Relative Dating: Telling Time Using Fossils
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cave of the Mounds – National Natural Landmark Paleotales Grade 9-12 Fossil Mini-Course Glossary of Terms
Educational Programs PaleoTALES Grade 9-12 Fossil Mini-Course Wisconsin DPI Standards: Objectives: At the end of this program, the student should be able to: Science: A.12.3, D.12.4, D.12.5, D.12.6, • Apply fossil related vocabulary. D.12.11, D.12.12, E.12.2 • Name & identify the four fossil types. • Describe the processes involved in fossil formation. • Explain the importance of fossils in understand how the earth has changed through time. • Examine and identify 6-8 fossils and determine the type of each. Activities: Times are approximate and specific reinforcement activities will vary based on the needs of each individual group. 30 minutes The interactive audio visual presentation provides the definition of a fossil, investigation of the four fossil types, fossil formation and processes of collecting and identifying fossils. 30 minutes Sluicing gives participants a hands-on experience to discover their own collection like a true paleontologist. Guided identification shows examples of both local and non-local fossils. 50 minutes The Cave Tour fosters a connection between previously discussed fossil and geology concepts with the experience of observing embedded within the rock of the Cave. Pre-teach Vocabulary: A glossary of terms is provided for your convenience. Geology Fossil Cephalopod Brachiopod Geologic Time Scale - Mold Gastropod Echinoid Geologic Processes - Cast Pelecypod Goniatite Sedimentary rock - Trace Horn Coral Petrified Wood Law of Superposition - Body Crinoid Dinosaur Bone Limestone Paleontology Trilobite Shark Teeth Learning Extension: Try this before or after your visit to reinforce important concepts. 1. Closely examine fossils, identify and determine the age of your fossils with a fossil identification book. -
Back Matter (PDF)
Index acritarchs 131 Carbonate Dagestan 259 Aeronian, recovery patterns 127-33 carbonate ramps, Frasnian-Famennian 135 Alaska, graptolites 119-26 Carboniferous Albian, Late, Albian-Cenomanian oceanic anoxic 'lesser mass extinction event' events (OAEs) 240-1 rugose corals ammonites 231 extinction 188-9 Campanian 299-308 recovery 192-7 desmoceratacean, E Russia, Sakhalin 299-308 survival interval 189-91 Santonian-Maastrichtian, stratigraphy 300-3 catastrophic mass extinction 54 see also goniatites Caucasus, N ammonoids foraminifera, Danian extinctions 337-42 early stages 164-8 locations 337 goniatite survival 163-85 Caucasus, NE Japan 306 foraminifera, Cenomanian-Turonian Boundary juvenile ornament 169 Event 259--64 morphological sequence 169 location map 260 protoconch size 166, 181 Cauvery Basin, oceanic anoxic events (OAEs) 238 recovery, Sakhalin 304, 306 Cenomanian-Turonian Boundary Event taxonomic diversity, dynamics 305 dinoflagellate cyst assemblages recovery, England, Amphipora-bearing limestone 135-61 oceanic anoxic events 279-97 angiosperms, origination, extinction and diversity 73 England, S 267 Anisian Stage 223, 224 food chain recovery 265-77 Lazarus taxa 227 foraminifera 237-44, 259-64 Annulata Event, Devonian 178 Milankovitch rhythms 246 Apterygota 65 oceanic anoxic events (OAEs) archaeocyaths 82, 86 India, SE, Cauvery Basin 237-44 Ashgill, correlation of biotic events 129 NE Caucasus 259-64 Atavograptus atavus Zone 124 Spain, Menoyo section 245-58 Avalonian plate 125 Turonian lithological logs, England, SE 280-2 Changxingian -
Geologic Range: Early Cambrian to Holocene • Mode of Life: Marine and Freshwater
Class Bivalvia or Pelecypoda • Name: Bivalvia means " two" (bi) + " shells" (valvia). • Geologic range: Early Cambrian to Holocene • Mode of life: Marine and freshwater. Many species are infaunal burrowers or borers, and others are epifaunal. Class Gastropoda • Snails and slugs • Chief characteristics: – Asymmetrical, spiral- coiled calcareous shell. • Name: means "stomach" (gastro) + "foot" (pod). • Geologic range: Early Cambrian to Holocene. • Mode of life: Marine, freshwater or terrestrial. Class Cephalopoda • Squid, octopus, Nautilus, cuttlefish • Name: means " head" (kephale) + " foot" (pod). • Chief characteristics: – Symmetrical cone-shaped shell with internal partitions called septae – Shell may be straight or coiled in a spiral which lies in a plane. – Smooth or contorted sutures visible on the outside of some fossils mark the place where septae join the outer shell. Class Cephalopoda • Geologic range: Late Cambrian to Holocene • Mode of life: Marine only; carnivorous (meat- eating) swimmers. • Types of Paleozoic cephalopods: – Nautiloids – Ammonoids – Coleoids Nautiloid Cephalopods • The shells of nautiloid cephalopods have smoothly curved septa, which produce simple, straight or curved sutures. • Geologic range: Cambrian to Holocene Ammonoid Cephalopods • Ammonoid cephalopods have complex, wrinkled, crenulated septa, which produce angular or dendritic sutures. • Geologic range: Devonian to Cretaceous - all extinct. Ammonoid Cephalopods • There are three basic types of sutures in ammonoid shells: – Goniatite or goniatitic (septae -
United States National Museum Bulletin 262
SMITHSONIAN INSTITUTION MUSEUM O F NATURAL HISTORY For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C., 20402 - Price 70 cents UNITED STATES NATIONAL MUSEUM BULLETIN 262 Catalog of the Type Specimens of Invertebrate Fossils LOUIS R. PURNELL Part I: Paleozoic Cephalopoda SMITHSONIAN INSTITUTION PRESS WASHINGTON, D.C. 1968 Publications of the United States National Museum The scientific publications of the United States National Museum in- clude two series, Proceedings of the United States National Museum and United States National Museum Bulletin. In these series are published original articles and monographs dealing with the collections and work of the Museum and setting forth newly ac- quired facts in the field of anthropology, biology, geology, history, and technology. Copies of each publication are distributed to libraries and scientific organizations and to specialists and others interested in the various subjects. The Proceedings, begun in 1878, are intended for the publication, in separate form, of shorter papers. These are gathered in volumes, octavo in size, with the publication date of each paper recorded in the table of contents of the volume. In the Bulletin series, the first of which was issued in 1875, appear longer, separate publications consisting of monographs (occasionally in several parts) and volumes in which are collected works on related sub- jects. Bulletins are either octavo or quarto in size, depending on the the needs of the presentation. Since 1902, papers relating to the botanical collections of the Museum have been published in the Bulletin series under the heading Contributions from the United States National Herbarium. -
Alpinites and Other Posttornoceratidae (Goniatitida, Famennian)
Mitt. Mus. Nat.kd. Berl., Geowiss. Reihe 5 (2002) 51-73 10.11.2002 Alpinites and other Posttornoceratidae (Goniatitida, Famennian) R. Thomas Becker' With 6 figures, 1 table and 3 plates Summary The rediscovery of the supposedly lost type allows a revision of Alpinites Bogoslovskiy, 1971, the most advanced genus of the Posttornoceratidae. The type-species, Alp. kayseri Schindewolf, 1923, is so far only known from the Carnic Alps. Alp. schultzei n. sp. from the eastern Anti-Atlas of Morocco is closely related to AZp. kajruktensis n. sp. (= Alp. kayseri in Bogoslovskiy 1971) from Kazakhstan. A second new and more common species of southern Morocco, Alp. zigzag n. sp., is also known from the Holy Cross Mountains (Poland). The taxonomy and phylogeny of other Posttornoceratidae are discussed. The holotype of Exotornoceras nehdense (Lange, 1929) was recovered and is re-illustrated; it is conspecific with Exot. superstes (Wedekind, 1908). The genus and species is also here first recorded from Morocco. Post. weyeri Korn, 1999 is a subjective synonym of Post. posthurnurn (Wedekind, 1918) in which strongly biconvex growth lines, as typical for the family, are observed for the first time. Goniatites lenticularis Richter, 1848 is a nomen dubium within Discoclyrnenia, Clyrnenia polytrichus in Richter (1848) is a Falcitornoceras. It seems possible to distinguish an extreme thin and trochoid Disco. haueri (Miinster, 1840) from the tegoid Disco. cucullata (v. Buch, 1839). Various taxa are excluded from the Posttornoceratidae. Posttornoceras sapiens Korn, 1999 forms the type-species of Maidero- ceras n. gen.. Discoclyrnenia n. sp. of Miiller (1956) is assigned to Maid. rnuelleri n. -
On the Causes of Mass Extinctions
ÔØ ÅÒÙ×Ö ÔØ On the causes of mass extinctions David P.G. Bond, Stephen E. Grasby PII: S0031-0182(16)30691-5 DOI: doi: 10.1016/j.palaeo.2016.11.005 Reference: PALAEO 8040 To appear in: Palaeogeography, Palaeoclimatology, Palaeoecology Received date: 16 August 2016 Revised date: 2 November 2016 Accepted date: 5 November 2016 Please cite this article as: Bond, David P.G., Grasby, Stephen E., On the causes of mass extinctions, Palaeogeography, Palaeoclimatology, Palaeoecology (2016), doi: 10.1016/j.palaeo.2016.11.005 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT On the causes of mass extinctions David P.G. Bond1* and Stephen E. Grasby2, 3 1School of Environmental Sciences, University of Hull, Hull, HU6 7RX, United Kingdom 2Geological Survey of Canada, 3303 33rd St. N.W. Calgary AB Canada, T2L 2A7. 3Department of Geoscience, University of Calgary, Calgary AB Canada. *Corresponding author. E-mail: [email protected] (D. Bond). ACCEPTED MANUSCRIPT ACCEPTED MANUSCRIPT ABSTRACT The temporal link between large igneous province (LIP) eruptions and at least half of the major extinctions of the Phanerozoic implies that large scale volcanism is the main driver of mass extinction. -
Lab 5: Mollusks
Geos 223 Introductory Paleontology Spring 2006 Lab 5: Mollusks Name: Section: AIMS: This lab will introduce you to the eutrochozoan protostome phylum Mollusca. You will become familiar with the basic anatomy of the three mollusk groups which are most abundant in the fossil record: gastropods, bivalves, and cephalopods. Emphasis is placed on the various modes of life adopted by different members of each group, and how the form of the organism has been evolutionarily modified to suit each mode. You will also use a computer database to identify “mystery fossils”. By the end of this lab, you should have a good knowledge of the anatomy of the three most diverse groups of mollusks, an appreciation for how organismal form reflects function, and an understanding of how innovations in ecology and anatomy resulted in the evolutionary radiation of each group. INTRODUCTION: Mollusks are unsegmented protostomes with a trochophore larval stage during early development, and are one of the most diverse metazoan phyla. The basic mollusk body plan consists of a muscular foot, a visceral mass (containing the digestive tract and associated organs), a mantle cavity containing gills, a radula for feeding, and a calcareous shell protecting the visceral mass. The shell has a high preservation potential, and mollusks are common in the fossil record. There may be as many as ten classes of mollusks (depending on which text book you read). Each class has modified the basic body plan to some degree, allowing the group to radiate into different ecological niches. We will here focus on just three classes, which are common as fossils and exemplify the evolutionary diversification of mollusks. -
Evolution of the Goniatitaceae and Vis6an-Namurian Biogeography
Evolution of the Goniatitaceae and Vis6an-Namurian biogeography DIETERKORN Korn, D. 1997. Evolution of the Goniatitaceaeand Vis6an-Namurian biogeography.- Acta Pal eontologica P olonica 42, 2, 177 -199. Evolutionary lineages within the Carboniferous ammonoid superfamily Goniatitaceae can be recognized using cladistic and stratopheneticanalyses, showing that both ap- proaches lead to coinciding results. In the late Vis6an and Namurian A, ammonoid provinces can be defined by the distribution of lineages within the goniatite superfamily Goniatitaceae. The first province corresponds to the Subvariscan Realm (where the superfamily became extinct near the Vis6an-Namurian boundary), and the second em- braces the majority of the occurrences,e.g. the south urals, central Asia, and North America (where the superfamily with different independent lieages continued up into the late Namurian A). In the Vis6an, the superfamily was, in two short epochs, globally distributed with major transgressions,which probably led to migration events. The first is at the end of the late Vis6an A(G. fi.mbrians and G. spirifer Zones, when the genus Goniatites had a world-wide distribution with various species),and the second at the beginning of the late Vis6an C (L. poststriatumZone, when Lusitanoceras is globally distributed). K e y w o r d s : Ammonoidea, Goniatitaceae, Early Carboniferous, phylogeny, palaeo- biogeography. Dieter Korn [dieter.korn@uni+uebingen.de], Institut und Museum fiir Geologie und Palciontologieder Eberhard-Karls-(Jniversitrit, SigwartstraJJe10, 72076 Tiibingen, Ger- many. Introduction Late Vis6an and early Namurian goniatite faunashave been reported fiom numerous localities in the northernhemisphere, from Alaska andCanada, the Westernand Central United States,various regions in Europeand North Africa, Novaya Zemlya and the South Urals, Central Asia, as well as from China. -
THE LAZARUS AMMONOID FAMILY GONIATITIDAE, the TETRANGULARLY COILED ENTOGONITIDAE, and MISSISSIPPIAN BIOGEOGRAPHY Author(S): DIETER KORN, CHRISTIAN KLUG, ROYAL H
THE LAZARUS AMMONOID FAMILY GONIATITIDAE, THE TETRANGULARLY COILED ENTOGONITIDAE, AND MISSISSIPPIAN BIOGEOGRAPHY Author(s): DIETER KORN, CHRISTIAN KLUG, ROYAL H. MAPES Source: Journal of Paleontology, 79(2):356-365. Published By: The Paleontological Society DOI: http://dx.doi.org/10.1666/0022-3360(2005)079<0356:TLAFGT>2.0.CO;2 URL: http://www.bioone.org/doi/full/10.1666/0022-3360%282005%29079%3C0356%3ATLAFGT %3E2.0.CO%3B2 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. J. Paleont., 79(2), 2005, pp. 356±365 Copyright q 2005, The Paleontological Society 0022-3360/05/0079-356$03.00 THE LAZARUS AMMONOID FAMILY GONIATITIDAE, THE TETRANGULARLY COILED ENTOGONITIDAE, AND MISSISSIPPIAN BIOGEOGRAPHY DIETER KORN,1 CHRISTIAN KLUG,2 AND ROYAL H. MAPES3 1Museum fuÈr Naturkunde der Humboldt-UniversitaÈt zu Berlin, Invalidenstraûe 43, D-10115 Berlin, Germany, ,[email protected]., 2PalaÈontologisches Institut und Museum, UniversitaÈt ZuÈrich, Karl-Schmid-Str. -
Sauropterygia from the Middle Triassic of Makhtesh Ramon, Negev, Israel
cttWOOfUBRMtt J Qex FIELDIANA Geology NEW SERIES, NO. 40 Sauropterygia from the Middle Triassic of Makhtesh Ramon, Negev, Israel Olivier Rieppel Jean-Michel Mazin Eitan Tchernov February 26, 1999 ^lblication 1499 § PUBLISHED BY FIELD MUSEUM OF NATURAL HISTORY Si Information for Contributors to Fieldiana General: Fieldiana is primarily a journal for Field Museum staff members and research associates, although manuscripts from nonaffiliated authors may be considered as space permits. The Journal carries a page charge of $65.(X) per printed page or fraction thereof. Payment of at least 50% of page charges qualifies a paper for expedited processing, which reduces the publication time. Contributions from staff, research associates, and invited authors will be considered for publication regardless of ability to pay page charges, however, the full charge is mandatory for nonaffiliated authors of unsolicited manuscripts. Three complete copies of the text (including title page and abstract) and of the illustrations should be submitted (one original copy plus two review copies which may be machine copies). No manuscripts will be considered for publication or submitted to reviewers before all materials are complete and in the hands of the Scientific Editor. Manuscripts should be submitted to Scientific Editor, Fieldiana, Field Museum of Natural History, Chicago, Illinois 60605-2496, U.S.A. Text: Manuscripts must be typewritten double-spaced on standard-weight, SVi- by 11 -inch paper with wide margins on all four sides. If typed on an IBM-compatible computer using MS-DOS, also submit text on 5V4-inch diskette (WordPerfect 4.1, 4.2, or 5.0, MultiMate, Displaywrite 2, 3 & 4, Wang PC, Samna. -
Ammonite Diversity on the Jurassic
Ammonite Diversity Parkinsonia (pictured below) is perhaps the classic ammonite that you think of when imagining an Ammonite from the Jurassic Coast. However, there are many different types of ammonite so give you an idea of the variety, we have picked some of our Jurassic Coast favourites. Ammonites have a spiral shell divided into chambers. It could control its buoyancy in the water by filling the chambers with gas and water. The soft body of the ammonite only took up the last half whorl of the shell. Ammonites moved by sucking water through the mouth, pumping it over the gills, then squirting it out again. This propelled the animal through the water – backwards! Only the shells of ammonites have ever been found as fossils. How ammonites help us tell the time The ammonite species pictured right is one of the ‘zonal’ ammonites which help up work out the relative age of rocks. Ammonites evolved rapidly through time so if you find the same ammonite in two different locations, the rocks that they are found in must be the same age (unless the ammonite has been eroded and moved by rivers etc). So this fossil, Rasenia, gets its name from Market Rasen in Lincolnshire but this specimen was actually found 260 miles away near Ringstead, east of Weymouth. The rocks at both places are exactly the same age, dating back about 155 million years. Mariella rasenia Zonal fossils also help to tell the relative age of other fossils, such as the large marine reptiles. This is really important because it allows us to understand how they evolved through time. -
Dimorphism and Evolution of the Goniatite Tornoceras in the Famennian of the Holy Cross Mountains
Dimorphism and evolution of the goniatite Tornoceras in the Famennian of the Holy Cross Mountains HENRYK MAKOWSKI Makowski. H. 1991. Dimorphism and evolution of the goniatite Tornoceras in the Farnennian of the Holy Cross Mountains. Acta Palaeontologica Polonica 36, 3, A cephalopod limestone intercalation in the Early Farnennian tag6w beds of Janczyce (eastern Holy Cross Mountains, Poland) contains, in each of its five layers, abundant fossil assemblages of goniatites. The lineage of Tornoceras is especially well represented there. It starts from typical T. jrechi with rounded venter and ends in T. sublentiforme with sharp-edged venter. A bed-by-bed biometrical study has shown a bimodal size frequency distribution of conchs in each layer which is interpreted as sexual dimorphism. T.frechi paruurn subsp. n. and T. subacuturn sp. n., are proposed new, forms that represent successive comecting links within the lineage. Key word s: ammonites, Late Devonian, Poland, evolution, sexual dimorphism. Henryk Makowski, Instytut Geologii Podstawowej, Uniwersytet Warszawski, Aleja ~wirkii Wigury 93. 02-089 Warszawa. Poland. Introduction Tornoceras is a long-ranging and geographically widespread Late Devonian ammonoid. It ranges from the Middle Givetian to Early Farnennian (House & Price 1985),being common in the whole continent of Laurentia (Bogos- lovsky 1971, House 1963, 1978, Babin 1989), but known also from the South American (House 1978) and African (Bensdid 1974, Goddertz 1987) parts of Gondwana. Although abundant in many localities it is still inadequately known, with its early ontogeny recognized in the Middle and Late Devonian (House 1965) and in the early Frasnian (Bogoslovsky 1971). Sexual dimorphism has been described in Early Famemian populations (Makowski 1962a, b).