Heterogeneity in Melanoma and the Microenvironment Cerys Sian

Total Page:16

File Type:pdf, Size:1020Kb

Heterogeneity in Melanoma and the Microenvironment Cerys Sian Heterogeneity in melanoma and the microenvironment Cerys Sian Manning University College London and Cancer Research UK London Research Institute PhD Supervisor: Dr Erik Sahai A thesis submitted for the degree of Doctor of Philosophy University College London January 2013 Declaration I Cerys Manning confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 2 Abstract This thesis addresses the signalling pathways and gene networks associated with melanoma cell motility in vivo and heterogeneity in tumour-associated vasculature. Melanoma metastasis begins with the acquisition of motility in the primary tumour, however, there is little characterisation of signalling pathways or microenvironments associated with melanoma motility in vivo. Intra-vital imaging of clonal signalling reporter cell-lines showed heterogeneous cell behaviour in vivo and increased Notch, TGF-β and SRF dependent transcription in motile cells. Further investigations into Notch signalling in melanoma metastasis showed that Notch promotes metastasis through cell-autonomous and non-cell autonomous mechanisms. The reporter cell-lines were used to enrich for the motile melanoma cell population and genes up-regulated in this population were identified. Many cell-cycle regulators, including regulators of cytokinesis, were up-regulated in the B16 F2 melanoma population enriched for motile cells. Bioinformatic analysis indicated that EZH2, a histone methyltransferase in the Polycomb repressor 2 complex, can regulate the genes associated with motile cells and EZH2 depletion decreased melanoma cell motility in vitro and metastasis in vivo. EZH2 was also shown to regulate cell morphology and the actin cytoskeleton through regulating activation of a subset of ERM proteins. Due to association between melanoma metastasis and differentiation, the role of EZH2 in melanoma differentiation state was investigated. EZH2 depletion did not significantly affect expression of melanoma differentiation markers but increased Oca2 mRNA expression leading to increased pigment. This thesis also investigates heterogeneity in the tumour microenvironment. Morphologically and dynamically distinct regions of the tumour vasculature were identified by intra-vital imaging and quantitative image analysis, and these regions could be followed over time using imaging windows. The tumour vasculature showed a heterogeneous response to the anti-angiogenic drug, Sunitinib, possibly due to microenvironmental factors. Aspects of vascular morphology and dynamics correlated with melanoma motility and may be used to describe microenvironments favourable for motility. 3 Acknowledgement I would like to thank the many people who have helped me during my PhD. Foremost, I would like to sincerely thank Erik for the continuous support, patience, and motivation. His immense knowledge, guidance and teaching have helped me throughout the whole PhD. Secondly, thanks go to Steve who has answered every question I could throw at him, with a friendly face and without complaint. Thanks also to Rob for helping with data analysis in the angiogenesis project. The Tumour Cell Biology Lab has been a great place to work and that is down to the people in it, past and present. Thank you for being fun and friendly but also great role models and teaching me a lot (not just about science!). The work has been greatly aided by members of the Biological Resources Unit, Experimental Histopathology Lab, FACS Lab and Bioinformatics department, so thank you to everyone who has helped. Finally I would like to thank Fay, my long-suffering partner (now wife) and my family for the encouragement and distraction at times when it all seemed too much. 4 Table of Contents Abstract ............................................................................................................... 3 Acknowledgement .............................................................................................. 4 Table of Contents ................................................................................................ 5 Abbreviations .................................................................................................... 10 Table of figures ................................................................................................. 11 List of tables ...................................................................................................... 16 Supplementary movies and files ..................................................................... 17 Chapter 1. Introduction ................................................................................ 20 1.1 Chapter overview ............................................................................................... 20 1.2 Melanocyte and melanoma biology .................................................................. 20 1.2.1 Melanocytes .................................................................................................. 20 1.2.2 Melanin production ....................................................................................... 21 1.2.3 Melanocyte natural history and differentiation ............................................. 23 1.2.4 Melanoma and metastasis ............................................................................. 23 1.2.5 Melanoma differentiation and metastasis...................................................... 26 1.3 Metastasis and the microenvironment ............................................................. 28 1.3.1 Exiting the primary tumour ........................................................................... 28 1.3.2 Survival in the circulation ............................................................................. 29 1.3.3 Arrival and survival at secondary sites ......................................................... 29 1.3.4 Growth at secondary sites ............................................................................. 31 1.4 Cell motility......................................................................................................... 33 1.4.1 The actin cytoskeleton................................................................................... 33 1.4.2 The microtubule cytoskeleton ....................................................................... 35 1.4.3 Cell protrusions ............................................................................................. 36 1.4.4 Adhesions ...................................................................................................... 38 1.4.5 Contractile force ............................................................................................ 39 1.4.6 Cell polarity and directional cell motility ..................................................... 40 1.4.7 ERM proteins ................................................................................................ 42 1.4.8 Different modes of single cancer cell motility in 3D .................................... 43 1.5 Cancer cell motility in vivo ................................................................................ 47 1.5.1 Imaging approaches to study cancer cell motility in vivo ............................ 47 1.5.2 Different modes of cancer cell motility in vivo ............................................ 49 1.6 Control of gene expression ................................................................................ 54 1.6.1 TGF-β signalling ........................................................................................... 55 1.6.2 SRF signalling ............................................................................................... 59 1.6.3 Notch signalling ............................................................................................ 64 1.6.4 Interactions between signalling pathways ..................................................... 68 1.6.5 Chromatin control of gene transcription ....................................................... 69 1.6.6 PRC2 complex during development and differentiation ............................... 73 1.6.7 EZH2 in cancer ............................................................................................. 73 1.7 The tumour microenvironment and angiogenesis ........................................... 74 1.7.1 The tumour vasculature ................................................................................. 75 1.7.2 Induction of tumour angiogenesis ................................................................. 76 1.7.3 Sprouting angiogenesis ................................................................................. 77 1.7.4 Targeting tumour angiogenesis ..................................................................... 79 5 Chapter 2. Materials and Methods .............................................................. 82 2.1 Reagents and chemicals ..................................................................................... 82 2.1.1 Enzymes ........................................................................................................ 82 2.1.2 Buffers and solutions .................................................................................... 82 2.1.3 Cell-culture reagents ..................................................................................... 83 2.2 Cell culture manipulations ................................................................................ 84 2.2.1 Cell-lines ......................................................................................................
Recommended publications
  • Analysis of Trans Esnps Infers Regulatory Network Architecture
    Analysis of trans eSNPs infers regulatory network architecture Anat Kreimer Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2014 © 2014 Anat Kreimer All rights reserved ABSTRACT Analysis of trans eSNPs infers regulatory network architecture Anat Kreimer eSNPs are genetic variants associated with transcript expression levels. The characteristics of such variants highlight their importance and present a unique opportunity for studying gene regulation. eSNPs affect most genes and their cell type specificity can shed light on different processes that are activated in each cell. They can identify functional variants by connecting SNPs that are implicated in disease to a molecular mechanism. Examining eSNPs that are associated with distal genes can provide insights regarding the inference of regulatory networks but also presents challenges due to the high statistical burden of multiple testing. Such association studies allow: simultaneous investigation of many gene expression phenotypes without assuming any prior knowledge and identification of unknown regulators of gene expression while uncovering directionality. This thesis will focus on such distal eSNPs to map regulatory interactions between different loci and expose the architecture of the regulatory network defined by such interactions. We develop novel computational approaches and apply them to genetics-genomics data in human. We go beyond pairwise interactions to define network motifs, including regulatory modules and bi-fan structures, showing them to be prevalent in real data and exposing distinct attributes of such arrangements. We project eSNP associations onto a protein-protein interaction network to expose topological properties of eSNPs and their targets and highlight different modes of distal regulation.
    [Show full text]
  • Deficiency of Macrophage PHACTR1 Impairs Efferocytosis and Promotes Atherosclerotic Plaque Necrosis
    Deficiency of macrophage PHACTR1 impairs efferocytosis and promotes atherosclerotic plaque necrosis Canan Kasikara, … , Muredach P Reilly, Ira Tabas J Clin Invest. 2021. https://doi.org/10.1172/JCI145275. Research In-Press Preview Cardiology Cell biology Graphical abstract Find the latest version: https://jci.me/145275/pdf Deficiency of macrophage PHACTR1 impairs efferocytosis and promotes atherosclerotic plaque necrosis Canan Kasikara,1 Maaike Schilperoort,1 Brennan Gerlach,1 Chenyi Xue,1 Xiaobo Wang1, Ze Zheng,2 George Kuriakose,1 Bernhard Dorweiler,3 Hanrui Zhang,1 Gabrielle Fredman4, Danish Saleheen,1 Muredach P. Reilly1,5, and Ira Tabas1,6,7 1Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA. 2Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA. 3Department of Vascular Surgery, University of Cologne, Cologne, Germany.4Deparment of Molecular and Cellular Physiology, Albany Medical Center, Albany, New York, USA. 5Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York, USA. 6Department of Physiology and Cellular Biophysics and 7Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA. Address correspondence to: Ira Tabas, Depart of Medicine, Columbia University Irving Medical Center, 630 W. 168th Street, New York, New York 10032, USA. Phone: 212.305.9430; E-mail: [email protected]. 1 Abstract Efferocytosis, the process through which apoptotic cells (ACs) are cleared through actin-mediated engulfment by macrophages, prevents secondary necrosis, suppresses inflammation, and promotes resolution. Impaired efferocytosis drives the formation of clinically dangerous necrotic atherosclerotic plaques, the underlying etiology of coronary artery disease (CAD). An intron of the gene encoding PHACTR1 contains a common variant rs9349379 (A > G) associated with CAD.
    [Show full text]
  • Oocyte Aneuploidy—More Tools to Tackle an Old Problem
    COMMENTARY Oocyte aneuploidy—more tools to tackle an old problem COMMENTARY Chris Lodgea and Mary Herberta,1 Meiosis generates a single-copy genome during two centromeric cohesin enables sister centromeres to successive rounds of cell division after a single round biorient on the meiosis II spindle (2, 5). Upon cleavage of DNA replication. Failure to transmit exactly one of centromeric cohesin, dyads are converted to single copy of each chromosome during fertilization gives chromatids, which segregate equationally to opposite rise to aneuploid embryos resulting in infertility and poles of the meiosis II spindle. Protection of a centro- congenital abnormalities such as Down’s syndrome. meric cohesin by Shugoshin proteins (SGOL2 in mam- Aneuploidy attributable to meiotic errors is over- mals) until the onset of anaphase II is essential for whelming due to chromosome segregation errors dur- orderly segregation of chromatids (7, 8). In oocytes, ing female meiosis, and the incidence of these both meiotic divisions are highly asymmetrical, giving increases dramatically as women get older (1, 2). Be- rise to two small nonviable polar bodies (Fig. 1). cause the oocyte is the only viable product of female Consistent with previous studies (9), Tyc et al. (3) meiosis, our understanding of predisposing events in found that only a tiny fraction (<1%) of meiotic errors human oocytes relies largely on inferences from ge- are of paternal origin. Compared with males, the es- netic studies in cases of trisomy and on analysis of tablishment and maintenance of bivalent chromo- oocytes obtained from in vitro fertilization clinics. somes are compromised in female meiosis. In females, Progress toward understanding the underlying mech- there is a greater risk of homologs failing to form cross- anisms has been hampered by a paucity of informa- overs, or of forming them in precarious positions that are tion on the outcome of both meiotic divisions.
    [Show full text]
  • Identification of the Binding Partners for Hspb2 and Cryab Reveals
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2013-12-12 Identification of the Binding arP tners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non- Redundant Roles for Small Heat Shock Proteins Kelsey Murphey Langston Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Microbiology Commons BYU ScholarsArchive Citation Langston, Kelsey Murphey, "Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins" (2013). Theses and Dissertations. 3822. https://scholarsarchive.byu.edu/etd/3822 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Julianne H. Grose, Chair William R. McCleary Brian Poole Department of Microbiology and Molecular Biology Brigham Young University December 2013 Copyright © 2013 Kelsey Langston All Rights Reserved ABSTRACT Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactors and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston Department of Microbiology and Molecular Biology, BYU Master of Science Small Heat Shock Proteins (sHSP) are molecular chaperones that play protective roles in cell survival and have been shown to possess chaperone activity.
    [Show full text]
  • Mutational Inactivation of STAG2 Causes Aneuploidy in Human Cancer
    REPORTS mean difference for all rubric score elements was ing becomes a more commonly supported facet 18. C. L. Townsend, E. Heit, Mem. Cognit. 39, 204 (2011). rejected. Univariate statistical tests of the observed of STEM graduate education then students’ in- 19. D. F. Feldon, M. Maher, B. Timmerman, Science 329, 282 (2010). mean differences between the teaching-and- structional training and experiences would alle- 20. B. Timmerman et al., Assess. Eval. High. Educ. 36,509 research and research-only conditions indicated viate persistent concerns that current programs (2011). significant results for the rubric score elements underprepare future STEM faculty to perform 21. No outcome differences were detected as a function of “testability of hypotheses” [mean difference = their teaching responsibilities (28, 29). the type of teaching experience (TA or GK-12) within the P sample population participating in both research and 0.272, = 0.006; CI = (.106, 0.526)] with the null teaching. hypothesis rejected in 99.3% of generated data References and Notes 22. Materials and methods are available as supporting samples (Fig. 1) and “research/experimental de- 1. W. A. Anderson et al., Science 331, 152 (2011). material on Science Online. ” P 2. J. A. Bianchini, D. J. Whitney, T. D. Breton, B. A. Hilton-Brown, 23. R. L. Johnson, J. Penny, B. Gordon, Appl. Meas. Educ. 13, sign [mean difference = 0.317, = 0.002; CI = Sci. Educ. 86, 42 (2001). (.106, 0.522)] with the null hypothesis rejected in 121 (2000). 3. C. E. Brawner, R. M. Felder, R. Allen, R. Brent, 24. R. J. A. Little, J.
    [Show full text]
  • Propranolol-Mediated Attenuation of MMP-9 Excretion in Infants with Hemangiomas
    Supplementary Online Content Thaivalappil S, Bauman N, Saieg A, Movius E, Brown KJ, Preciado D. Propranolol-mediated attenuation of MMP-9 excretion in infants with hemangiomas. JAMA Otolaryngol Head Neck Surg. doi:10.1001/jamaoto.2013.4773 eTable. List of All of the Proteins Identified by Proteomics This supplementary material has been provided by the authors to give readers additional information about their work. © 2013 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 10/01/2021 eTable. List of All of the Proteins Identified by Proteomics Protein Name Prop 12 mo/4 Pred 12 mo/4 Δ Prop to Pred mo mo Myeloperoxidase OS=Homo sapiens GN=MPO 26.00 143.00 ‐117.00 Lactotransferrin OS=Homo sapiens GN=LTF 114.00 205.50 ‐91.50 Matrix metalloproteinase‐9 OS=Homo sapiens GN=MMP9 5.00 36.00 ‐31.00 Neutrophil elastase OS=Homo sapiens GN=ELANE 24.00 48.00 ‐24.00 Bleomycin hydrolase OS=Homo sapiens GN=BLMH 3.00 25.00 ‐22.00 CAP7_HUMAN Azurocidin OS=Homo sapiens GN=AZU1 PE=1 SV=3 4.00 26.00 ‐22.00 S10A8_HUMAN Protein S100‐A8 OS=Homo sapiens GN=S100A8 PE=1 14.67 30.50 ‐15.83 SV=1 IL1F9_HUMAN Interleukin‐1 family member 9 OS=Homo sapiens 1.00 15.00 ‐14.00 GN=IL1F9 PE=1 SV=1 MUC5B_HUMAN Mucin‐5B OS=Homo sapiens GN=MUC5B PE=1 SV=3 2.00 14.00 ‐12.00 MUC4_HUMAN Mucin‐4 OS=Homo sapiens GN=MUC4 PE=1 SV=3 1.00 12.00 ‐11.00 HRG_HUMAN Histidine‐rich glycoprotein OS=Homo sapiens GN=HRG 1.00 12.00 ‐11.00 PE=1 SV=1 TKT_HUMAN Transketolase OS=Homo sapiens GN=TKT PE=1 SV=3 17.00 28.00 ‐11.00 CATG_HUMAN Cathepsin G OS=Homo
    [Show full text]
  • The Potential of Histone Demethylases As Therapeutic Targets
    Pharmaceuticals 2012, 5, 963-990; doi:10.3390/ph5090963 OPEN ACCESS pharmaceuticals ISSN 1424-8247 www.mdpi.com/journal/pharmaceuticals Review Epigenetic Control and Cancer: The Potential of Histone Demethylases as Therapeutic Targets Fernando Lizcano * and Jeison Garcia Center of Biomedical Research La Sabana University-CIBUS, School of Medicine, Universidad de La Sabana, Campus Del Puente del Común, km 7 Autopista Norte de Bogota, Chía 250001, Colombia; E-Mail: [email protected] (J.G.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +571-861-5555 (ext. 23328); Fax: +571-861-5555 (ext. 10111). Received: 26 June 2012; in revised form: 21 July 2012 / Accepted: 17 August 2012 / Published: 12 September 2012 Abstract: The development of cancer involves an immense number of factors at the molecular level. These factors are associated principally with alterations in the epigenetic mechanisms that regulate gene expression profiles. Studying the effects of chromatin structure alterations, which are caused by the addition/removal of functional groups to specific histone residues, are of great interest as a promising way to identify markers for cancer diagnosis, classify the disease and determine its prognosis, and these markers could be potential targets for the treatment of this disease in its different forms. This manuscript presents the current point of view regarding members of the recently described family of proteins that exhibit histone demethylase activity; histone demethylases are genetic regulators that play a fundamental role in both the activation and repression of genes and whose expression has been observed to increase in many types of cancer.
    [Show full text]
  • Mouse Letmd1 Conditional Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Letmd1 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Letmd1 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Letmd1 gene (NCBI Reference Sequence: NM_134093 ; Ensembl: ENSMUSG00000037353 ) is located on Mouse chromosome 15. 9 exons are identified, with the ATG start codon in exon 1 and the TGA stop codon in exon 9 (Transcript: ENSMUST00000037001). Exon 5~7 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Letmd1 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-81M8 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 5 starts from about 43.89% of the coding region. The knockout of Exon 5~7 will result in frameshift of the gene. The size of intron 4 for 5'-loxP site insertion: 2391 bp, and the size of intron 7 for 3'-loxP site insertion: 1135 bp. The size of effective cKO region: ~1132 bp. The cKO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 5 6 7 8 9 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Letmd1 Homology arm cKO region loxP site Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • Mutant IDH, (R)-2-Hydroxyglutarate, and Cancer
    Downloaded from genesdev.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer Julie-Aurore Losman1 and William G. Kaelin Jr.1,2,3 1Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA; 2Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA Mutations in metabolic enzymes, including isocitrate whether altered cellular metabolism is a cause of cancer dehydrogenase 1 (IDH1) and IDH2, in cancer strongly or merely an adaptive response of cancer cells in the face implicate altered metabolism in tumorigenesis. IDH1 of accelerated cell proliferation is still a topic of some and IDH2 catalyze the interconversion of isocitrate and debate. 2-oxoglutarate (2OG). 2OG is a TCA cycle intermediate The recent identification of cancer-associated muta- and an essential cofactor for many enzymes, including tions in three metabolic enzymes suggests that altered JmjC domain-containing histone demethylases, TET cellular metabolism can indeed be a cause of some 5-methylcytosine hydroxylases, and EglN prolyl-4-hydrox- cancers (Pollard et al. 2003; King et al. 2006; Raimundo ylases. Cancer-associated IDH mutations alter the enzymes et al. 2011). Two of these enzymes, fumarate hydratase such that they reduce 2OG to the structurally similar (FH) and succinate dehydrogenase (SDH), are bone fide metabolite (R)-2-hydroxyglutarate [(R)-2HG]. Here we tumor suppressors, and loss-of-function mutations in FH review what is known about the molecular mechanisms and SDH have been identified in various cancers, in- of transformation by mutant IDH and discuss their im- cluding renal cell carcinomas and paragangliomas.
    [Show full text]
  • The Purification and Identification of Interactors to Elucidate Novel Connections in the HEK 293 Cell Line
    The Purification and Identification of Interactors to Elucidate Novel Connections in the HEK 293 Cell Line Brett Hawley Biochemistry, Microbiology and Immunology Faculty of Medicine University of Ottawa © Brett Hawley, Ottawa, Canada, 2012 ABSTRACT The field of proteomics studies the structure and function of proteins in a large scale and high throughput manner. My work in the field of proteomics focuses on identifying interactions between proteins and discovering novel interactions. The identification of these interactions provides new information on metabolic and disease pathways and the working proteome of a cell. Cells are lysed and purified using antibody based affinity purification followed by digestion and identification using an HPLC coupled to a mass spectrometer. In my studies, I looked at the interaction networks of several AD related genes (Apolipoprotein E, Clusterin variant 1 and 2, Low-density lipoprotein receptor, Phosphatidylinositol binding clathrin assembly protein, Alpha- synuclein and Platelet-activating factor receptor) and an endosomal recycling pathway involved in cholesterol metabolism (Eps15 homology domain 1,2 and 4, Proprotein convertase subtilisin/kexin type 9 and Low-density lipoprotein receptor). Several novel and existing interactors were identified and these interactions were validated using co-immunopurification, which could be the basis for future research. ii ACKNOWLEDGEMENTS I would like to take this opportunity to thank my supervisor, Dr. Daniel Figeys, for his support and guidance throughout my studies in his lab. It was a great experience to work in his lab and I am very thankful I was given the chance to learn and work under him. I would also like to thank the members of my lab for all their assistance in learning new techniques and equipment in the lab.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • PHACTR1 Genetic Variability Is Not Critical in Small Vessel Ischemic
    www.nature.com/scientificreports OPEN PHACTR1 genetic variability is not critical in small vessel ischemic disease patients and PcomA recruitment in C57BL/6J mice Clemens Messerschmidt2, Marco Foddis1, Sonja Blumenau1, Susanne Müller1, Kajetan Bentele2, Manuel Holtgrewe2, Celia Kun‑Rodrigues3, Isabel Alonso4, Maria do Carmo Macario5, Ana Sofa Morgadinho5, Ana Graça Velon6, Gustavo Santo5,8, Isabel Santana5,7,8, Saana Mönkäre9,10, Liina Kuuluvainen9,11, Johanna Schleutker10, Minna Pöyhönen9,11, Liisa Myllykangas12, Assunta Senatore13, Daniel Berchtold1, Katarzyna Winek1, Andreas Meisel1, Aleksandra Pavlovic14, Vladimir Kostic14, Valerija Dobricic14,15, Ebba Lohmann16,17,18, Hasmet Hanagasi16, Gamze Guven19, Basar Bilgic16, Jose Bras3, Rita Guerreiro3, Dieter Beule2, Ulrich Dirnagl1 & Celeste Sassi1,20* Recently, several genome‑wide association studies identifed PHACTR1 as key locus for fve diverse vascular disorders: coronary artery disease, migraine, fbromuscular dysplasia, cervical artery dissection and hypertension. Although these represent signifcant risk factors or comorbidities for ischemic stroke, PHACTR1 role in brain small vessel ischemic disease and ischemic stroke most important survival mechanism, such as the recruitment of brain collateral arteries like posterior communicating arteries (PcomAs), remains unknown. Therefore, we applied exome and genome sequencing in a multi‑ethnic cohort of 180 early‑onset independent familial and apparently sporadic brain small vessel ischemic disease and CADASIL‑like Caucasian patients from US, Portugal, Finland, Serbia and Turkey and in 2 C57BL/6J stroke mouse models (bilateral common carotid artery stenosis [BCCAS] and middle cerebral artery occlusion [MCAO]), characterized by diferent degrees of PcomAs 1Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany.
    [Show full text]