World Atlas of Seagrasses
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
UNITED NATIONS ENVIRONMENT PROGRAM MEDITERRANEAN ACTION PLAN REGIONAL ACTIVITY CENTRE FOR SPECIALLY PROTECTED AREAS National monitoring program for biodiversity and non-indigenous species in Egypt PROF. MOUSTAFA M. FOUDA April 2017 1 Study required and financed by: Regional Activity Centre for Specially Protected Areas Boulevard du Leader Yasser Arafat BP 337 1080 Tunis Cedex – Tunisie Responsible of the study: Mehdi Aissi, EcApMEDII Programme officer In charge of the study: Prof. Moustafa M. Fouda Mr. Mohamed Said Abdelwarith Mr. Mahmoud Fawzy Kamel Ministry of Environment, Egyptian Environmental Affairs Agency (EEAA) With the participation of: Name, qualification and original institution of all the participants in the study (field mission or participation of national institutions) 2 TABLE OF CONTENTS page Acknowledgements 4 Preamble 5 Chapter 1: Introduction 9 Chapter 2: Institutional and regulatory aspects 40 Chapter 3: Scientific Aspects 49 Chapter 4: Development of monitoring program 59 Chapter 5: Existing Monitoring Program in Egypt 91 1. Monitoring program for habitat mapping 103 2. Marine MAMMALS monitoring program 109 3. Marine Turtles Monitoring Program 115 4. Monitoring Program for Seabirds 118 5. Non-Indigenous Species Monitoring Program 123 Chapter 6: Implementation / Operational Plan 131 Selected References 133 Annexes 143 3 AKNOWLEGEMENTS We would like to thank RAC/ SPA and EU for providing financial and technical assistances to prepare this monitoring programme. The preparation of this programme was the result of several contacts and interviews with many stakeholders from Government, research institutions, NGOs and fishermen. The author would like to express thanks to all for their support. In addition; we would like to acknowledge all participants who attended the workshop and represented the following institutions: 1. -
Muricidae, from Palk Strait, Southeast Coast of India
Nature Environment and Pollution Technology Vol. 8 No. 1 pp. 63-68 2009 An International Quarterly Scientific Journal Original Research Paper New Record of Muricanthus kuesterianus (Tapparone-Canefri, 1875) Family: Muricidae, from Palk Strait, Southeast Coast of India C. Stella and C. Raghunathan* Department of Oceanography and Coastal Area Studies, Alagappa University, Thondi-623 409, Ramnad district, Tamil Nadu, India *Zoological Survey of India, Andaman and Nicobar Regional Station, Haddo, Port Blair-744 102, Andaman & Nicobar Islands, India Key Words: ABSTRACT Gastropoda The present study reported the occurrence of Muricanthus kuesterianus in the Palk Muricidae Strait region of southeast coast of India as a first hand record. The detailed description Muricanthus kuesterianus of this species has been given with the comparison of its close resembled species Chicoreus virgineus Chicoreus virgineus. INTRODUCTION Muricidae, the largest and varied taxonomic family among marine gastropods has small to large predatory sea snails in the Order Neogastropoda. At least 1,000 species of muricids under numerous subfamilies are known. Many muricids have unusual shells which are considered attractive by shell collectors. The spire and body whorl of the muricids are often ornamental with knobs, tubercules, ribbing or spines. Muricids have episodic growth which means that the shell grows in spurts, remain- ing in the same size for a while before rapidly growing to the next size stage resulting in a series of varices on each whorl. Most species of muricids are carnivorous, feeding on other gastropods, bivalves and barnacles. In March 2007, during the course of faunistic surveys along the Palk Strait region of southeast coast of India (Fig. -
Halophila Ovalis, Ruppia Megacarpa and Posidonia Coriacea
Edith Cowan University Research Online Theses : Honours Theses 1998 The in vitro propagation of seagrasses : halophila ovalis, ruppia megacarpa and posidonia coriacea Melissa Grace Henry Edith Cowan University Follow this and additional works at: https://ro.ecu.edu.au/theses_hons Part of the Botany Commons, and the Marine Biology Commons Recommended Citation Henry, M. G. (1998). The in vitro propagation of seagrasses : halophila ovalis, ruppia megacarpa and posidonia coriacea. https://ro.ecu.edu.au/theses_hons/742 This Thesis is posted at Research Online. https://ro.ecu.edu.au/theses_hons/742 THE IN VITRO PROPAGATION OF SEAGRASSES: HALOPHILA OVALIS, RUPPIA MEGACARPA AND POSIDONIA CORIACEA MELISSA GRACE HENRY THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF B.SC. (BIOLOGICAL SCIENCE) HONOURS SCHOOL OF NATURAL SCIENCES EDITH COW AN UNIVERSITY JUNE 1998 ABSTRACT Seagrass communities are of high ecological and economic significance. They provide a nursery area for commercial and recreational juvenile fish and crustacea. Seagrasses also play an important role in influencing the structure and function of many estuarine and nearshore marine environments. Unfortunately, the decline of seagrasses, as a result of human impact, has increased in recent years. This decline has become a major problem throughout the world. Current methods used to restore degraded seagrass beds are limited, the most promising being transplanting material from healthy donor beds. This approach is expensive because it is labor intensive and damages the donor bed. Consequently, large scale transplanting programmes are not considered to be feasible. An alternative to using donor material may be found in the propagation of seagrasses. -
Final Report Implementing Capacity Building in the Mesoamerican Reef MPA Community NOAA Award Number: NA12NOS4820126
Final Report Implementing Capacity Building in the Mesoamerican Reef MPA Community NOAA Award Number: NA12NOS4820126 October 1, 2012 to September 30, 2014 Submitted by: Robert Glazer, Emma Doyle (Project Manager) Gulf and Caribbean Fisheries Institute, Inc P.O. Box 21655 Charleston, SC 29413 NA12NOS4820126 GCFI Final Report Contents Executive Summary ............................................................................................................................................ 2 Regional Workshop on Alternative Livelihoods and Sustainable Tourism ........................................................ 3 Regional SocMon Workshop .............................................................................................................................. 7 Tasks ................................................................................................................................................................... 9 Port Honduras Marine Reserve.......................................................................................................................... 1 Project 1.Pay-to-Participate Monitoring ‘Ridge to Reef Expeditions’............................................................ 3 Project 2. Seaweed Farming .......................................................................................................................... 7 Project 3. Small Business Microgrants ........................................................................................................... 9 Half Moon Caye and Blue Hole -
Pacific Plate Biogeography, with Special Reference to Shorefishes
Pacific Plate Biogeography, with Special Reference to Shorefishes VICTOR G. SPRINGER m SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 367 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoo/ogy Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world cf science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review. -
Aglaopheniid Hydroids (Cnidaria: Hydrozoa: Aglaopheniidae) from Bathyal Waters of the Flemish Cap, Flemish Pass, and Grand Banks of Newfoundland (NW Atlantic)
Zootaxa 3737 (5): 501–537 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3737.5.1 http://zoobank.org/urn:lsid:zoobank.org:pub:B5FE322D-4D0A-45E6-84BF-F00FA6308DE1 Aglaopheniid hydroids (Cnidaria: Hydrozoa: Aglaopheniidae) from bathyal waters of the Flemish Cap, Flemish Pass, and Grand Banks of Newfoundland (NW Atlantic) ÁLVARO ALTUNA1, FRANCISCO J. MURILLO2 & DALE R. CALDER3 1INSUB, Museo de Okendo, Zemoria, 12, Apartado 3223, 20013 Donostia-San Sebastián, Spain. E-mail: [email protected] 2Instituto Español de Oceanografía, Centro Oceanográfico de Vigo, Programa de Pesquerías Lejanas, Apartado 1552, 36280 Vigo, Spain. E-mail: [email protected] 3Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario, Canada M5S 2C6. E-mail: [email protected] 1Corresponding author Abstract Five species of aglaopheniid hydroids (Aglaophenopsis cornuta, Cladocarpus diana, C. formosus, C. integer, and Nema- tocarpus ramuliferus) were collected from the Flemish Cap, Flemish Pass, and Grand Banks of Newfoundland during sur- veys with bottom trawls, rock dredges, and scallop gear. All are infrequently reported species, with C. diana being discovered for the first time since its original description from Iceland. We document here the southernmost collections of C. diana and N. ramuliferus, both previously unknown in the western Atlantic. Each of the five species is described and illustrated based on fertile material, a key is provided for their identification, and bathymetric distributions are noted. Known depth ranges are extended for A. cornuta, C. diana, and C. -
Global Seagrass Distribution and Diversity: a Bioregional Model ⁎ F
Journal of Experimental Marine Biology and Ecology 350 (2007) 3–20 www.elsevier.com/locate/jembe Global seagrass distribution and diversity: A bioregional model ⁎ F. Short a, , T. Carruthers b, W. Dennison b, M. Waycott c a Department of Natural Resources, University of New Hampshire, Jackson Estuarine Laboratory, Durham, NH 03824, USA b Integration and Application Network, University of Maryland Center for Environmental Science, Cambridge, MD 21613, USA c School of Marine and Tropical Biology, James Cook University, Townsville, 4811 Queensland, Australia Received 1 February 2007; received in revised form 31 May 2007; accepted 4 June 2007 Abstract Seagrasses, marine flowering plants, are widely distributed along temperate and tropical coastlines of the world. Seagrasses have key ecological roles in coastal ecosystems and can form extensive meadows supporting high biodiversity. The global species diversity of seagrasses is low (b60 species), but species can have ranges that extend for thousands of kilometers of coastline. Seagrass bioregions are defined here, based on species assemblages, species distributional ranges, and tropical and temperate influences. Six global bioregions are presented: four temperate and two tropical. The temperate bioregions include the Temperate North Atlantic, the Temperate North Pacific, the Mediterranean, and the Temperate Southern Oceans. The Temperate North Atlantic has low seagrass diversity, the major species being Zostera marina, typically occurring in estuaries and lagoons. The Temperate North Pacific has high seagrass diversity with Zostera spp. in estuaries and lagoons as well as Phyllospadix spp. in the surf zone. The Mediterranean region has clear water with vast meadows of moderate diversity of both temperate and tropical seagrasses, dominated by deep-growing Posidonia oceanica. -
IMAP), As Presented in Annex to This Decision; 2
UNEP(DEPI)/MED IG.22/28 Page 419 Decision IG.22/7 Integrated Monitoring and Assessment Programme of the Mediterranean Sea and Coast and Related Assessment Criteria The 19th Meeting of the Contracting Parties to the Convention for the Protection of the Marine Environment and the Coastal Region of the Mediterranean, hereinafter referred to as “the Barcelona Convention”, Recalling Decision IG.17/6 of the 15th Meeting of the Contracting Parties providing for “A healthy Mediterranean with marine and coastal ecosystems that are productive and biologically diverse for the benefit of present and future generations”and the 7 steps roadmap for the implementation of the ecoystem approach, including on monitoring; Recalling Decision IG. 20/4 of the 17th Meeting of the Contracting Parties and Decision IG. 21/3 of the 18th Meeting of the Contracting Parties on the ecosystem approach; Recalling Article 12 of the Barcelona Convention and relevant provisions from its Protocols such as Articles8 and 13 of the Protocol for the Protection of the Mediterranean Sea against Pollution from Land-Based Sources and Activities; Article 5 of the Protocol Concerning Cooperation in Preventing Pollution from Ships and, in Cases of Emergency, Combating Pollution of the Mediterranean Sea; Articles 3, 15 and 20 of the Protocol Concerning Specially Protected Areas and Biological Diversity in the Mediterranean; and Article 16 of the Protocol on Integrated Coastal Zone Management in the Mediterranean; Having considered the reports of the Correspondence Groups on Monitoring and on Good Environmental Status and Targets, as well as of the Ecosystem Approach Coordination Group Meetings; Appreciating the support of donors and contribution of competent partner organizations in the development of the Integrated Monitoring and Assessment Programme of the Mediterranean Sea and Coast and Related Assessment Criteria; 1. -
Salt-Marsh Restoration: Evaluating the Success of De-Embankments in North-West Europe
BIOLOGICAL CONSERVATION Biological Conservation 123 (2005) 249–268 www.elsevier.com/locate/biocon Salt-marsh restoration: evaluating the success of de-embankments in north-west Europe Mineke Wolters a,b,*, Angus Garbutt b, Jan P. Bakker a a Community and Conservation Ecology Group, University of Groningen, P.O. Box 14, 9750 AA Haren, The Netherlands b Centre for Ecology and Hydrology, Monks Wood, Abbots Ripton, Huntingdon PE28 2LS, UK Received 30 March 2004 Abstract De-embankment of historically reclaimed salt marshes has become a widespread option for re-creating salt marshes, but to date little information exists on the success of de-embankments. One reason is the absence of pre-defined targets, impeding the measurement of success. In this review, success has been measured as a saturation index, where the presence of target plant species in a restoration site is expressed as a percentage of a regional target species pool. This review is intended to evaluate and compare success of many different sites on an idealistic concept where all regional target species have the potential to establish in a site, but may not actually do so because the site is unsuitable or inaccessible. Factors affecting suitability and accessibility and management options to increase regional species diversity are discussed. The results show that many sites contain less than 50% of the regional target species, especially when sites are smaller than 30 ha. Higher species diversity is observed for sites exceeding 100 ha and for sites with the largest elevational range within mean high water neap to mean high water spring tide. -
Holothuriidae 1165
click for previous page Order Aspidochirotida - Holothuriidae 1165 Order Aspidochirotida - Holothuriidae HOLOTHURIIDAE iagnostic characters: Body dome-shaped in cross-section, with trivium (or sole) usually flattened Dand dorsal bivium convex and covered with papillae. Gonads forming a single tuft appended to the left dorsal mesentery. Tentacular ampullae present, long, and slender. Cuvierian organs present or absent. Dominant spicules in form of tables, buttons (simple or modified), and rods (excluding C-and S-shaped rods). Key to the genera and subgenera of Holothuriidae occurring in the area (after Clark and Rowe, 1971) 1a. Body wall very thick; podia and papillae short, more or less regularly arranged on bivium and trivium; spicules in form of rods, ovules, rosettes, but never as tables or buttons ......→ 2 1b. Body wall thin to thick; podia irregularly arranged on the bivium and scattered papillae on the trivium; spicules in various forms, with tables and/or buttons present ...(Holothuria) → 4 2a. Tentacles 20 to 30; podia ventral, irregularly arranged on the interradii or more regularly on the radii; 5 calcified anal teeth around anus; spicules in form of spinose rods and rosettes ...........................................Actinopyga 2b. Tentacles 20 to 25; podia ventral, usually irregularly arranged, rarely on the radii; no calcified anal teeth around anus, occasionally 5 groups of papillae; spicules in form of spinose and/or branched rods and rosettes ............................→ 3 3a. Podia on bivium arranged in 3 rows; spicules comprise rocket-shaped forms ....Pearsonothuria 3b. Podia on bivium not arranged in 3 rows; spicules not comprising rocket-shaped forms . Bohadschia 4a. Spicules in form of well-developed tables, rods and perforated plates, never as buttons .....→ 5 4b. -
DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1. -
Population Genetic Structure and Phylogeography of Invasive Aquatic Weed, Elodea Canadensis (Hydrocharitaceae) and Comparative Analyses with E
Population genetic structure and phylogeography of invasive aquatic weed, Elodea canadensis (Hydrocharitaceae) and comparative analyses with E. nuttallii Tea Huotari Department of Agricultural Sciences Faculty of Agriculture and Forestry University of Helsinki Finland academic dissertation To be presented, with the permission of the Faculty of Agriculture and Forestry of the University of Helsinki, for public criticism in Auditorium 1041, Biocenter 2 (Viikinkaari 5, Helsinki), on October 5th, 2012, at 12 noon. helsinki 2012 Supervised by: Dr Helena Korpelainen Department of Agricultural Sciences University of Helsinki, Finland Dr Elina Leskinen Department of Environmental Sciences University of Helsinki, Finland Reviewed by: Dr Jouni Aspi Department of Biology University of Oulu, Finland Dr Alain Vanderpoorten Department of Life Sciences University of Liége, Belgium Examined by: Prof. Katri Kärkkäinen The Finnish Forest Research Institute Oulu, Finland Custos: Prof. Teemu Teeri Department of Agricultural Sciences University of Helsinki, Finland © Wiley (Chapter I) © Springer (Chapter II) © Elsevier (Chapter III) © Authors (Chapter IV) © Hanne Huotari (Layout) isbn 978-952-10-8258-0 (paperback) isbn 978-952-10-8259-7 (pdf) Yliopistopaino Helsinki, Finland 2012 Äidille List of original publications this thesis is based on the following publications and a manuscript, which are referred to in the text by their Roman numerals: I Huotari, T., Korpelainen, H. and Kostamo, K. 2010. Development of microsatellite markers for the clonal water weed Elodea canadensis (Hydrocharitaceae) using inter-simple sequence repeat (ISSR) primers. – Molecular Ecology Resources 10: 576–579. II Huotari, T., Korpelainen, H., Leskinen, E. and Kostamo, K. 2011. Population genetics of invasive water weed Elodea canadensis in Finnish waterways.