COMPOSITE K>DELS of QUARKS and LEPTONS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Flavor Symmetries: Models and Implications
Flavor Symmetries: Models and Implications Neutrino mass squared splittings and angles Lisa L. Everett Nakatani, 1936 Talks by Mohapatra, Valle U. Wisconsin, Madison the first who made snow crystal in a laboratory !"#$%& '()*#+*, Absolute neutrino mass scale? The symmetry group of !"#"$#%""& '()*)+,-./0+'1'23"&0+456(5.0+1'7 8 is D6 , one of the finite groups. Introduction/Motivation Neutrino Oscillations: 2 i∆mij L 2E να νβ (L) = iα i∗β j∗α jβe− P → U U U U ij ! massive neutrinos observable lepton mixing First particle physics evidence for physics beyond SM! SM flavor puzzle ν SM flavor puzzle Ultimate goal: satisfactory and credible flavor theory (very difficult!) fits: Schwetz, Tortola, Valle ’08 The Data: Neutrino Masses Homestake, Kam, SuperK,KamLAND,SNO, SuperK, MINOS,miniBOONE,... ∆m2 m2 m2 Assume: 3 neutrino mixing ij ≡ i − j 2 2 +0.23 5 2 Solar: ∆m = ∆m12 = 7.65 0.20 10− eV ! | | − × (best fit 1 σ ) 2 +0.12 3 2 ± Atmospheric: ∆m31 = 2.4 0.11 10− eV ± − × Normal Hierarchy Inverted Hierarchy 3 2 1 2 1 3 Cosmology (WMAP): mi < 0.7 eV i ! fit: Schwetz, Tortola, Valle ’08 The Data: Lepton Mixing Homestake, Kam, SuperK,KamLAND,SNO, SuperK, Palo Verde, CHOOZ, MINOS... MNSP = 1(θ ) 2(θ13, δMNSP) 3(θ ) Maki, Nakagawa, Sakata U R ⊕ R R " P Pontecorvo cos θ sin θ " ! ! MNSP cos θ sin θ cos θ cos θ sin θ |U | ! − ⊕ ! ⊕ ! ⊕ sin θ sin θ sin θ cos θ cos θ ⊕ ! − ⊕ ! ⊕ 1σ ± Solar: θ = θ12 = 33.4◦ 1.4◦ ! ± +4.0 (best fit ) Atmospheric: θ = θ23 = 45.0◦ 3.4 ⊕ − +3.5 Reactor: ! = sin θ13, θ13 = 5.7◦ 5.7 − 2 large angles, 1 small angle (no constraints on -
The Flavour Puzzle, Discreet Family Symmetries
The flavour puzzle, discreet family symmetries 27. 10. 2017 Marek Zrałek Particle Physics and Field Theory Department University of Silesia Outline 1. Some remarks about the history of the flavour problem. 2. Flavour in the Standard Model. 3. Current meaning of the flavour problem? 4. Discrete family symmetries for lepton. 4.1. Abelian symmetries, texture zeros. 4.2. Non-abelian symmetries in the Standard Model and beyond 5. Summary. 1. Some remarks about the history of the flavour problem The flavour problem (History began with the leptons) I.I. Rabi Who ordered that? Discovered by Anderson and Neddermayer, 1936 - Why there is such a duplication in nature? - Is the muon an excited state of the electron? - Great saga of the µ → e γ decay, (Hincks and Pontecorvo, 1948) − − - Muon decay µ → e ν ν , (Tiomno ,Wheeler (1949) and others) - Looking for muon – electron conversion process (Paris, Lagarrigue, Payrou, 1952) Neutrinos and charged leptons Electron neutrino e− 1956r ν e 1897r n p Muon neutrinos 1962r Tau neutrinos − 1936r ν µ µ 2000r n − ντ τ 1977r p n p (Later the same things happen for quark sector) Eightfold Way Murray Gell-Mann and Yuval Ne’eman (1964) Quark Model Murray Gell-Mann and George Zweig (1964) „Young man, if I could remember the names of these particles, I „Had I foreseen that, I would would have been a botanist”, have gone into botany”, Enrico Fermi to advise his student Leon Wofgang Pauli Lederman Flavour - property (quantum numbers) that distinguishes Six flavours of different members in the two groups, quarks and -
SU(5) Grand Unified Theory with A4 Modular Symmetry
PHYSICAL REVIEW D 101, 015028 (2020) SU(5) grand unified theory with A4 modular symmetry † ‡ Francisco J. de Anda ,2,* Stephen F. King,1, and Elena Perdomo1, 1School of Physics and Astronomy, University of Southampton, SO17 1BJ Southampton, United Kingdom 2Tepatitlán’s Institute for Theoretical Studies, C.P. 47600, Jalisco, M´exico (Received 1 April 2019; published 30 January 2020) We present the first example of a grand unified theory (GUT) with a modular symmetry interpreted as a family symmetry. The theory is based on supersymmetric SUð5Þ in 6d, where the two extra dimensions are compactified on a T2=Z2 orbifold. We have shown that, if there is a finite modular symmetry, then it can i2π=3 only be A4 with an (infinite) discrete choice of moduli, where we focus on τ ¼ ω ¼ e , the unique solution with jτj¼1. The fields on the branes respect a generalized CP and flavor symmetry A4 ⋉ Z2 which is isomorphic to S4 which leads to an effective μ − τ reflection symmetry at low energies, implying maximal atmospheric mixing and maximal leptonic CP violation. We construct an explicit model along these lines with two triplet flavons in the bulk, whose vacuum alignments are determined by orbifold boundary conditions, analogous to those used for SUð5Þ breaking with doublet-triplet splitting. There are two right-handed neutrinos on the branes whose Yukawa couplings are determined by modular weights. The charged lepton and down-type quarks have diagonal and hierarchical Yukawa matrices, with quark mixing due to a hierarchical up-quark Yukawa matrix. DOI: 10.1103/PhysRevD.101.015028 I. -
Compactifications Arxiv:1512.03055V1 [Hep-Th] 9 Dec 2
Tracing symmetries and their breakdown through phases of heterotic (2,2) compactifications Michael Blaszczyk∗a and Paul-Konstantin Oehlmannyb aJohannes-Gutenberg-Universität,Staudingerweg 7, 55099 Mainz, Germany bBethe Center for Theoretical Physics, Physikalisches Institut der Universität Bonn, Nussallee 12, 53115 Bonn, Germany August 16, 2021 Abstract We are considering the class of heterotic N = (2; 2) Landau-Ginzburg orbifolds with 9 9 fields corresponding to A1 Gepner models. We classify all of its Abelian discrete quotients and obtain 152 inequivalent models closed under mirror symmetry with N = 1; 2 and 4 supersymmetry in 4D. We compute the full massless matter spectrum at the Fermat locus and find a universal relation satisfied by all models. In addition we give prescriptions of how to compute all quantum numbers of the 4D states including their discrete R- symmetries. Using mirror symmetry of rigid geometries we describe orbifold and smooth Calabi-Yau phases as deformations away from the Landau-Ginzburg Fermat locus in two explicit examples. We match the non-Fermat deformations to the 4D Higgs mechanism and study the conservation of R-symmetries. The first example is a Z3 orbifold on an E6 lattice where the R-symmetry is preserved. Due to a permutation symmetry of blow-up and torus arXiv:1512.03055v1 [hep-th] 9 Dec 2015 Kähler parameters the R-symmetry stays conserved also smooth Calabi-Yau phase. In the second example the R-symmetry gets broken once we deform to the geometric Z3 × Z3;free orbifold regime. ∗[email protected] [email protected] 1 Contents 1 Introduction 3 2 Landau-Ginzburg Orbifolds and Their Symmetries 5 2.1 Landau-Ginzburg models and their spectrum . -
International Centre for Theoretical Physics
IC/82/215 INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS PHYSICS WITH 100-1000 TeV ACCELERATORS Abctus Salam INTERNATIONAL ATOMIC ENERGY AGENCY UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION 1982MIRAMARE-TRIESTE Jt -ll: *:.. ft IC/82/215 International Atomic Energy Agency and United Nations Educational Scientific and Cultural Organization COHTEBTS IHTERHATIONAL CENTRE FOR THEORETICAL PHYSICS I. Introduction The Higga sector II. A brief review of the standard model PHYSICS WITH 1OO-1O0O TeV ACCELERATORS * III. Grand unification and the desert IV. The richness associated with Higgs particles Abdus Salam International Centre for Theoretical Physics, Trieste, Italy, V. Richness associated with supersymmetry and Imperial College, London, England. VI. The next levels of structure; Preons, pre-preons VII. Concluding remarks MIRAMARE - TRIESTE October 1982 * Lecture given at the Conference on the Challenge of Ultra-High Energies, 27-30 September 1982, at Hew College, Oxford, UK, organized by the European Committee for Future Accelerators and the Rutherford Appleton Laboratories. -i- I, [KTROPUCTTOM Let us examine this syndrome. It is a consequence of three There is no question but that uuiess our community takes urgent heed, assumptions:1) assume that there are no gaufte forces except the known SU (3), SU (2) and U(l), between the presently accessible 1/10 TeV and there is the darker that high energy accelerators may become extinct, in a c L an upper energy A ; 2) assume that no new particles will be discovered in this matter of thirty years or so. 2 3 range, which might upset the relation sin 6W(AQ) ~ f satisfied for the known Consider t^e ca.ie of CEBN, representing liiXiropean High Energy Physics. -