Running Neutrino Masses and Flavor Symmetries
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Flavor Symmetries: Models and Implications
Flavor Symmetries: Models and Implications Neutrino mass squared splittings and angles Lisa L. Everett Nakatani, 1936 Talks by Mohapatra, Valle U. Wisconsin, Madison the first who made snow crystal in a laboratory !"#$%& '()*#+*, Absolute neutrino mass scale? The symmetry group of !"#"$#%""& '()*)+,-./0+'1'23"&0+456(5.0+1'7 8 is D6 , one of the finite groups. Introduction/Motivation Neutrino Oscillations: 2 i∆mij L 2E να νβ (L) = iα i∗β j∗α jβe− P → U U U U ij ! massive neutrinos observable lepton mixing First particle physics evidence for physics beyond SM! SM flavor puzzle ν SM flavor puzzle Ultimate goal: satisfactory and credible flavor theory (very difficult!) fits: Schwetz, Tortola, Valle ’08 The Data: Neutrino Masses Homestake, Kam, SuperK,KamLAND,SNO, SuperK, MINOS,miniBOONE,... ∆m2 m2 m2 Assume: 3 neutrino mixing ij ≡ i − j 2 2 +0.23 5 2 Solar: ∆m = ∆m12 = 7.65 0.20 10− eV ! | | − × (best fit 1 σ ) 2 +0.12 3 2 ± Atmospheric: ∆m31 = 2.4 0.11 10− eV ± − × Normal Hierarchy Inverted Hierarchy 3 2 1 2 1 3 Cosmology (WMAP): mi < 0.7 eV i ! fit: Schwetz, Tortola, Valle ’08 The Data: Lepton Mixing Homestake, Kam, SuperK,KamLAND,SNO, SuperK, Palo Verde, CHOOZ, MINOS... MNSP = 1(θ ) 2(θ13, δMNSP) 3(θ ) Maki, Nakagawa, Sakata U R ⊕ R R " P Pontecorvo cos θ sin θ " ! ! MNSP cos θ sin θ cos θ cos θ sin θ |U | ! − ⊕ ! ⊕ ! ⊕ sin θ sin θ sin θ cos θ cos θ ⊕ ! − ⊕ ! ⊕ 1σ ± Solar: θ = θ12 = 33.4◦ 1.4◦ ! ± +4.0 (best fit ) Atmospheric: θ = θ23 = 45.0◦ 3.4 ⊕ − +3.5 Reactor: ! = sin θ13, θ13 = 5.7◦ 5.7 − 2 large angles, 1 small angle (no constraints on -
Masse Des Neutrinos Et Physique Au-Delà Du Modèle Standard
œa UNIVERSITE PARIS-SUD XI THESE Spécialité: PHYSIQUE THÉORIQUE Présentée pour obtenir le grade de Docteur de l'Université Paris XI par Pierre Hosteins Sujet: Masse des Neutrinos et Physique au-delà du Modèle Standard Soutenue le 10 Septembre 2007 devant la commission d'examen: MM. Asmaa Abada, Sacha Davidson, Emilian Dudas, rapporteur, Ulrich Ellwanger, président, Belen Gavela, Thomas Hambye, rapporteur, Stéphane Lavignac, directeur de thèse. 2 Remerciements : Un travail de thèse est un travail de longue haleine, au cours duquel se produisent inévitablement beaucoup de rencontres, de collaborations, d'échanges... Voila pourquoi, sans doute, il me semble que la liste des personnes a qui je suis redevable est devenue aussi longue ! Tâchons cependant de remercier chacun comme il le mérite. En relisant ce manuscrit je ne peux m'empêcher de penser a Stéphane Lavignac, que je me dois de remercier pour avoir accepté d'encadrer mon travail de thèse et qui m'a toujours apporté le soutien et les explications nécessaires, avec une patience admirable. Sa grande rigueur d'analyse et sa minutie m'offrent un exemple que je m'évertuerai à suivre avec la plus grande application. Ces travaux n'auraient pas pu voir le jour non plus sans mes autres collaborateurs que sont Carlos Savoy, Julien Welzel, Micaela Oertel, Aldo Deandrea, Asmâa Abada et François-Xavier Josse-Michaux, qui ont toujours été disponibles et avec qui j'ai eu un plaisir certain a travailler. C'est avec gratitude que je remercie Asmâa pour tous les conseils et recommandations qu'elle n'a cessé de me fournir tout au long de mes études au sein de l'Université Paris XL Au cours de ces trois années de travail dans le domaine de la Physique Au-delà de Modèle Standard, j'ai bénéficié du contact de toute la communauté des théoriciens de la région. -
The Flavour Puzzle, Discreet Family Symmetries
The flavour puzzle, discreet family symmetries 27. 10. 2017 Marek Zrałek Particle Physics and Field Theory Department University of Silesia Outline 1. Some remarks about the history of the flavour problem. 2. Flavour in the Standard Model. 3. Current meaning of the flavour problem? 4. Discrete family symmetries for lepton. 4.1. Abelian symmetries, texture zeros. 4.2. Non-abelian symmetries in the Standard Model and beyond 5. Summary. 1. Some remarks about the history of the flavour problem The flavour problem (History began with the leptons) I.I. Rabi Who ordered that? Discovered by Anderson and Neddermayer, 1936 - Why there is such a duplication in nature? - Is the muon an excited state of the electron? - Great saga of the µ → e γ decay, (Hincks and Pontecorvo, 1948) − − - Muon decay µ → e ν ν , (Tiomno ,Wheeler (1949) and others) - Looking for muon – electron conversion process (Paris, Lagarrigue, Payrou, 1952) Neutrinos and charged leptons Electron neutrino e− 1956r ν e 1897r n p Muon neutrinos 1962r Tau neutrinos − 1936r ν µ µ 2000r n − ντ τ 1977r p n p (Later the same things happen for quark sector) Eightfold Way Murray Gell-Mann and Yuval Ne’eman (1964) Quark Model Murray Gell-Mann and George Zweig (1964) „Young man, if I could remember the names of these particles, I „Had I foreseen that, I would would have been a botanist”, have gone into botany”, Enrico Fermi to advise his student Leon Wofgang Pauli Lederman Flavour - property (quantum numbers) that distinguishes Six flavours of different members in the two groups, quarks and -
COMPOSITE K>DELS of QUARKS and LEPTONS
COMPOSITE K>DELS OF QUARKS AND LEPTONS by Chaoq iang Geng Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Physics APPROVED: Robert E. Marshak, Chairman Luke W. MC( .,- .. -~.,I., August, 1987 Blacksburg, Virginia COMPOSITE fl>DELS OF QUARKS AND LEPTONS by Chaoqiang Geng Committee Chairman, R. E. Marshak Physics (ABSTRACT) We review the various constraints on composite models of quarks and leptons. Some dynamical mechanisms for chiral symmetry breaking in chiral preon models are discussed. We have constructed several "realistic candidate" chiral preon models satisfying complementarity between the Higgs and confining phases. The models predict three to four generations of ordinary quarks and leptons. ACKNOWLEDGEMENTS Foremost I would like to thank my thesis advisor Professor R. E. Marshak for his patient guidance and assistance during the research and the preparation of this thesis. His valuable insights and extensive knowledge of physics were truly inspirational to me. I would also like to thank Professor L. N. Chang for many valuable discussions and continuing encouragement. I am grateful to Professors S. P. Bowen, L. W. Mo, C. H. Tze, and R. K. P. Zia, for their advice and encouragement. I would also like to thank Professors , and and for many useful discussions and the secretaries and for their help and kindness. Finally, I would like to acknowledge the love, encouragement, and support of my wife without which this work would have been impossible. iii TABLE OF CONTENTS Title ........••...............•........................................ i Abstract •••••••••••••.•.•••••••••••••••••.•••••..••••.•••••••.•••••••• ii Acknowledgements ••••••••••••••••••••••••••••••••••••••••••••••••••••• iii· Chapter 1. -
SU(5) Grand Unified Theory with A4 Modular Symmetry
PHYSICAL REVIEW D 101, 015028 (2020) SU(5) grand unified theory with A4 modular symmetry † ‡ Francisco J. de Anda ,2,* Stephen F. King,1, and Elena Perdomo1, 1School of Physics and Astronomy, University of Southampton, SO17 1BJ Southampton, United Kingdom 2Tepatitlán’s Institute for Theoretical Studies, C.P. 47600, Jalisco, M´exico (Received 1 April 2019; published 30 January 2020) We present the first example of a grand unified theory (GUT) with a modular symmetry interpreted as a family symmetry. The theory is based on supersymmetric SUð5Þ in 6d, where the two extra dimensions are compactified on a T2=Z2 orbifold. We have shown that, if there is a finite modular symmetry, then it can i2π=3 only be A4 with an (infinite) discrete choice of moduli, where we focus on τ ¼ ω ¼ e , the unique solution with jτj¼1. The fields on the branes respect a generalized CP and flavor symmetry A4 ⋉ Z2 which is isomorphic to S4 which leads to an effective μ − τ reflection symmetry at low energies, implying maximal atmospheric mixing and maximal leptonic CP violation. We construct an explicit model along these lines with two triplet flavons in the bulk, whose vacuum alignments are determined by orbifold boundary conditions, analogous to those used for SUð5Þ breaking with doublet-triplet splitting. There are two right-handed neutrinos on the branes whose Yukawa couplings are determined by modular weights. The charged lepton and down-type quarks have diagonal and hierarchical Yukawa matrices, with quark mixing due to a hierarchical up-quark Yukawa matrix. DOI: 10.1103/PhysRevD.101.015028 I. -
GRAND UNIFIED THEORIES Paul Langacker Department of Physics
GRAND UNIFIED THEORIES Paul Langacker Department of Physics, University of Pennsylvania Philadelphia, Pennsylvania, 19104-3859, U.S.A. I. Introduction One of the most exciting advances in particle physics in recent years has been the develcpment of grand unified theories l of the strong, weak, and electro magnetic interactions. In this talk I discuss the present status of these theo 2 ries and of thei.r observational and experimenta1 implications. In section 11,1 briefly review the standard Su c x SU x U model of the 3 2 l strong and electroweak interactions. Although phenomenologically successful, the standard model leaves many questions unanswered. Some of these questions are ad dressed by grand unified theories, which are defined and discussed in Section III. 2 The Georgi-Glashow SU mode1 is described, as are theories based on larger groups 5 such as SOlO' E , or S016. It is emphasized that there are many possible grand 6 unified theories and that it is an experimental problem not onlv to test the basic ideas but to discriminate between models. Therefore, the experimental implications are described in Section IV. The topics discussed include: (a) the predictions for coupling constants, such as 2 sin sw, and for the neutral current strength parameter p. A large class of models involving an Su c x SU x U invariant desert are extremely successful in these 3 2 l predictions, while grand unified theories incorporating a low energy left-right symmetric weak interaction subgroup are most likely ruled out. (b) Predictions for baryon number violating processes, such as proton decay or neutron-antineutnon 3 oscillations. -
Compactifications Arxiv:1512.03055V1 [Hep-Th] 9 Dec 2
Tracing symmetries and their breakdown through phases of heterotic (2,2) compactifications Michael Blaszczyk∗a and Paul-Konstantin Oehlmannyb aJohannes-Gutenberg-Universität,Staudingerweg 7, 55099 Mainz, Germany bBethe Center for Theoretical Physics, Physikalisches Institut der Universität Bonn, Nussallee 12, 53115 Bonn, Germany August 16, 2021 Abstract We are considering the class of heterotic N = (2; 2) Landau-Ginzburg orbifolds with 9 9 fields corresponding to A1 Gepner models. We classify all of its Abelian discrete quotients and obtain 152 inequivalent models closed under mirror symmetry with N = 1; 2 and 4 supersymmetry in 4D. We compute the full massless matter spectrum at the Fermat locus and find a universal relation satisfied by all models. In addition we give prescriptions of how to compute all quantum numbers of the 4D states including their discrete R- symmetries. Using mirror symmetry of rigid geometries we describe orbifold and smooth Calabi-Yau phases as deformations away from the Landau-Ginzburg Fermat locus in two explicit examples. We match the non-Fermat deformations to the 4D Higgs mechanism and study the conservation of R-symmetries. The first example is a Z3 orbifold on an E6 lattice where the R-symmetry is preserved. Due to a permutation symmetry of blow-up and torus arXiv:1512.03055v1 [hep-th] 9 Dec 2015 Kähler parameters the R-symmetry stays conserved also smooth Calabi-Yau phase. In the second example the R-symmetry gets broken once we deform to the geometric Z3 × Z3;free orbifold regime. ∗[email protected] [email protected] 1 Contents 1 Introduction 3 2 Landau-Ginzburg Orbifolds and Their Symmetries 5 2.1 Landau-Ginzburg models and their spectrum . -
THE STANDARD MODEL and BEYOND: a Descriptive Account of Fundamental Particles and the Quest for the Unification of Their Interactions
THE STANDARD MODEL AND BEYOND: A descriptive account of fundamental particles and the quest for the uni¯cation of their interactions. Mesgun Sebhatu ([email protected]) ¤ Department of Chemistry, Physics and Geology Winthrop University, Rock Hill SC 29733 Abstract fundamental interactions|gravity, electroweak, and the strong nuclear|into one. This will be In the last three decades, signi¯cant progress has equivalent to having a complete theory of every- been made in the identi¯cation of fundamental thing (TOE). Currently, a contender for a TOE particles and the uni¯cation of their interactions. is the so called superstring theory. The theoret- This remarkable result is summarized by what ical extensions of the Standard Model and the is con¯dently called the Standard Model (SM). experimental tests of their predictions is likely This paper presents a descriptive account of the to engage high energy physicists of the 21st cen- Standard Model and its possible extensions. Ac- tury. cording to SM, all matter in the universe is made up of a dozen fermions|six quarks and six lep- tons. The quarks and leptons interact by ex- 1 HISTORICAL INTRO- changing a dozen gauge (spin|one) bosons| DUCTION eight gluons and four electroweak bosons. The Standard Model provides a framework for the Our job in physics is to see things sim- uni¯cation of the electroweak and strong nu- ply, to understand a great many com- clear forces. A major de¯ciency of the Standard plicated phenomena in a uni¯ed way, in Model is its exclusion of gravity. The ultimate terms of a few simple principles. -
International Centre for Theoretical Physics
IC/82/215 INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS PHYSICS WITH 100-1000 TeV ACCELERATORS Abctus Salam INTERNATIONAL ATOMIC ENERGY AGENCY UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION 1982MIRAMARE-TRIESTE Jt -ll: *:.. ft IC/82/215 International Atomic Energy Agency and United Nations Educational Scientific and Cultural Organization COHTEBTS IHTERHATIONAL CENTRE FOR THEORETICAL PHYSICS I. Introduction The Higga sector II. A brief review of the standard model PHYSICS WITH 1OO-1O0O TeV ACCELERATORS * III. Grand unification and the desert IV. The richness associated with Higgs particles Abdus Salam International Centre for Theoretical Physics, Trieste, Italy, V. Richness associated with supersymmetry and Imperial College, London, England. VI. The next levels of structure; Preons, pre-preons VII. Concluding remarks MIRAMARE - TRIESTE October 1982 * Lecture given at the Conference on the Challenge of Ultra-High Energies, 27-30 September 1982, at Hew College, Oxford, UK, organized by the European Committee for Future Accelerators and the Rutherford Appleton Laboratories. -i- I, [KTROPUCTTOM Let us examine this syndrome. It is a consequence of three There is no question but that uuiess our community takes urgent heed, assumptions:1) assume that there are no gaufte forces except the known SU (3), SU (2) and U(l), between the presently accessible 1/10 TeV and there is the darker that high energy accelerators may become extinct, in a c L an upper energy A ; 2) assume that no new particles will be discovered in this matter of thirty years or so. 2 3 range, which might upset the relation sin 6W(AQ) ~ f satisfied for the known Consider t^e ca.ie of CEBN, representing liiXiropean High Energy Physics. -
Physics Beyond the Standard Model
SM Generalities Symmetries Electroweak Yukawa Methodology BSM Unification SU(5) SO(10) Flavour Conclusions Physics beyond the Standard Model Ulrich Nierste Karlsruhe Institute of Technology KIT Center Elementary Particle and Astroparticle Physics LHCb Workshop Neckarzimmern 13-15 February 2013 SM Generalities Symmetries Electroweak Yukawa Methodology BSM Unification SU(5) SO(10) Flavour Conclusions Scope The lecture gives an introduction to physics beyond the Standard Model associated with new particles in the 100 GeV– 10 TeV range. The concept is bottom-up, starting from the Standard Model and its problems, with emphasis on the standard way beyond the Standard Model: Grand unification (and supersymmetry). SM Generalities Symmetries Electroweak Yukawa Methodology BSM Unification SU(5) SO(10) Flavour Conclusions Scope The lecture gives an introduction to physics beyond the Standard Model associated with new particles in the 100 GeV– 10 TeV range. The concept is bottom-up, starting from the Standard Model and its problems, with emphasis on the standard way beyond the Standard Model: Grand unification (and supersymmetry). Not covered: Search strategies for new particles at colliders, theories of gravitation, large extra dimensions, strongly interacting Higgs sectors, ... SM Generalities Symmetries Electroweak Yukawa Methodology BSM Unification SU(5) SO(10) Flavour Conclusions Contents Standard Model Generalities Symmetries Electroweak interaction Yukawa interaction Methodology of new physics searches Beyond the Standard Model Towards unification of forces SU(5) SO(10) Probing new physics with flavour Conclusions SM Generalities Symmetries Electroweak Yukawa Methodology BSM Unification SU(5) SO(10) Flavour Conclusions The theorist’s toolbox A theory’s particles and their interactions are encoded in the Lagrangian . -
10. Other Extensions of the Standard Model
10. Other Extensions of the Standard Model 10.1 Introduction to Grand Unified Theories 10.2 Leptoquarks 10.3 Additional Gauge bosons, W’ and Z’ searches 10.4 Compositeness and excited quarks 10.5 Extra Space dimensions Why Physics Beyond the Standard Model ? 1. Gravity is not yet incorporated in the Standard Model 2. Dark Matter not accomodated 3. Many open questions in the Standard Model 19 - Hierarchy problem: mW (100 GeV) → mPlanck (10 GeV) - Unification of couplings - Flavour / family problem - ….. All this calls for a more fundamental theory of which the Standard Model is a low energy approximation → New Physics Candidate theories: Supersymmetry Many extensions predict new Extra Dimensions physics at the TeV scale !! New gauge bosons ……. Strong motivation for LHC, mass reach ~ 3 TeV 10.1 Introduction to Grand Unified Theories (GUT) • The SU(3) x SU(2) x U(1) gauge theory is in impressive agreement with experiment. • However, there are still three gauge couplings (g, g’, and αs) and the strong interaction is not unified with the electroweak interaction • Is a unification possible ? Is there a larger gauge group G, which contains the SU(3) x SU(2) x U(1) ? Gauge transformations in G would then relate the electroweak couplings g and g’ to the strong coupling αs. For energy scales beyond MGUT, all interactions would then be described by a grand unified gauge theory (GUT) with a single coupling gG, to which the other couplings are related in a specific way. • Gauge couplings are energy-dependent, g2 and g3 are asymptotically free, i.e. -
Download Download
Proceedings of the 2017 CERN–Latin-American School of High-Energy Physics, San Juan del Rio, Mexico 8-21 March 2017, edited by M. Mulders and G. Zanderighi, CYR: School Proceedings, Vol. 4/2018, CERN-2018-007-SP (CERN, Geneva, 2018) Beyond the Standard Model M. Mondragon Instituto de Fisica, Universidad Nacional Autonoma de Mexico UNAM, CD MX 01000, Mexico Abstract I present a brief outline of some of the different paths for extending the Stan- dard Model. These include supersymmetry, Grand Unified Theories, extra dimensions, and multi-Higgs models. The aim is to give graduate students an overview of some of the theoretical motivations to go into a specific extension, and a few examples of how the experimental searches go hand in hand with these efforts. Supersymmetry, Grand Unified Theories, Extra dimensions, Multi-Higgs models 1 Introduction The Standard Model is an extremely successful description of the elementary particles and its interac- tions around the Fermi scale, but it leaves a number of unanswered questions that lead naturally to the conclusion that it is the low energy limit of a more fundamental theory. Along with these unanswered question comes a large number of free parameters whose value can only be determined experimentally. Among the unanswered questions in the Standard Model are: – Are there more than three generations of particles? – Why are the fundamental particles masses so different? – How is the Higgs mass stablilized, i.e. what solves the hierarchy problem? – Is there more than one Higgs? – What is the nature of the neutrinos, are they Dirac or Majorana? – What is dark matter? – Why is there more matter than anti-matter? – Is there more CP violation? – Why only left-handed particles feel the electroweak interaction? – Is it possible to unify quantum mechanics with gravity? The collection of models and theories that make the research that extends the Standard Model to answer some of these, and many more, questions is known as physics Beyond the Standard Model (BSM).