Website Designing, Overclocking

Total Page:16

File Type:pdf, Size:1020Kb

Website Designing, Overclocking Computer System Management - Website Designing, Overclocking Amarjeet Singh November 8, 2011 Partially adopted from slides from student projects, SM 2010 and student blogs from SM 2011 Logistics Hypo explanation Those of you who selected a course module after last Thursday and before Sunday – Apologies for I could not assign the course module Bonus deadline for these students is extended till Monday 5 pm (If it applies to you, I will mention it in the email) Final Lab Exam 2 weeks from now - Week of Nov 19 Topics will be given by early next week No class on Monday (Nov 19) – Will send out relevant slides and videos to watch Concerns with Videos/Slides created by the students Mini project Demos: Finish by today Revision System Cloning What is it and Why is it useful? What are different ways of cloning the system? Data Recovery Why is it generally possible to recover data that is soft formatted or mistakenly deleted? Why is it advised not to install any new software if data is to be recovered? Topics For Today Optimizing Systems Performance (including Overclocking) Video by Vaibhav, Shubhankar and Mukul - http://www.youtube.com/watch?v=FEaORH5YP0Y&feature=youtu.be Creating a basic website A method of pushing the basic hardware components beyond the default limits Companies equip their products with such bottle-necks because operating the hardware at higher clock rates can damage or reduce its life span OCing has always been surrounded by many baseless myths. We are going to bust some of those. J Slides from Vinayak, Jatin and Ashrut (2011) The primary benefit is enhanced computer performance without the increased cost A common myth is that CPU OC helps in improving game play. This can be true, but the effects are very mild. Games are not usually CPU bound, and they benefit more from OCing the graphics card However, it’s most advantageous when one is using CPU-intensive apps like photo editing, virus scans, video processing, 3D rendering etc OCing the CPU, GPU and RAM at the same time will make your PC visibly faster for gaming, editing, computing… anything. CPU Clock Rate : the speed at which a microprocessor executes instructions Clock Generator : a circuit which generates the clock signal FSB : connection between the CPU and the system memory CPU Multiplier : measures the ratio of an internal CPU clock rate to the externally supplied clock i.e. it’s the actual number of processing cycles that will run at in a single clock cycle of the bus speed ex. a processor running at 3200 MHz might be using a 133 MHz FSB. This means there is an internal clock multiplier setting of 24 ---> 24 x 133 = 3192 MHz CPU Vcore : voltage supplied to the CPU, GPU or any other device containing a processing core One of the very basic requirements of OCing is sufficient cooling Most motherboards come with a stock CPU cooler, but they fail to provide adequate cooling when the processor is OCed. You can OC with the stock cooler if you aren’t looking for large performance gains, but a new cooler is highly recommended. The power consumed by a CPU with a capacitance `C`, running at frequency ’f’ and voltage `V` is (approx.) : P = C * V2 * f So, when we increase the clock frequency and the Vcore, the power consumed by the CPU also increases. (`C` is constant) Obviously, the electricity bill goes up a little (you didn’t think that OCing was free, did you ?) The increase in power consumption can also cause harm to the CPU if not kept under check Intel introduced SpeedStep technology that allows clock speed to be dynamically changed : P = A * C * V2 * f (`A` is the Activity Factor) This made power consumption more intelligent which not only lowers the electricity bill, but also increases the battery backup in laptops. Moreover, there are no compromises made on the overall performance of the processor. It’s however advised to turn off SpeedStep (or PowerNow! in AMD) while overclocking through the BIOS. BIOS and motherboard which support overclocking Know your limits. Limits of your CPU. Do some research : What kind of CPU did you buy ? What’s the maximum temperature that it can support ? What’s the maximum voltage that can be supplied ? Patience is the key. It takes many trial and errors to get it right, and it might take a while. A series of 3 videos (by PCWizKids Tech Talk) edited by us: Video-1 Most PC’s are assembled and the OEMs (HP, Dell, Compaq etc) don’t provide OC support through the BIOS. However, overclocking can still be accomplished through 3rd party utilities like SetFSB, which are used to change the bus frequency. The one drawback of software OCing is that it can’t be used to change the multiplier or the core voltage. A small video explaining how to use SetFSB. Video-2 Video-3 OCing the processor is only the beginning. Almost anything with clock as an input can be OCed. This includes the GPU and even the RAM ! OCing the video card is pretty simple and can be achieved through utilities such as RivaTuner. However, many manufacturers now ship their cards with their own utilities making it even more simpler. The RAM however is trickier and needs a decent RAM stick which supports OCing (the stock ones will be fried) Creating Your Own Website How does a website work? Getting Started Purchase the domain name: Such that no one else can have the same name of website Typically available for less than Rs 500 per year Need the mapping of domain name to an IP address (host address) Host the website on a server - commercial servers or set up your own server (with unique IP address) Typically maintenance of a webserver (bandwidth management, security etc.) is significant effort Better to go with commercial services - A good deal can be secured for another Rs 500 - Rs 1000 for the first year of services Free commercial services (with limited capabilities) such as Google sites, wordpress Setting Up Your Own Server Apache in Ubuntu: Already done in Lab Session Another easy to setup server - XAMPP Open Source Cross-platform (available for windows as well) Very easy to install and setup Several other tools available as well…. Once the server is setup, the next task is to decide the tool to create the website Tools For Creating Website Writing HTML code: Typically old school and is not required Setup a working environment and use WYSIWYG editors Creates HTML by itself Work environment: Content Management Systems - Joomla, Drupal Blog style: Wordpress, Blogger Platform specific - iWeb, Windows FrontPage Browser based: Google sites Lets look at a few of them…. Wordpress Freely available online to setup your blog (Similar to blogger) Similar features as our course blog Limited features for online setup (since you are not paying for the hosting service) Tool available for download to setup on your own server - with more advanced features available IIIT Delhi ACM Chapter - http://acm.iiitd.edu.in/ Joomla and Drupal Freely available Content Management Systems (CMS) Pages are created as contents Contents can be rendered dynamically More in the SM Blog - http://smblog2011.blogspot.com/2011/09/creating-website.html Drupal is much more user friendly and supports many interesting features compared to Joomla Example - Institute website More in SM Blog - http://smblog2011.blogspot.com/2011/10/creating- website-using-drupal.html iWeb Web development tool integrated with MAC Supports good graphics Very limited functionality Google Sites Probably the easiest way to get your webpage up quickly No hosting required (Google does it for you) Widgets: Making Your Website Smarter Web widget is a small application that can be installed and executed within a web page by an end user. Installing a widget is equivalent to copy pasting some HTML source at appropriate location in your website A few interesting things you can do using widgets: Social Sharing Interactivity Google, Facebook and Twitter integration Visitor Tracking Search Adopted from slides from Digvijay and Aditya, SM 2010 Widgets: Social Sharing A few popular ones are: Share This Socio Fluid AddThis Add to Any Moo Socialize Tell a Friend Social List Widgets: Adding Interactivity A few widgets that achieve interactivity: MeeboMe Plugoo Mabber Chatango Zoho Chat ParaChat Widgets: Google Integration Integrate google in many different ways: Google Friend Connect Widget Google Sign in Widget Google Bar Widget Google Buzz Share Button Google Search Widgets: Facebook Integrate Facebook in many ways: Facebook Like Box Widget Facebook Profile Badge Widget Facebook Like Button Widget Facebook Share Button Widgets: Tracking Visitors Several widgets that do complex tracking like (feedjit): Geo location, IP address, Page viewed, Time Visited Simple things like download count (using ccount) - e.g. on System Management Course Website Tools like blogger has it inbuilt .
Recommended publications
  • Analysis and Optimization of Dynamic Voltage and Frequency Scaling for AVX Workloads Using a Software-Based Reimplementation
    Analysis and Optimization of Dynamic Voltage and Frequency Scaling for AVX Workloads Using a Software-Based Reimplementation Bachelor’s Thesis submitted by cand. inform. Yussuf Khalil to the KIT Department of Informatics Reviewer: Prof. Dr. Frank Bellosa Second Reviewer: Prof. Dr. Wolfgang Karl Advisor: Mathias Gottschlag, M.Sc. May 03 – September 02, 2019 KIT – The Research University in the Helmholtz Association www.kit.edu I hereby declare that the work presented in this thesis is entirely my own and that I did not use any source or auxiliary means other than these referenced. This thesis was carried out in accordance with the Rules for Safeguarding Good Scientic Practice at Karlsruhe Institute of Technology (KIT). Karlsruhe, September 2, 2019 Abstract While using the Advanced Vector Extensions (AVX) on current Intel x86 pro- cessors allows for great performance improvements in programs that can be parallelized by using vectorization, many heterogeneous workloads that use both vector and scalar instructions expose degraded throughput when mak- ing use of AVX2 or AVX-512. This eect is caused by processor frequency reductions that are required to maintain system stability while executing AVX code. Due to the delays incurred by frequency switches, reduced clock speeds are attained for some additional time after the last demanding instruction has retired, causing code in scalar phases directly following AVX phases to be executed at a slower rate than theoretically possible. We present an analysis of the precise frequency switching behavior of an Intel Syklake (Server) CPU when AVX instructions are used. Based on the obtained results, we propose avxfreq, a software reimplementation of the AVX frequency selection mechanism.
    [Show full text]
  • Drmos King of Power-Saving
    Insist on DrMOS King of Power-saving Confidential Eric van Beurden / Feb 2009 /Page v1.0 1 EU MSI King of Power-saving What are the power-saving components and technologies from MSI? 1. DrMOS 2. APS 3. GreenPower design 4. Hi-c CAP Why should I care about power-saving? 1. Better earth (Think about it! You can be a hero saving it !) 2. Save $$ on the electricity bill 3. Cool running boards 4. Better overclocking Confidential Page 2 MSI King of Power-saving Is DrMOS the name of a MSI heatpipe? No! DrMOS is the cool secret below the heatpipe, not the heatpipe itself. Part of the heatpipe covers the PWM where the DrMOS chips are located. (PWM? That is technical stuff, right ? Now you really lost me ) Tell me, should I write DRMOS, Dr. MOS or Doctor Mos? The name comes from Driver MOSFET. There is only one correct way to write it; “DrMOS”. Confidential Page 3 MSI King of Power-saving So DrMOS is a chip below the heatpipe? Yes, DrMOS is the 2nd generation 3-in-1 integrated Driver MOSFET. It combines 3 PWM components in one. (Like triple core…) 1. Driver IC 2. Bottom-MOSFET 3. Top-MOSFET Confidential Page 4 MSI King of Power-saving Is MSI the first to use DrMOS on it’s products? DrMOS is an integrated MOSFET design proposed by Intel in 2004. The first to use a 1st generation Driver Mosfet on a 8-Phase was Asus Blitz Extreme. This 1st generation had some problems and disadvantages. These are all solved in the 2nd generation DrMOS which we use exclusive on MSI products.
    [Show full text]
  • P5W64 WS Professional
    P5W64 WS Professional Motherboard E2846 Second Edition V2 September 2006 Copyright © 2006 ASUSTeK COMPUTER INC. All Rights Reserved. No part of this manual, including the products and software described in it, may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language in any form or by any means, except documentation kept by the purchaser for backup purposes, without the express written permission of ASUSTeK COMPUTER INC. (“ASUS”). Product warranty or service will not be extended if: (1) the product is repaired, modified or altered, unless such repair, modification of alteration is authorized in writing by ASUS; or (2) the serial number of the product is defaced or missing. ASUS PROVIDES THIS MANUAL “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OR CONDITIONS OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL ASUS, ITS DIRECTORS, OFFICERS, EMPLOYEES OR AGENTS BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES (INCLUDING DAMAGES FOR LOSS OF PROFITS, LOSS OF BUSINESS, LOSS OF USE OR DATA, INTERRUPTION OF BUSINESS AND THE LIKE), EVEN IF ASUS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES ARISING FROM ANY DEFECT OR ERROR IN THIS MANUAL OR PRODUCT. SPECIFICATIONS AND INFORMATION CONTAINED IN THIS MANUAL ARE FURNISHED FOR INFORMATIONAL USE ONLY, AND ARE SUBJECT TO CHANGE AT ANY TIME WITHOUT NOTICE, AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY ASUS. ASUS ASSUMES NO RESPONSIBILITY OR LIABILITY FOR ANY ERRORS OR INACCURACIES THAT MAY APPEAR IN THIS MANUAL, INCLUDING THE PRODUCTS AND SOFTWARE DESCRIBED IN IT.
    [Show full text]
  • Test Drive Report for Intel Pentium 4 660
    Test Drive Report for Intel Pentium 4 660 The Pentium 4 600 series processors from Intel may not hold an upper hand over their 500 series brethren in terms of clock frequencies, but they do sport quite a few significant new features: support for EM64T as well as EIST technology (for the reduction of processor power consumption and heat), and, very importantly, a series-wide upgrade to 2MB L2 Cache. Overall, the technical advances that have been achieved are rather obvious. First, a tech spec comparison chart is listed below: Pentium 4 5XX Pentium 4 6XX Model number 570, 560, 550, 540, 530, 520 660, 650, 640, 630 Clock speed 2.8 – 3.8GHz 3.0 – 3.6GHz FSB 800MHz 800MHz L2 Cache 1024KB 2048KB EM64T None Yes EDB Yes* Yes EIST None Yes Transistors 125m 169m Die size 112mm2 135mm2 *Only J-suffix 500 series processors (e.g. 560J, 570J) support EDB technology. From the outside, the new Pentium 4 600 series processors are completely identical to the Pentium 4 500 series processors. The 600 series continue to use the Prescott core, but its L2 Cache is enlarged to 2MB, resulting in increased transistor count and die size. CPU-Z Information Comparison Pentium 4 560 Pentium 4 660 “X86-64” appears in the Instructions caption for the Pentium 4 660. Both AMD’s 64-bit computing and Intel’s EM64T technologies belong to the x86-64 architecture, which means that these are expanded from traditional x86 architecture. Elsewhere, the two processors are shown to have different L2 Cache sizes.
    [Show full text]
  • A+ Guide to Managing and Maintaining Your PC, 7E
    A+ Guide to Managing and Maintaining Your PC, 7e Chapter 6 Supporting Processors Objectives • Learn about the characteristics and purposes of Intel and AMD processors used for personal computers • Learn about the methods and devices for keeping a system cool • Learn how to install and upgrade a processor • Learn how to solve problems with the processor, the motherboard, overheating, and booting the PC A+ Guide to Managing and Maintaining Your PC, 7e 2 Types and Characteristics of Processors • Processor – Installed on motherboard – Determines system computing power • Two major processor manufacturers – Intel and AMD Figure 6-1 An AMD Athlon 64 X2 installed in socket AM2+ with cooler not yet installed Courtesy: Course Technology/Cengage Learning A+ Guide to Managing and Maintaining Your PC, 7e 3 Types and Characteristics of Processors (cont’d.) • Features affecting processor performance and motherboards – System bus speeds the processor supports – Processor core frequency – Motherboard socket and chipset – Multiprocessing ability – Memory cache – Amount and type of DDR, DDR2, DDR3 memory – Computing technologies the processor can use – Voltage and power consumption A+ Guide to Managing and Maintaining Your PC, 7e 4 How a Processor Works • Three basic components – Input/output (I/O) unit • Manages data and instructions entering and leaving the processor – Control unit • Manages all activities inside the processor – One or more arithmetic logic units (ALUs) • Performs all logical comparisons, calculations A+ Guide to Managing and Maintaining
    [Show full text]
  • SY-6VBA133-B Motherboard
    SY-6VBA133-B Motherboard **************************************************** Pentium® III, Pentium® II & CeleronÔ Processor supported Apollo Pro133 AGP/PCI Motherboard 66/100/133 MHz Front Side Bus supported ATX Form Factor **************************************************** User's Manual SOYO™ SY-6VBA133-B Copyright © 1999 by Soyo Computer Inc. Trademarks: Soyo is the registered trademark of Soyo Computer Inc. All trademarks are the properties of their owners. Product Rights: All names of the product and corporate mentioned in this publication are used for identification purposes only. The registered trademarks and copyrights belong to their respective companies. Copyright Notice: All rights reserved. This manual has been copyrighted by Soyo Computer Inc. No part of this manual may be reproduced, transmitted, transcribed, translated into any other language, or stored in a retrieval system, in any form or by any means, such as by electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without permission in writing from Soyo Computer Inc. Disclaimer: Soyo Computer Inc. makes no representations or warranties regarding the contents of this manual. We reserve the right to amend the manual or revise the specifications of the product described in it from time to time without obligation to notify any person of such revision or amend. The information contained in this manual is provided to our customers for general use. Customers should be aware that the personal computer field is subject to many patents. All of our customers should ensure that their use of our products does not infringe upon any patents. It is the policy of Soyo Computer Inc. to respect the valid patent rights of third parties and not to infringe upon or to cause others to infringe upon such rights.
    [Show full text]
  • Power-Aware Load Balancing of Large Scale MPI Applications
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UPCommons. Portal del coneixement obert de la UPC Power-Aware Load Balancing Of Large Scale MPI Applications Maja Etinskiy Julita Corbalany Jesus Labartay [email protected] [email protected] [email protected] Mateo Valeroy Alex Veidenbaumz [email protected] [email protected] yBarcelona Supercomputing Center zDepartment of Computer Science Jordi Girona 31, 08034 Barcelona, Spain University of California, Irvine CA Abstract Several solutions have been proposed to load balance ap- plications via processor resource distribution ([1]). Via Dy- Power consumption is a very important issue for HPC namic Voltage Frequency Scaling (DVFS) that enables per community, both at the level of one application or at the processor frequency control it is possible to balance imbal- level of whole workload. Load imbalance of a MPI ap- anced applications in power aware manner. In load imbal- plication can be exploited to save CPU energy without pe- anced MPI applications, there are processes which complete nalizing the execution time. An application is load imbal- their computation and have to wait for the other processes anced when some nodes are assigned more computation to communicate. These nodes can run at lower frequen- than others. The nodes with less computation can be run cies and save energy consumed by CPU without increasing at lower frequency since otherwise they have to wait for the execution time. The dynamic power is proportional to the nodes with more computation blocked in MPI calls. A the product of the frequency and the square of the voltage technique that can be used to reduce the speed is Dynamic and it can be reduced via DVFS technique.
    [Show full text]
  • Dynamic Management of Turbomode in Modern Multi-Core Chips David Lo and Christos Kozyrakis Stanford University {Davidlo, Kozyraki}@Stanford.Edu
    Dynamic Management of TurboMode in Modern Multi-core Chips David Lo and Christos Kozyrakis Stanford University {davidlo, kozyraki}@stanford.edu Abstract core chips from Intel and AMD. It overclocks a cores by utiliz- ing available thermal headroom from idle execution resources Dynamic overclocking of CPUs, or TurboMode, is a feature [12, 1]. Current chips can dynamically overclock a core by up recently introduced on all x86 multi-core chips. It leverages ther- to 40% or more, which can lead to an increase in performance mal and power headroom from idle execution resources to over- by up to 40%. As the number of cores per chip increases over clock active cores to increase performance. TurboMode can ac- time, the overclocking range and the performance implications celerate CPU-bound applications at the cost of additional power of TurboMode will also increase. TurboMode is controlled by consumption. Nevertheless, naive use of TurboMode can signif- firmware using an embedded hardware controller that sets the icantly increase power consumption without increasing perfor- exact clock frequency based on the thermal headroom available mance. Thus far, there is no strategy for managing TurboMode and the expected performance benefits. Software has little con- to optimize its use across all workloads and efficiency metrics. trol over TurboMode, except for the ability to enable/disable it. This paper analyzes the impact of TurboMode on a wide Unfortunately, TurboMode is not always beneficial and de- range of efficiency metrics (performance, power, cost, and com- ciding when to enable it is quite complex. As seen in Section 3, bined metrics such as QPS=W and ED2) for representative the optimal TurboMode setting varies across different applica- server workloads on various hardware configurations.
    [Show full text]
  • Lawrence Butcher Reports on Recent Developments in ECU Technology and Their Impact on Engine Design
    The main circuit board from a programmable competition ECU. The appearance of SoC (system on chip) devices will see the size and complexity of these units fall New chips on the block Lawrence Butcher reports on recent developments in ECU technology and their impact on engine design n RET 46 (May 2010), we gave you a general overview of ECU These advances have led to design challenges, however, such as technology, looking at the overall design and implementation of packaging the growing number of I/Os effi ciently – an ever-present control processes in a modern internal combustion engine context. challenge in the space- and weight-conscious world of motorsport. The intention here is to expand on that, and investigate some of the Research into engine control systems is extensive, to say the least, Ikey advances in ECU design in recent years. so this article is not intended to be comprehensive, but hopefully it As the control of the internal combustion engine becomes ever will provide an insight into some areas of improvement that are not more advanced, with processes such as gasoline direct injection and immediately obvious to the casual observer. constantly variable valve timing becoming common, ECUs have had to evolve to cope with these extra demands. Key to meeting these Processors demands has been an increase in processing power and speed, which The heart of an ECU is one or more CPUs (central processing units), have allowed not only a greater capacity for input and output (I/O) which are responsible for carrying out the calculations required to run an data (see glossary page 68), but also faster and more accurate control engine, as well as tasks such as managing integration with other vehicle of an engine’s operating parameters.
    [Show full text]
  • A Universal Self-Calibrating Dynamic Voltage and Frequency Scaling (DVFS) Scheme with Thermal Compensation for Energy Savings in Fpgas
    A Universal Self-Calibrating Dynamic Voltage and Frequency Scaling (DVFS) Scheme with Thermal Compensation for Energy Savings in FPGAs Shuze Zhao1, Ibrahim Ahmed1, Carl Lamoureux1, Ashraf Lotfi2, Vaughn Betz1 and Olivier Trescases1 1University of Toronto, Toronto, ON, Canada 10 King’s College Road, Toronto, ON, M5S 3G4, Canada 2Altera Corp., Hampton, NJ, 08827, USA Email: [email protected] Abstract— Field Programmable Gate Arrays (FPGAs) are Currently, FPGA designers operate each IC at its rated widely used in telecom, medical, military and cloud computing nominal voltage, and must choose a clock frequency at or applications. Unlike in microprocessors, the routing and critical below the limit predicted by the Computer-Aided Design path delay of FPGAs is user dependent. The design tool sug- gests a maximum operating frequency based on the worst-case (CAD) tool’s timing analysis. This timing analysis is extremely timing analysis of the critical paths at a fixed nominal voltage, conservative, using worst-case models for process corners, on- which usually means there is significant voltage or frequency chip voltage drop, temperature and aging. In the vast majority margin in a typical chip. This paper presents a universal of chips and systems, however, the supply voltage can be offline self-calibration scheme, which automatically finds the reduced significantly below nominal in order to obtain energy FPGA frequency and core voltage operating limit at different self-imposed temperatures by monitoring design-specific critical savings. Operating the IC at a lower voltage also reduces paths. These operating points are stored in a calibration table the impact of aging effects such as Bias-Threshold Instability and used to dynamically adjust the frequency and core voltage (BTI), and improves the chip lifetime [12], [13].
    [Show full text]
  • 2010 VISION Quick Reference Guide for Desktop
    2010 VISION Quick Reference Guide for Desktop VISION Technology from AMD lets you enjoy a more vivid and smooth visual experience by combining cutting-edge processing and video power. FEATURES AND BENEFITS VISION Technology > VISION Technology from AMD enables reliable performance on today’s most popular applications > Get vivid, lifelike photos and crystal clear streaming video with up to 1 billion colors Maximum control ™ Platform > Featuring ATI Radeon Graphics for a superior visual experience with your favorite Overclocking casual games Massive headroom ATI Eyefinity VISION Premium Technology technology > With next-generation processor technology AMD Direct Connect Architecture, Microsoft® DirectX® you can enjoy a highly responsive PC experience 11 support > Connect your PC to your HDTV and enjoy Blu-ray™ [HD] movies with Create/Edit HD 7.1 surround sound and full 1080p detail with single-cable HDMI output movies Create/Edit HD Create/Edit movies > Speed up the conversion of video files and get fast video editing with movies Watch Blu-ray® ATI Stream Technology1 Watch Blu-ray®/ HD movies > Get dramatic energy efficiency improvements, automatically, with virtually HD movies Media player video no impact on performance with AMD PowerNow!™ 3.0 technology2 Media player video conversion conversion Watch DVD movies VISION Ultimate Technology Watch DVD movies Online videos > Deliver the speed, responsiveness, and performance of ultra-high Online videos Advanced photo bandwidth with power-optimized HyperTransport™ 3.0 technology Advanced photo
    [Show full text]
  • A Survey on Energy-Efficient Data Management
    A Survey on Energy-Efficient Data Management Jun Wang, Ling Feng Wenwei Xue, Zhanjiang Song Dept. of CS&T, Tsinghua Univ., Beijing, China Nokia Research Center, Beijing, China [email protected] [email protected] [email protected] [email protected] ABSTRACT was about 1.5% of the total U.S. electricity con- Energy management has now become a critical and ur- sumption in 2006, and this energy consumption is gent issue in green computing. A lot of efforts have been expected to double by 2011 if continuously powering made on energy-efficiency computing at various levels computer servers and data centers using the same from individual hardware components, system software, methods [11].” Xu et al. showed that electricity con- to applications. In this paper, we describe the energy- sumed by computer servers and cooling systems in a efficiency computing problem, as well as possible strate- typical data center contributes to around 20 percent gies to tackle the problem. We survey some recently of the total ownership cost, equivalent to one-third developed energy-saving data management techniques. of the total maintenance cost [42]. When a data Benchmarks and power models are described in the end center reaches its maximum provisioned power, it for the evaluation of energy-efficiency solutions. has to be replaced or augmented at a great expense [33]. In the very near future, energy efficiency is ex- pected to be one of the key purchasing arguments 1. INTRODUCTION in the society. Now and in the future, green computing will be a Nowadays, power and energy have started to seve- key challenge for both information technology and rely constrain the design of components, systems, business.
    [Show full text]