kung may underlie potential differences in their susceptibility to insecticides or pathogens. -
Check List of Noctuid Moths (Lepidoptera: Noctuidae And
Бiологiчний вiсник МДПУ імені Богдана Хмельницького 6 (2), стор. 87–97, 2016 Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 6 (2), pp. 87–97, 2016 ARTICLE UDC 595.786 CHECK LIST OF NOCTUID MOTHS (LEPIDOPTERA: NOCTUIDAE AND EREBIDAE EXCLUDING LYMANTRIINAE AND ARCTIINAE) FROM THE SAUR MOUNTAINS (EAST KAZAKHSTAN AND NORTH-EAST CHINA) A.V. Volynkin1, 2, S.V. Titov3, M. Černila4 1 Altai State University, South Siberian Botanical Garden, Lenina pr. 61, Barnaul, 656049, Russia. E-mail: [email protected] 2 Tomsk State University, Laboratory of Biodiversity and Ecology, Lenina pr. 36, 634050, Tomsk, Russia 3 The Research Centre for Environmental ‘Monitoring’, S. Toraighyrov Pavlodar State University, Lomova str. 64, KZ-140008, Pavlodar, Kazakhstan. E-mail: [email protected] 4 The Slovenian Museum of Natural History, Prešernova 20, SI-1001, Ljubljana, Slovenia. E-mail: [email protected] The paper contains data on the fauna of the Lepidoptera families Erebidae (excluding subfamilies Lymantriinae and Arctiinae) and Noctuidae of the Saur Mountains (East Kazakhstan). The check list includes 216 species. The map of collecting localities is presented. Key words: Lepidoptera, Noctuidae, Erebidae, Asia, Kazakhstan, Saur, fauna. INTRODUCTION The fauna of noctuoid moths (the families Erebidae and Noctuidae) of Kazakhstan is still poorly studied. Only the fauna of West Kazakhstan has been studied satisfactorily (Gorbunov 2011). On the faunas of other parts of the country, only fragmentary data are published (Lederer, 1853; 1855; Aibasov & Zhdanko 1982; Hacker & Peks 1990; Lehmann et al. 1998; Benedek & Bálint 2009; 2013; Korb 2013). In contrast to the West Kazakhstan, the fauna of noctuid moths of East Kazakhstan was studied inadequately. -
MOTHS and BUTTERFLIES LEPIDOPTERA DISTRIBUTION DATA SOURCES (LEPIDOPTERA) * Detailed Distributional Information Has Been J.D
MOTHS AND BUTTERFLIES LEPIDOPTERA DISTRIBUTION DATA SOURCES (LEPIDOPTERA) * Detailed distributional information has been J.D. Lafontaine published for only a few groups of Lepidoptera in western Biological Resources Program, Agriculture and Agri-food Canada. Scott (1986) gives good distribution maps for Canada butterflies in North America but these are generalized shade Central Experimental Farm Ottawa, Ontario K1A 0C6 maps that give no detail within the Montane Cordillera Ecozone. A series of memoirs on the Inchworms (family and Geometridae) of Canada by McGuffin (1967, 1972, 1977, 1981, 1987) and Bolte (1990) cover about 3/4 of the Canadian J.T. Troubridge fauna and include dot maps for most species. A long term project on the “Forest Lepidoptera of Canada” resulted in a Pacific Agri-Food Research Centre (Agassiz) four volume series on Lepidoptera that feed on trees in Agriculture and Agri-Food Canada Canada and these also give dot maps for most species Box 1000, Agassiz, B.C. V0M 1A0 (McGugan, 1958; Prentice, 1962, 1963, 1965). Dot maps for three groups of Cutworm Moths (Family Noctuidae): the subfamily Plusiinae (Lafontaine and Poole, 1991), the subfamilies Cuculliinae and Psaphidinae (Poole, 1995), and ABSTRACT the tribe Noctuini (subfamily Noctuinae) (Lafontaine, 1998) have also been published. Most fascicles in The Moths of The Montane Cordillera Ecozone of British Columbia America North of Mexico series (e.g. Ferguson, 1971-72, and southwestern Alberta supports a diverse fauna with over 1978; Franclemont, 1973; Hodges, 1971, 1986; Lafontaine, 2,000 species of butterflies and moths (Order Lepidoptera) 1987; Munroe, 1972-74, 1976; Neunzig, 1986, 1990, 1997) recorded to date. -
Kenai National Wildlife Refuge Species List, Version 2018-07-24
Kenai National Wildlife Refuge Species List, version 2018-07-24 Kenai National Wildlife Refuge biology staff July 24, 2018 2 Cover image: map of 16,213 georeferenced occurrence records included in the checklist. Contents Contents 3 Introduction 5 Purpose............................................................ 5 About the list......................................................... 5 Acknowledgments....................................................... 5 Native species 7 Vertebrates .......................................................... 7 Invertebrates ......................................................... 55 Vascular Plants........................................................ 91 Bryophytes ..........................................................164 Other Plants .........................................................171 Chromista...........................................................171 Fungi .............................................................173 Protozoans ..........................................................186 Non-native species 187 Vertebrates ..........................................................187 Invertebrates .........................................................187 Vascular Plants........................................................190 Extirpated species 207 Vertebrates ..........................................................207 Vascular Plants........................................................207 Change log 211 References 213 Index 215 3 Introduction Purpose to avoid implying -
Additions, Deletions and Corrections to An
Bulletin of the Irish Biogeographical Society No. 36 (2012) ADDITIONS, DELETIONS AND CORRECTIONS TO AN ANNOTATED CHECKLIST OF THE IRISH BUTTERFLIES AND MOTHS (LEPIDOPTERA) WITH A CONCISE CHECKLIST OF IRISH SPECIES AND ELACHISTA BIATOMELLA (STAINTON, 1848) NEW TO IRELAND K. G. M. Bond1 and J. P. O’Connor2 1Department of Zoology and Animal Ecology, School of BEES, University College Cork, Distillery Fields, North Mall, Cork, Ireland. e-mail: <[email protected]> 2Emeritus Entomologist, National Museum of Ireland, Kildare Street, Dublin 2, Ireland. Abstract Additions, deletions and corrections are made to the Irish checklist of butterflies and moths (Lepidoptera). Elachista biatomella (Stainton, 1848) is added to the Irish list. The total number of confirmed Irish species of Lepidoptera now stands at 1480. Key words: Lepidoptera, additions, deletions, corrections, Irish list, Elachista biatomella Introduction Bond, Nash and O’Connor (2006) provided a checklist of the Irish Lepidoptera. Since its publication, many new discoveries have been made and are reported here. In addition, several deletions have been made. A concise and updated checklist is provided. The following abbreviations are used in the text: BM(NH) – The Natural History Museum, London; NMINH – National Museum of Ireland, Natural History, Dublin. The total number of confirmed Irish species now stands at 1480, an addition of 68 since Bond et al. (2006). Taxonomic arrangement As a result of recent systematic research, it has been necessary to replace the arrangement familiar to British and Irish Lepidopterists by the Fauna Europaea [FE] system used by Karsholt 60 Bulletin of the Irish Biogeographical Society No. 36 (2012) and Razowski, which is widely used in continental Europe. -
MAMESTRA CONFIGURATA NUCLEOPOLYHEDROVIRUS (Maconpv): POTENTIAL CHITIN-BINDING PROTEINS and THEIR ROLE in ORAL INFECTIVITY
MAMESTRA CONFIGURATA NUCLEOPOLYHEDROVIRUS (MacoNPV): POTENTIAL CHITIN-BINDING PROTEINS AND THEIR ROLE IN ORAL INFECTIVITY A thesis submitted to the College of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science in the Department of Biology University of Saskatchewan Saskatoon By Amy Lynn Noakes © Copyright Amy Lynn Noakes, December 2012. All rights reserved. 1 PERMISSION TO USE In presenting this thesis/dissertation in partial fulfillment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis/dissertation in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis/dissertation work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis/dissertation or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis/dissertation. DISCLAIMER Reference in this thesis/dissertation to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement, recommendation, or favouring by the University of Saskatchewan. The views and opinions of the author expressed herein do not state or reflect those of the University of Saskatchewan, and shall not be used for advertising or product endorsement purposes.