Chapter 16: “Appalachian Sedimentary Cycles During the Pennsylvanian: Changing Influences of Sea Level, Climate, and Tectonics

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 16: “Appalachian Sedimentary Cycles During the Pennsylvanian: Changing Influences of Sea Level, Climate, and Tectonics Geological Society of America 3300 Penrose Place P.O. Box 9140 Boulder, CO 80301 (303) 357-1000 • fax 303-357-1073 www.geosociety.org Chapter 16: “Appalachian sedimentary cycles during the Pennsylvanian: Changing influences of sea level, climate, and tectonics” (Greb et al.), in Fielding, C.R., Frank, T.D., and Isbell, J.L., eds., Resolving the Late Paleozoic Ice Age in Time and Space: Geological Society of America Special Paper 441. This PDF file is subject to the following conditions and restrictions: Copyright © 2008, The Geological Society of America, Inc. (GSA). All rights reserved. Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in other subsequent works and to make unlimited copies for noncommercial use in classrooms to further education and science. For any other use, contact Copyright Permissions, GSA, P.O. Box 9140, Boulder, CO 80301-9140, USA, fax 303-357-1073, [email protected]. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society. This file may not be posted on the Internet. The Geological Society of America Special Paper 441 2008 Appalachian sedimentary cycles during the Pennsylvanian: Changing infl uences of sea level, climate, and tectonics Stephen F. Greb Kentucky Geological Survey, University of Kentucky, Lexington, Kentucky 40506, USA Jack C. Pashin Geologic Survey of Alabama, Alabama State Oil and Gas Board, Tuscaloosa, Alabama 35486, USA Ronald L. Martino Department of Geology, Marshall University, Huntington, West Virginia 25755, USA Cortland F. Eble Kentucky Geological Survey, 228 MMRB, University of Kentucky, Lexington, Kentucky 40506, USA ABSTRACT Various orders of marine fl ooding surface–bounded depositional sequences are recognized in coal-bearing, Pennsylvanian-age strata of the greater Appa- lachian Basin. The best preserved of these from the Lower Pennsylvanian are in the southern and central Appalachians; Middle Pennsylvanian cyclothemic sequences are best preserved in the central Appalachians; and Upper Pennsylvanian cyclo- themic sequences are best preserved in the northern Appalachians. Palynological and litho strati graphic correlations to global time scales have been used to infer eustatic controls on accumulation of cyclothem-scale sequences in each of these areas, albeit with signifi cant tectonic and climatic overprints. New U-Pb absolute age dates from upper Lower Pennsylvanian and Middle Pennsylvanian tonsteins in the central basin can be used to infer an average maximum duration of 0.1 m.y. for minor transgressive-regressive depositional cycles, which supports the possibility of short eccentricity-driven eustatic infl uences on sedimentation. Although glacial eustasy infl uenced Pennsylvanian sedimentation throughout the basin, the thick- ness, lateral continuity, and constituent facies of high-frequency depositional cycles were strongly infl uenced by changing rates of tectonic accommodation in at least three depocenters, sediment fl ux, and changing paleoclimate. Keywords: Carboniferous, cyclothem, sequence, coal, eustasy. Greb, S.F., Pashin, J.C., Martino, R.L., and Eble, C.F., 2008, Appalachian sedimentary cycles during the Pennsylvanian: Changing infl uences of sea level, climate, and tectonics, in Fielding, C.R., Frank, T.D., and Isbell, J.L., eds., Resolving the Late Paleozoic Ice Age in Time and Space: Geological Society of America Special Paper 441, p. 235–248, doi: 10.1130/2008.2441(16). For permission to copy, contact [email protected]. ©2008 The Geological Society of America. All rights reserved. 235 236 Greb et al. INTRODUCTION The Appalachian Basin is one of the largest coal-producing regions in the world, with annual production of more than 390 million short tons. The vast coal resources and long history of mining have made this region a major focus of Carboniferous studies. One area of research that has received considerable attention through the years is the cyclothem concept and the idea that repetitive sedimentation patterns in the Appalachian Basin resulted from Gondwanan glaciation (e.g., Wanless and Shepard, 1936). Several orders of cycles have been reported in different parts of the basin (Busch and Rollins, 1984; Donaldson and Eble, 1991; Chesnut, 1992, 1994), and these have variously been inter- preted as resulting from glacial eustasy (e.g., Busch and Rollins, 1984), delta-lobe switching (e.g., Ferm, 1974), climatic changes (e.g., Cecil et al., 1985), and tectonic controls (e.g., Klein and Willard, 1989). In more recent years, sequence and genetic strati- graphic techniques have been used to defi ne and subdivide depo- sitional successions into lowstand, highstand, and transgressive sequences similar in scale to the allocycles of earlier workers (Aitken and Flint, 1994, 1995; Chesnut, 1994; Gastaldo et al., 1993; Martino, 1996; Pashin, 1998; Greb et al., 2004; Martino, 2004). The mechanism responsible for formation of these minor, cyclothem-scale depositional sequences, either in response to high-magnitude sea-level changes in the Milankovitch orbital eccentricity band (e.g., Heckel, 1994) or in response to the inter- action of eustasy and rapid tectonic accommodation (e.g., Pashin, 2004), may have depended on the age and position of the strata relative to basin depocenters. Widespread, fl ooding surface–bounded depositional units were best developed at different times across the Appalachian trend. Examples of Pennsylvanian strata from the Appalachians are described and compared in order to examine the relative infl u- ence of glacial eustasy, climate, and tectonics on sedimentation in different parts of the basin at different times in the Pennsyl- vanian. Estimates of cyclothem-scale duration based on new age dates in the central Appalachian Basin fall within the fi fth-order short eccentricity range, supporting glacial-eustatic infl uences analogous to those that have been active for the past two million years for some of these sequences. Tectonics and Depocenters The Appalachian foreland basin developed in response to thrust and sediment loading on the convergent margin of the Laurentian craton during the Acadian, Taconic, and Alleghanian-Variscan orogenies (Thomas, 1976, 1995; Tankard , 1986; Chesnut, 1991). Discrete depocenters developed along Figure 1. Isopach map (A) of Pennsylvanian strata in the greater Appa- lachian Basin (modifi ed from Wanless, 1975) and (B) generalized the Appalachian trend (Fig. 1A) cratonward of promontories cross sections across the basin (A–A′ modifi ed from Wanless, 1975; on the continental margin in the middle to late Mississippian B–B′ and C–C′ modifi ed from Chesnut, 1992; D–D′ and E–E′ from (Thomas, 1976, 1995; Quinlan and Beaumont, 1984). The Edmunds et al., 1999, and Wanless, 1975). greatest preserved thickness of Pennsylvanian strata, more than 2438 m (8000 ft), accumulated in the Cahaba coalfi eld of the greater Black Warrior Basin (Figs. 1A and 1B) in response to Appalachian sedimentary cycles during the Pennsylvanian 237 converging thrust and sediment loads in the Alabama recess Torispora secures–Vestispora fenestrate (SF) microfl oral zone of (Pashin et al., 1995; Pashin, 1997). Discrete coalfi elds in the Peppers (1996), and a 310–311 Ma age corresponds relatively greater Black Warrior Basin are in large synclinoria separated by well with the stratigraphic position of the coal based on palyno- thin-skinned folds and thrust faults. Although the Black Warrior morphs in recent time scales (Fig. 2). Recent U-Pb analyses Basin is largely a Ouachita foreland basin (e.g., Thomas, 1976, of zircons from the tonstein have yielded a slightly older date, 1995), a signifi cant fl exural depocenter formed adjacent to 314.6 ± 0.9 Ma (Lyons et al., 2006). The older age for the the Appalachian orogen during the early Pennsylvanian (e.g., same bed may indicate a discrepancy between dating methods Pashin, 1994a, 2004), and the coalfi elds of the greater Black that needs to be investigated. A 314 Ma age would make the Warrior Basin are typically considered to be Appalachian by the coal Langsettian, which is older than would be inferred from mining industry and in coal resource studies. palynomorphs (Fig. 2). The other bed that has been dated is the In the central Appalachian basin, more than 1000 m (4000 ft) Upper Banner coal, Norton Formation, of Virginia (Fig. 2). of Pennsylvanian strata are preserved in southeastern Kentucky The Upper Banner is in the Schulzospora rara –Laevigatosporites and southwestern Virginia (Figs. 1A and 1B). The central area desmoinensis (SR) microfl oral zone of Peppers (1996). U-Pb extends northward to the northern margin of the Rome Trough, analyses indicates a 316.1 ± 0.8 Ma date (Lyons et al., 1997; which is a late Proterozoic–Early Cambrian graben that formed Outerbridge and Lyons, 2006), which is toward the base of the during Iapetan rifting. The northern margin of the Rome Trough Langsettian and close to or older than ages that would be based acted as a hinge line throughout much of the Pennsylvanian, and on palynofl ora depending on the time scale used (Fig. 2). Pennsylvanian strata thicken southward into the central Appa- lachian depocenter (Donaldson
Recommended publications
  • The Stratigraphic Architecture and Evolution of the Burdigalian Carbonate—Siliciclastic Sedimentary Systems of the Mut Basin, Turkey
    The stratigraphic architecture and evolution of the Burdigalian carbonate—siliciclastic sedimentary systems of the Mut Basin, Turkey P. Bassanta,*, F.S.P. Van Buchema, A. Strasserb,N.Gfru¨rc aInstitut Franc¸ais du Pe´trole, Rueil-Malmaison, France bUniversity of Fribourg, Switzerland cIstanbul Technical University, Istanbul, Turkey Received 17 February 2003; received in revised form 18 November 2003; accepted 21 January 2004 Abstract This study describes the coeval development of the depositional environments in three areas across the Mut Basin (Southern Turkey) throughout the Late Burdigalian (early Miocene). Antecedent topography and rapid high-amplitude sea-level change are the main controlling factors on stratigraphic architecture and sediment type. Stratigraphic evidence is observed for two high- amplitude (100–150 m) sea-level cycles in the Late Burdigalian to Langhian. These cycles are interpreted to be eustatic in nature and driven by the long-term 400-Ka orbital eccentricity-cycle-changing ice volumes in the nascent Antarctic icecap. We propose that the Mut Basin is an exemplary case study area for guiding lithostratigraphic predictions in early Miocene shallow- marine carbonate and mixed environments elsewhere in the world. The Late Burdigalian in the Mut Basin was a time of relative tectonic quiescence, during which a complex relict basin topography was flooded by a rapid marine transgression. This area was chosen for study because it presents extraordinary large- scale 3D outcrops and a large diversity of depositional environments throughout the basin. Three study transects were constructed by combining stratal geometries and facies observations into a high-resolution sequence stratigraphic framework. 3346 m of section were logged, 400 thin sections were studied, and 145 biostratigraphic samples were analysed for nannoplankton dates (Bassant, P., 1999.
    [Show full text]
  • Evaluating the Frasnian-Famennian Mass Extinction: Comparing Brachiopod Faunas
    Evaluating the Frasnian-Famennian mass extinction: Comparing brachiopod faunas PAUL COPPER Copper, P. 1998. Evaluating the Frasnian-Famennian mass extinction: Comparing bra- chiopod faunas.- Acta Palaeontologica Polonica 43,2,137-154. The Frasnian-Famennian (F-F) mass extinctions saw the global loss of all genera belonging to the tropically confined order Atrypida (and Pentamerida): though Famen- nian forms have been reported in the literafure, none can be confirmed. Losses were more severe during the Givetian (including the extinction of the suborder Davidsoniidina, and the reduction of the suborder Lissatrypidina to a single genus),but ońgination rates in the remaining suborder surviving into the Frasnian kept the group alive, though much reduced in biodiversity from the late Earb and Middle Devonian. In the terminal phases of the late Palmatolepis rhenana and P linguifurmis zones at the end of the Frasnian, during which the last few Atrypidae dechned, no new genera originated, and thus the Atrypida were extĘated. There is no evidence for an abrupt termination of all lineages at the F-F boundary, nor that the Atrypida were abundant at this time, since all groups were in decline and impoverished. Atypida were well established in dysaerobic, muddy substrate, reef lagoonal and off-reef deeper water settings in the late Givetian and Frasnian, alongside a range of brachiopod orders which sailed through the F-F boundary: tropical shelf anoxia or hypońa seems implausible as a cause for aĘpid extinction. Glacial-interglacial climate cycles recorded in South Ameńca for the Late Devonian, and their synchronous global cooling effect in low latitudes, as well as loss of the reef habitat and shelf area reduction, remain as the most likely combined scenarios for the mass extinction events.
    [Show full text]
  • Sequence Biostratigraphy of Carboniferous-Permian Boundary
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2019-07-01 Sequence Biostratigraphy of Carboniferous-Permian Boundary Strata in Western Utah: Deciphering Eustatic and Tectonic Controls on Sedimentation in the Antler-Sonoma Distal Foreland Basin Joshua Kerst Meibos Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Physical Sciences and Mathematics Commons BYU ScholarsArchive Citation Meibos, Joshua Kerst, "Sequence Biostratigraphy of Carboniferous-Permian Boundary Strata in Western Utah: Deciphering Eustatic and Tectonic Controls on Sedimentation in the Antler-Sonoma Distal Foreland Basin" (2019). Theses and Dissertations. 7583. https://scholarsarchive.byu.edu/etd/7583 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Sequence Biostratigraphy of Carboniferous-Permian Boundary Strata in Western Utah: Deciphering Eustatic and Tectonic Controls on Sedimentation in the Antler-Sonoma Distal Foreland Basin Joshua Kerst Meibos A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Scott M. Ritter, Chair Brooks B. Britt Sam Hudson Department of Geological Sciences Brigham Young University Copyright © 2019 Joshua Kerst Meibos All Rights Reserved ABSTRACT Sequence Biostratigraphy of Carboniferous-Permian Boundary Strata in Western Utah: Deciphering Eustatic and Tectonic Controls on Sedimentation in the Antler-Sonoma Distal Foreland Basin Joshua Kerst Meibos Department of Geological Sciences, BYU Master of Science The stratal architecture of the upper Ely Limestone and Mormon Gap Formation (Pennsylvanian-early Permian) in western Utah reflects the interaction of icehouse sea-level change and tectonic activity in the distal Antler-Sonoma foreland basin.
    [Show full text]
  • Depositional Cycles, Composite Sea-Level Changes, Cycle Stacking
    Depositional cycles, composite sea-level changes, cycle stacking patterns, and the hierarchy of stratigraphie forcing: Examples from Alpine Triassic platform carbonates R. K. GOLDHAMMER* \ P. A. DUNN > Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland 21218 L. A. HARDIE j ABSTRACT (fourth, fifth order) eustasy and long-term, low-frequency (third order) eustasy in accordance with the hierarchy of stratigraphic forc- Carbonate platform deposits record a complex interplay of nu- ing. Central to the interpretation of these examples is the demonstra- merous geodynamic variables, of which eustasy, subsidence, and sed- tion that true eustatic rhythms are recorded in the high-frequency iment accumulation are prime factors in determining both the cyclicity, as verified by time-series analyses and the use of "Fischer kilometer-scale (depositional sequence scale) and meter-scale (deposi- plots." These examples can be modeled by computer under conditions tional cycle scale) stratigraphic packaging. In this study, we looked of lag-depth-constrained sedimentation, uniform subsidence, and particularly at composite eustasy, that is, superimposed sea-level fluc- composite eustasy. We also present two examples, one from the Al- tuations with different frequencies (defined as orders) and different pine Triassic (the Norian Lofer cyclothems) and one from the Pleisto- amplitudes, and the role it plays in the linkage between meter-scale cene of south Florida, that lack both a systematic succession of cyclic stratigraphy and kilometer-scale sequence stratigraphy. Specifi- high-frequency cycle stacking patterns and identifiable composite cally, we have investigated the relationship between low-frequency, rhythms in the stratigraphic record, despite the existence of composite third-order (1-10 m.y.
    [Show full text]
  • Stratigraphic Architecture of Back-Filled Incised-Valley Systems: Pennsylvanian–Permian Lower Cutler Beds, Utah, USA
    This is a repository copy of Stratigraphic architecture of back-filled incised-valley systems: Pennsylvanian–Permian lower Cutler beds, Utah, USA. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/80267/ Version: Accepted Version Article: Wakefield, OJW and Mountney, NP (2013) Stratigraphic architecture of back-filled incised-valley systems: Pennsylvanian–Permian lower Cutler beds, Utah, USA. Sedimentary Geology, 298. 1 - 16. ISSN 0037-0738 https://doi.org/10.1016/j.sedgeo.2013.10.002 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Wakefield and Mountney Stratigraphical architecture of backfilled incised valley system Version: Final draft Updated: 18/04/2013 12:13:45 Stratigraphic architecture of back-filled incised-valley systems: Pennsylvanian-Permian lower Cutler beds, Utah, USA OLIVER J.
    [Show full text]
  • Precambrian Sequence Stratigraphy
    Sedimentary Geology 176 (2005) 67–95 www.elsevier.com/locate/sedgeo Research paper Precambrian sequence stratigraphy O. Catuneanua,T, M.A. Martins-Netob, P.G. Erikssonc aDepartment of Earth and Atmospheric Sciences, University of Alberta, 1-26 Earth Sciences Building, Edmonton, Alberta, Canada T6G 2E3 bGeology Department, Federal University of Ouro Preto, Caixa Postal 173, 35400-000, Ouro Preto/MG, Brazil cDepartment of Geology, University of Pretoria, Pretoria 0002, South Africa Received 3 May 2004; received in revised form 22 October 2004; accepted 20 December 2004 Abstract Sequence stratigraphy studies the change in depositional trends in response to the interplay of accommodation and sediment supply, from the scale of individual depositional systems to entire sedimentary basin-fills. As accommodation is controlled by allogenic mechanisms that operate at basinal to global scales, the change in depositional trends is commonly synchronized among all environments established within a basin, thus providing the basis for the definition of systems tracts and the development of models of facies predictability. All classical sequence stratigraphic models assume the presence of an interior seaway within the basin under analysis and are centered around the direction and types of shoreline shifts, which control the timing of all systems tracts and sequence stratigraphic surfaces. In overfilled basins, dominated by nonmarine sedimentation, the definition of systems tracts is based on changes in fluvial accommodation, as inferred from the shifting balance between the various fluvial architectural elements. The method of sequence stratigraphy requires the application of the same set of core principles irrespective of the age of strata under analysis, from Precambrian to Phanerozoic.
    [Show full text]
  • Sequence Stratigraphy, Basin Morphology and Sea-Level History for the Permian Kapp Starostin Formation of Svalbard, Norway
    Geol. Mag. 155 (5), 2018, pp. 1023–1039. c Cambridge University Press 2017. This is an Open Access article, distributed 1023 under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. doi:10.1017/S0016756816001126 Sequence stratigraphy, basin morphology and sea-level history for the Permian Kapp Starostin Formation of Svalbard, Norway ∗ DAVID P. G. BOND †, DIERK P. G. BLOMEIER‡, ANNA M. DUSTIRA§, PAUL B. WIGNALL¶, DANIEL COLLINS||, THOMAS GOODE#, ∗∗ RALPH D. GROEN ††, WERNER BUGGISCH‡‡ & STEPHEN E. GRASBY§§¶¶ ∗ School of Environmental Sciences, University of Hull, Hull HU6 7RX, United Kingdom ‡Millennia Stratigraphic Consultants, 35 Swansfield, Lechlade-on-Thames, Gloucestershire GL7 3SF, United Kingdom §Statoil, Mølnholtet 42, 9414 Harstad, Norway ¶School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom ||Earth Science and Engineering Department, Imperial College, London SW7 2AZ, United Kingdom #IGas∗∗ Energy PLC, 7 Down Street, London W1J 7AJ, United Kingdom Maersk Oil and Gas, Britanniavej 10, 6700 Esbjerg, Denmark ††Faculty of Earth and Life Science, VU University Amsterdam, De Boelelaan 1085–1087, 1081 HV Amsterdam, The Netherlands ‡‡Geozentrum Nordbayen, Universität Erlangen-Nürnberg, Schlossgarten 5, 91054 Erlangen, Germany §§Geological Survey of Canada, 3303 33rd Street N.W., Calgary, Alberta T2L 2A7, Canada ¶¶Department of Geoscience, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada (Received 9 March 2016; accepted 9 November 2016; first published online 9 January 2017) Abstract – Based on seven measured sections from Svalbard, the marine strata of the Permian Kapp Starostin Formation are arranged into seven transgressive–regressive sequences (TR1–TR7) of c.4– 5 Ma average duration, each bound by a maximum regressive surface.
    [Show full text]
  • Recognition of Relative Sea-Level Change in Upper Cretaceous Coal
    ESTUARINE MICROFOSSILS AND CRETACEOUS COAL-BEARING STRATA 263 RECOGNITION OF RELATIVE SEA-LEVEL CHANGE IN UPPER CRETACEOUS COAL- BEARING STRATA: A PALEOECOLOGICAL APPROACH USING AGGLUTINATED FORAMINIFERA AND OSTRACODES TO DETECT KEY STRATIGRAPHIC SURFACES NEIL E. TIBERT Department of Geosciences, University of Massachusetts, Amherst, Massachusetts 01003, U.S.A. Present address: Department of Geology, Smith College, Northampton, Massachusetts 01063, U.S.A. R. MARK LECKIE Department of Geosciences, University of Massachusetts, Amherst, Massachusetts 01003, U.S.A. JEFFREY G. EATON Department of Geosciences, Weber State University, Ogden, Utah 84408, U.S.A. JAMES I. KIRKLAND Utah Geological Survey, Salt Lake City, Utah 84116, U.S.A. JEAN-PAUL COLIN Global Ventures Consultants Inc., 3 Impasse des Biroulayres, 33610 Cestas, France ELANA L. LEITHOLD Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina 27695, U.S.A. AND MICHAEL E. MCCORMIC Neari School, Holyoke, Massachusetts 01040, U.S.A. ABSTRACT: Microfossils from Cretaceous coal-bearing strata can be used to establish key stratigraphic surfaces that mark marine flooding events with intermediate-frequency (fourth-order) and high-frequency (fifth-order) periodicities. We document several examples of this cyclicity from the transgressive and regressive facies at the land–sea transition of the Greenhorn Marine Cycle on the Colorado Plateau. Estuarine strata from the upper Cenomanian Dakota and middle Turonian Straight Cliffs Formations
    [Show full text]
  • The Upper Mississippian Bluefield Formation in the Central Appalachian Basin: a Hierarchical Sequence Stratigraphic Record of a Greenhouse to Icehouse Transition
    THE UPPER MISSISSIPPIAN BLUEFIELD FORMATION IN THE CENTRAL APPALACHIAN BASIN: A HIERARCHICAL SEQUENCE STRATIGRAPHIC RECORD OF A GREENHOUSE TO ICEHOUSE TRANSITION Joel P. Maynard Thesis submitted to the Graduate Faculty of Virginia Polytechnic Institute and State University in partial fulfillment of the requirements of the degree of MASTER OF SCIENCE In GEOLOGICAL SCIENCES Kenneth A. Eriksson, Co-Chair Richard D. Law, Co-Chair William S. Henika December 15, 1999 Blacksburg, Virginia THE UPPER MISSISSIPPIAN BLUEFIELD FORMATION IN THE CENTRAL APPALACHIAN BASIN: A HIERARCHICAL SEQUENCE STRATIGRAPHIC RECORD OF A GREENHOUSE TO ICEHOUSE TRANSITION Joel P. Maynard ABSTRACT The Upper Mississippian (Chesterian) Bluefield Formation of southeastern West Virginia and southwestern Virginia is the basal unit of the Mauch Chunk Group, a succession of predominantly siliciclastic strata sourced from actively rising tectonic highlands east of the Appalachian Basin. The Bluefield Formation conformably overlies shallow-marine carbonate units of the Greenbrier Group, and is unconformably overlain by incised fluvio-estuarine facies of the Stony Gap sandstone member (Hinton Formation). Outcrops along the Allegheny Front were investigated sedimentologically and structurally, and subjected to gamma ray analysis. Composite outcrop sections from deformed rocks of the Allegheny Front were correlated with the relatively undeformed rocks in the subsurface of the Appalachian Basin to the west using over 100 commercial oil and gas test wells. Regional subsurface cross-sections and isopachs define a depocenter in the southeastern part of the study area. Measured outcrop sections reveal that the stratigraphic record in the depocenter consists predominantly of meter-scale, upward- shallowing parasequences, each capped by a flooding surface. These parasequences are stacked into four regionally correlatable depositional sequences.
    [Show full text]
  • Download Preprint
    This manuscript has been submitted for publication in BASIN RESEARCH. Please note that the manuscript is currently in the peer-review process. Subsequent versions of the manuscript may have slightly modified content. Please feel free to contact any of the authors; we welcome feedback. 1 Syn- to post-rift alluvial basin fill: seismic stratigraphic analysis of Permian-Triassic deposition in the Horda Platform, Norway Camilla L. Würtzen1 | Johnathon L. Osmond1 | Jan Inge Faleide1 | Johan Petter Nystuen1 | Ingrid M. Anell1 | Ivar Midtkandal1 1Department of Geosciences, University of Oslo, P.O. Box 1047, Blindern, N-031 Oslo Correspondence Camilla L. Würtzen, University of Oslo, P.O. Box 1047, Blindern, N-031 Oslo E-mail: [email protected] Funding information NCCS Abstract: Discrepancies in models of continental rift-basin dynamics and stratigraphic response calls on further investigation on the subject. Geometric- and lithological trends between stages of faulting is studied in the Permian- Triassic continental rift succession in the Horda Platform. The Horda Platform occupies the northeastern margin of the North Sea aulacogen where Late Permian-Early Triassic faulting shaped the Caledonian pre-rift landscape into a series of N-S trending half-graben basins, filled by Permian-Triassic strata. A tectonostratigraphic model developed from seismic- and well-data details the Permian-Triassic basin fill and structural basin development. Regional unconformities mark the top and base of the succession, while internally, six depositional sequences are delineated by erosional- and transgressive surfaces. Thickness maps reveal three syn-rift stages, where strain migrated and concentrated in different parts of the developing rift basin, from disconnected faults and scattered depocentres with varying accommodation space hosting deposits of different thicknesses, to fully linked faults bounding half-graben basins with expanded and connected depocentres.
    [Show full text]
  • Sequence Stratigraphy 2013 JMPG Part II.Pdf
    Marine and Petroleum Geology 39 (2013) 26e38 Contents lists available at SciVerse ScienceDirect Marine and Petroleum Geology journal homepage: www.elsevier.com/locate/marpetgeo Review article High-resolution sequence stratigraphy of clastic shelves II: Controls on sequence development Octavian Catuneanu a,*, Massimo Zecchin b a Department of Earth and Atmospheric Sciences, University of Alberta, 1-26 Earth Sciences Building, Edmonton, Alberta T6G 2E3, Canada b OGS (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale), Borgo Grotta Gigante 42/c, 34010 Sgonico (TS), Italy article info abstract Article history: Both allogenic and autogenic processes may contribute to the formation of sequence stratigraphic Received 23 April 2012 surfaces, particularly at the scale of fourth-order and lower rank cycles. This is the case with all surfaces Received in revised form that are associated with transgression, which include the maximum regressive surface, the transgressive 21 August 2012 ravinement surfaces and the maximum flooding surface, and, under particular circumstances, the Accepted 24 August 2012 subaerial unconformity as well. Not all autogenic processes play a role in the formation of sequence Available online 11 September 2012 stratigraphic surfaces, but only those that can influence the direction of shoreline shift. Any changes in shoreline trajectory, whether autogenic or allogenic in origin, influence the stratal stacking patterns in Keywords: High-resolution sequence stratigraphy the rock record which sequence stratigraphic interpretations are based upon. Clastic shelves The discrimination between the allogenic and autogenic processes that may control changes in Allocyclicity shoreline trajectory is a matter of interpretation and is tentative at best in many instances. For this Autocyclicity reason, the definition and nomenclature of units and bounding surfaces need to be based on the observation of stratal features and stacking patterns rather than the interpretation of the controlling mechanisms.
    [Show full text]
  • Master Reference List
    Master Reference List AAPG Bulletin, 1998, Gulf of Mexico petroleum systems: AAPG Bulletin, v. 82, no. 5b, p. 865-1121. AAPG Hedberg, 2004, http://www.searchanddiscovery.com/documents/abstracts/2004hedberg_vancouver/index. Abdel Aal, A., A. El Barkooky, M. Gerrits, H. Meyer, M. Schwander, and H. Zaki, 2000, Tectonic evolution of the eastern Mediterranean basin and its significance of hydrocarbon prospectivity in the ultradeepwater Nile Delta: The Leading Edge,v. 19, 1086–1102. Abdulah, K., K. Doud, M. Cook, D. Keller, J. Bellamy, M. Bengston, T. Jensen, and B. Alwin, 2004, Reservoir facies within the deepwater sandstones of the Falcon field-western Gulf of Mexico: AAPG Annual Conven- tion with abstracts, 4 p. Abreu, V., M. Sullivan, C. Pirmez, and D. Mohrig, 2003, Lateral accretion packages (LAPs): An important reservoir element in deep water sinuous channels: Marine and Petroleum Geology, v. 20, p. 631–648. Ajakaiye, D. E., and A. W. Bally, 2002, Course manual and atlas of structural styles on reflection profiles from the Niger Delta: AAPG Continuing Education Course Note Series No. 41, 107 p. Alexander, R. W., K. Schofield, and M. C. Williams, 1993, Understanding Eocene reservoirs of the Forth Field, UKCS Block 9/232b, in A. M. Spence, ed., Generation, accumulation, and production of Europe’s hydro- carbons III: EAGE Special Publication No. 3. Allen, J.R.L., 1985, Principles of physical sedimentology: London, Allen and Unwin, 272 p. Almgren, A. A., 1978, Timing of submarine canyons and marine cycles of deposition in the southern Sacramento valley, California, in D. J. .Stanley and G. Kelling, eds., Sedimentation in submarine canyons, fans, and trenches: Stroudsberg, PA, Dowden, Hutchinson, and Ross, p.
    [Show full text]