Quantum Transport in Solids

Total Page:16

File Type:pdf, Size:1020Kb

Quantum Transport in Solids Quantum Transport in Solids • Waves and particles in quantum mech. • Quantization in atoms • Insulators : Energy gap • Emergent particles in a solid • Landau quantization in a magnetic field and the quantum Hall effect Light is a Wave Hallmark of a wave : Interference constructive destructive Wave Particle Duality A photon is a particle too Electrons are Waves Energy and Momentum Planck : Energy ~ Frequency Ehf===ω ωπ= 2 f = ==×hJs/ 2π 1.05 10−34 Max Planck 1858-1947 de Broglie: Momentum ~ (Wavelength)-1 h pk=== k = 2/π λ λ Louis de Broglie 1892-1987 Dispersion Relation Relation between • Frequency and Wavelength • Energy and Momentum E For a photon: c fckEcp= ⇒ ω = ⇒ = λ p For an electron in vacuum: E 222 1 2 pk= Em==v ⇒ =ω = p 22mm 2 Quantization Waves in a confined geometry have discrete modes v f = 1 2L v f = 2 2 2L v f = 3 3 2L Quantization of circular orbits Circular orbits have quantized angular momentum. nrλπ= 2 2π ==n p == λ r Lrpn=== Bohr Model • Two equations : L ==mrv n= em22v Fk== rr2 • Solve for rn and En(rn,vn) =− 2 En Ry/ n Niels Bohr 1885-1962 = 2 rnan 0 • Rydberg energy: mk24 e Ry ==13.6 eV 2=2 • Bohr radius : 2 === a0 2 .5Å Explains line spectra of atoms mke Flatland ... (1980’s) Semiconductor Heterostructures : “Top down technology” → Two dimensional electron gas (2DEG) V(z) conduction band energy z AlxGa1-x As ∆E ~ 20 mV ~ 250°K Ga As 2D subband z 2DEG Fabricated with atomic precision using MBE. 1980’s - 2000’s : advances in ultra high mobility samples Pauli Exclusion Principle Electrons are “Fermions”: Each quantum state can accommodate at most one electron Wolfgang Pauli 1900-1958 n=4 n=4 n=3 n=3 n=2 n=2 n=1 n=1 Ground state Excited State Enrico Fermi 1901-1954 Insulator Energy Gap An insulator is inert because a finite energy is required to unbind an electron. A semiconductor is an insulator with a small energy gap. Add electrons to a semiconductor Energy Gap Accomplished by either • Chemical doping • Electrostatic doping (as in MOSFET) Added electrons are mobile. Add electrons to a semiconductor Energy Gap Accomplished by either • Chemical doping • Electrostatic doping (as in MOSFET) Added electrons are mobile. Add electrons to a semiconductor Energy Gap Accomplished by either • Chemical doping • Electrostatic doping (as in MOSFET) Added electrons are mobile. Added electrons form a band E p2 E = 2*m p m* = “Effective mass” Electrons in the “conduction band” behave just like ordinary electrons with charge e, but with a renormalized mass. “Emergent quasiparticles at low energy” “Holes” in the valence band Energy Gap Added holes are mobile “Holes” in the valence band Energy Gap Added holes are mobile “Holes” in the valence band Energy Gap Added holes are mobile Holes are particles too E p2 E = 2*mh p mh* = Hole Effective mass Holes in the “valence band” behave just like ordinary particles with charge + e, with a mass mh*. The sign of the charge of the carriers can be measured with the Hall effect. Band Structure of a Semiconductor E Conduction Band: Empty states electrons Gap holes Valence Band: Occupied states p The Quantized Hall Effect Hall effect in 2DEG MOSFET at large magnetic field Von Klitzing,1981 (Nobel 1985) ρ = -9 • Quantization: xyRN Q / N = integer accurate to 10 ! ==2 Ω • Quantum Resistance: RheQ / 25.812 807 k • Explained by quantum mechanics of electrons in a magnetic field Quantization in a magnetic field G G G Cyclotron Motion: =− × F eBv B v 1D Quantization argument: F mv2 e FeB==v L ==mrv n= r Solve for rn and En(rn,vn) eB n n= En====ω r = nc22m n eB eB Cyclotron frequency ω = c m π h Magnetic flux 2 nn= Magnetic Flux φ = π rB==φ 0 enclosed by orbit n e 2 0 quantum e =×4.1 10−15Tm 2 Landau Levels Landau solved the 2D Schrodinger Equation for free particles in a magnetic field Closely related to the harmonic oscillator Lev Landau 1908-1968 1 E / =ω En=+=ω () c nc2 Each Landau level has one state per flux quantum total fluxB× Area # states = = flux quantum (he / ) Quantized Hall Effect ω E / = c N filled Landau levels: # particles/area: # flux quanta Gap nN=× area BeB ==NN φ 0 h E ρ ==y B From last time: xy Jnex ρ = 1 h xy Ne2.
Recommended publications
  • Magnetism, Free Electrons and Interactions
    Magnetism Magnets Zero external field Finite external field • Types of magnetic systems • Pauli paramagnetism in metals Paramagnets • Landau diamagnetism in metals • Larmor diamagnetism in insulators Diamagnets • Ferromagnetism of electron gas • Spin Hamiltonian Ferromagnets • Mean field approach • Curie transition Antiferromagnets Ferrimagnets …… … Pauli paramagnetism Pauli paramagnetism Let us first look at magnetic properties of a free electron gas. ε =−p2 /2meBmc= /2 ε =+p2 /2meBmc= /2 ↑ ↓G Electron are spin-1/2 particles #of majority spins: dp3 NV= f()ε In external magnetic field B – Zeeman splitting #of minority spins: ↑,,↓ ∫ (2π= )3 ↑ ↓ 2 = 2 = ε↑ =−p /2meBmc /2 ε↓ =+p /2meBmc /2 Magnetization (magnetic moment per unit volume): - minority spins e= M =−()NN : aligned along the field and proportional Fermi level ↑ ↓ 2Vmc to B in low fields χ - magnetic succeptibility - majority spins M = χB χ > 0 - paramagnetism Pauli succeptibility Landau quantization G 2 2 A free electron in magnetic field: B & zˆ ε↑ =−p /2meBmc= /2 ε↓ =+p /2meBmc= /2 G 2 µ+eB= /2 mc 2 G VgeB= Schrödinger equation: = ⎛⎞ieA ABxAA===;0 NN−= gd()εε ≈ V −∇+=⎜⎟ψ εψ yxz ↑↓ ∫ 2mc= 22µ−eB= /2 mc mc ⎝⎠ B=1T corresponds toeBmc= /1=× K k provided m is free electrons’s mass Solutions: labeled by two indices nk, B G z For any fields, eBmc=/ µ ψ nk(r )= exp( ik y y+− ik z z )ϕ n ( x= ck y / eB ) Magnetic succeptibility: ϕn - wave functions of a harmonic oscillator 22 2 Energies: ε =+==kmeBmcn/2 ( / )( + 1/2) - strongly degenerate!! ⎛⎞e= nk z χP = ⎜⎟g ⎝⎠2mc We “quantized” momenta transverse to the field (Landau levels) 1 Landau diamagnetism Electrons in metals A free electron in magnetic field: moves along spiral trajectories We know that there are diamagnetic metals.
    [Show full text]
  • Rich Magnetic Quantization Phenomena in AA Bilayer Silicene
    www.nature.com/scientificreports OPEN Rich Magnetic Quantization Phenomena in AA Bilayer Silicene Po-Hsin Shih1, Thi-Nga Do2,3, Godfrey Gumbs4,5, Danhong Huang6, Hai Duong Pham1 & Ming-Fa Lin1,7,8 Received: 13 June 2019 The rich magneto-electronic properties of AA-bottom-top (bt) bilayer silicene are investigated using Accepted: 27 August 2019 a generalized tight-binding model. The electronic structure exhibits two pairs of oscillatory energy Published: xx xx xxxx bands for which the lowest conduction and highest valence states of the low-lying pair are shifted away from the K point. The quantized Landau levels (LLs) are classifed into various separated groups by the localization behaviors of their spatial distributions. The LLs in the vicinity of the Fermi energy do not present simple wave function modes. This behavior is quite diferent from other two-dimensional systems. The geometry symmetry, intralayer and interlayer atomic interactions, and the efect of a perpendicular magnetic feld are responsible for the peculiar LL energy spectra in AA-bt bilayer silicene. This work provides a better understanding of the diverse magnetic quantization phenomena in 2D condensed-matter materials. Silicene, an isostructure to graphene, is purely made of silicon atoms through both the sp2 and sp3 bondings. So far, silicene systems have been successfully synthesized by the epitaxial growth on various substrate surfaces. Monolayer silicene with diferent sizes of unit cells has been produced on several substrates, such as Si(111) 1,2 3,4 5 6 33× -Ag template , Ag(111) (4 × 4) , Ir(111) ( 33× ) and ZrB2(0001) (2 × 2) .
    [Show full text]
  • The Development of the Science of Superconductivity and Superfluidity
    Universal Journal of Physics and Application 1(4): 392-407, 2013 DOI: 10.13189/ujpa.2013.010405 http://www.hrpub.org Superconductivity and Superfluidity-Part I: The development of the science of superconductivity and superfluidity in the 20th century Boris V.Vasiliev ∗Corresponding Author: [email protected] Copyright ⃝c 2013 Horizon Research Publishing All rights reserved. Abstract Currently there is a common belief that the explanation of superconductivity phenomenon lies in understanding the mechanism of the formation of electron pairs. Paired electrons, however, cannot form a super- conducting condensate spontaneously. These paired electrons perform disorderly zero-point oscillations and there are no force of attraction in their ensemble. In order to create a unified ensemble of particles, the pairs must order their zero-point fluctuations so that an attraction between the particles appears. As a result of this ordering of zero-point oscillations in the electron gas, superconductivity arises. This model of condensation of zero-point oscillations creates the possibility of being able to obtain estimates for the critical parameters of elementary super- conductors, which are in satisfactory agreement with the measured data. On the another hand, the phenomenon of superfluidity in He-4 and He-3 can be similarly explained, due to the ordering of zero-point fluctuations. It is therefore established that both related phenomena are based on the same physical mechanism. Keywords superconductivity superfluidity zero-point oscillations 1 Introduction 1.1 Superconductivity and public Superconductivity is a beautiful and unique natural phenomenon that was discovered in the early 20th century. Its unique nature comes from the fact that superconductivity is the result of quantum laws that act on a macroscopic ensemble of particles as a whole.
    [Show full text]
  • Topological Classification of Correlations in 2D Electron
    materials Article Topological Classification of Correlations in 2D Electron Systems in Magnetic or Berry Fields Janusz E. Jacak Department of Quantum Technologies, Wrocław University of Science and Technology, Wyb. Wyspia´nskiego27, 50-370 Wrocław, Poland; [email protected] Abstract: Recent topology classification of 2D electron states induced by different homotopy classes of mappings of the planar Brillouin zone into Bloch space can be supplemented by a homotopy classification of various phases of multi-electron homotopy patterns induced by Coulomb interaction between electrons. The general classification of such type is presented. It explains the topologically protected correlations responsible for integer and fractional Hall effects in 2D multi-electron systems in the presence of perpendicular quantizing magnetic field or Berry field, the latter in topological Chern insulators. The long-range quantum entanglement is essential for homotopy correlated phases in contrast to local binary entanglement for conventional phases with local order parameters. The classification of homotopy long-range correlated phases induced by the Coulomb interaction of electrons has been derived in terms of homotopy invariants and illustrated by experimental observations in GaAs 2DES, graphene monolayer, and bilayer and in Chern topological insulators. The homotopy phases are demonstrated to be topologically protected and immune to the local crystal field, local disorder, and variation of the electron interaction strength. The nonzero interaction between electrons is shown, however, to be essential for the definition of the homotopy invariants, which disappear in gaseous systems. Citation: Jacak, J.E. Topological Keywords: homotopy phases; long-range quantum entanglement; FQHE; Hall systems; Chern Classification of Correlations in 2D topological insulators Electron Systems in Magnetic or Berry Field.
    [Show full text]
  • 25 Years of Quantum Hall Effect
    S´eminaire Poincar´e2 (2004) 1 – 16 S´eminaire Poincar´e 25 Years of Quantum Hall Effect (QHE) A Personal View on the Discovery, Physics and Applications of this Quantum Effect Klaus von Klitzing Max-Planck-Institut f¨ur Festk¨orperforschung Heisenbergstr. 1 D-70569 Stuttgart Germany 1 Historical Aspects The birthday of the quantum Hall effect (QHE) can be fixed very accurately. It was the night of the 4th to the 5th of February 1980 at around 2 a.m. during an experiment at the High Magnetic Field Laboratory in Grenoble. The research topic included the characterization of the electronic transport of silicon field effect transistors. How can one improve the mobility of these devices? Which scattering processes (surface roughness, interface charges, impurities etc.) dominate the motion of the electrons in the very thin layer of only a few nanometers at the interface between silicon and silicon dioxide? For this research, Dr. Dorda (Siemens AG) and Dr. Pepper (Plessey Company) provided specially designed devices (Hall devices) as shown in Fig.1, which allow direct measurements of the resistivity tensor. Figure 1: Typical silicon MOSFET device used for measurements of the xx- and xy-components of the resistivity tensor. For a fixed source-drain current between the contacts S and D, the potential drops between the probes P − P and H − H are directly proportional to the resistivities ρxx and ρxy. A positive gate voltage increases the carrier density below the gate. For the experiments, low temperatures (typically 4.2 K) were used in order to suppress dis- turbing scattering processes originating from electron-phonon interactions.
    [Show full text]
  • Path-Memory Induced Quantization of Classical Orbits SEE COMMENTARY
    Path-memory induced quantization of classical orbits SEE COMMENTARY Emmanuel Forta,1, Antonin Eddib, Arezki Boudaoudc, Julien Moukhtarb, and Yves Couderb aInstitut Langevin, Ecole Supérieure de Physique et de Chimie Industrielles ParisTech and Université Paris Diderot, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7587, 10 Rue Vauquelin, 75 231 Paris Cedex 05, France; bMatières et Systèmes Complexes, Université Paris Diderot, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7057, Bâtiment Condorcet, 10 Rue Alice Domon et Léonie Duquet, 75013 Paris, France; and cLaboratoire de Physique Statistique, Ecole Normale Supérieure, 24 Rue Lhomond, 75231 Paris Cedex 05, France Edited* by Pierre C. Hohenberg, New York University, New York, NY, and approved August 4, 2010 (received for review May 26, 2010) A droplet bouncing on a liquid bath can self-propel due to its inter- a magnetic field. However, for technical reasons we chose a action with the waves it generates. The resulting “walker” is a variant that relies on the analogy first introduced by Berry et al. dynamical association where, at a macroscopic scale, a particle (5) between electromagnetic fields and surface waves. ~ ~ ~ (the droplet) is driven by a pilot-wave field. A specificity of this Its starting point is the similarity of relation B ¼ ∇ × A in elec- ~ system is that the wave field itself results from the superposition tromagnetism with 2Ω~¼ ∇~× U in fluid mechanics. In these re- ~ of the waves generated at the points of space recently visited by lations, the vorticity 2Ω~is the equivalent of the magnetic field B ~ ~ the particle. It thus contains a memory of the past trajectory of the and the velocity U that of the vector potential A.
    [Show full text]
  • Effect of Landau Quantization on the Equations of State in Dense Plasmas with Strong Magnetic Fields
    High Power Laser Programme – Theory and Computation Effect of Landau quantization on the equations of state in dense plasmas with strong magnetic fields S Eliezera, P A Norreys, J T Mendonçab, K L Lancaster Central Laser Facility, CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon., OX11 0QX, UK a on leave from Soreq NRC, Yavne 81800, Israel bon leave from Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal Main contact email address: [email protected] Introduction where Γ is phenomenological coefficient and TD is the Debye The equations of state (EOS) are the fundamental relation temperature. A very useful phenomenological EOS for a solid 2) between the macroscopically quantities describing a physical is given by the Gruneisen EOS , 1) system in equilibrium . The EOS relates all thermodynamic γ VE P = i quantities, such as density, pressure, energy, entropy, etc. i (3) Knowledge of the EOS is required in order to solve V 3 α V hydrodynamic equations in specific physical situations, such as γ = plasma physics associated with laser interaction with matter, κ c V shock wave physics, astrophysical objects etc. The properties of matter are summarised in the EOS. where the quantities on the right hand side of the second equation can be measured experimentally: α = linear expansion The concept of Landau quantization in the presence of strong coefficient, κ = isothermal compressibility, cV = specific heat at magnetic fields is presented in the rest of this section and, in the constant volume. There are more sophisticated EOS for next section, the electron EOS in the presence of strong ions3),4), however in this report we do not consider further the magnetic fields is calculated and presented for non-relativistic ion contributions.
    [Show full text]
  • Aleksei A. Abrikosov 1928–2017
    Aleksei A. Abrikosov 1928–2017 A Biographical Memoir by M. R. Norman ©2018 National Academy of Sciences. Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. ALEKSEI ALEKSEEVICH ABRIKOSOV June 25, 1928–March 29, 2017 Elected to the NAS, 2000 Shortly after the 2003 announcement that Aleksei Abrikosov had won the Nobel Prize in Physics, a number of colleagues took Alex to lunch at a nearby Italian restau- rant. During lunch, one of the Russian visitors exclaimed that Alex should get a second Nobel Prize, this time in Literature for his famous “AGD” book with Lev Gor’kov and Igor Dzyaloshinskii (Methods of Quantum Field Theory in Statistical Physics.) Somewhat taken aback, I looked closely at this individual and realized that he was deadly serious. Although I could imagine the reaction of the Nobel Literature committee to such a book (for a lay person, perhaps analogous to trying to read Finnegan’s Wake), I had to admit that my own copy of this book is quite dog-eared, having been put to good use over the By M. R. Norman years. In fact, you know you have made it in physics when your book gets a Dover edition. One of the most charming pictures I ever saw was a rare drawing in color that Alexei Tsvelik did (commissioned by Andrei Varlamov for Alex’s 50th birthday) that was proudly displayed in Alex’s home in Lemont, IL. It showed Alex with his fingers raised in a curled fashion as in the habit of medieval Popes.
    [Show full text]
  • Chiral Landau Levels in Weyl Semimetal Nbas with Multiple Topological Carriers
    ARTICLE DOI: 10.1038/s41467-018-04080-4 OPEN Chiral Landau levels in Weyl semimetal NbAs with multiple topological carriers Xiang Yuan1,2, Zhongbo Yan3, Chaoyu Song1,2, Mengyao Zhang4,5, Zhilin Li5,6, Cheng Zhang 1,2, Yanwen Liu1,2, Weiyi Wang1,2, Minhao Zhao1,2, Zehao Lin1,2, Tian Xie1,2, Jonathan Ludwig7, Yuxuan Jiang7, Xiaoxing Zhang8, Cui Shang8, Zefang Ye1,2, Jiaxiang Wang1,2, Feng Chen1,2, Zhengcai Xia8, Dmitry Smirnov7, Xiaolong Chen5,6, Zhong Wang 3,6, Hugen Yan1,2 & Faxian Xiu1,2,9 1234567890():,; Recently, Weyl semimetals have been experimentally discovered in both inversion- symmetry-breaking and time-reversal-symmetry-breaking crystals. The non-trivial topology in Weyl semimetals can manifest itself with exotic phenomena, which have been extensively investigated by photoemission and transport measurements. Despite the numerous experi- mental efforts on Fermi arcs and chiral anomaly, the existence of unconventional zeroth Landau levels, as a unique hallmark of Weyl fermions, which is highly related to chiral anomaly, remains elusive owing to the stringent experimental requirements. Here, we report the magneto-optical study of Landau quantization in Weyl semimetal NbAs. High magnetic fields drive the system toward the quantum limit, which leads to the observation of zeroth chiral Landau levels in two inequivalent Weyl nodes. As compared to other Landau levels, the fi zeroth chiral Landau level exhibits a distinct linear dispersion in magnetic peldffiffiffi direction and allows the optical transitions without the limitation of zero z momentum or B magnetic field evolution. The magnetic field dependence of the zeroth Landau levels further verifies the predicted particle-hole asymmetry of the Weyl cones.
    [Show full text]
  • CP Violation's Early Days
    CERN Courier July/August 2014 Anniversary Temperature is our business CP violation’s early days Mineral Insulated Cable Reliable, Highly accurate cabling capable of A brief look back at a discovery that surprised operating in extreme environments. the world of particle physics 50 years ago. MgO and SiO2 Cables. RF Coaxial Cables. Multiconductor Transmission Cables. In the summer of 1964, at the International Conference on High- Welded and hermetically sealed connections. Energy Physics (ICHEP) in Dubna, Jim Cronin presented the results Capable of operating in and measuring temperatures of an experiment studying neutral kaons at Brookhaven National of up to 1,260oC. Laboratory. In particular, it had shown that the long-lived neutral Capable of operating in the following atmospheres - kaon can decay into two pions, which implied the violation of CP oxidising, reducing, neutral and vacuum. symmetry – a discovery that took the physics community by sur- prise. The news was greeted with some scepticism and met a barrage of questions. Everyone wanted to be satisfi ed that nothing had been overlooked, and that all other possibilities had been considered care- The experiment that discovered CP violation at Brookhaven was fully and ruled out. People need not have worried. Cronin, together set up in a neutral beamline, directed inside the ring of the Innovation at Okazaki: Cabling, Temperature Sensors & Heaters | okazaki-mfg.com with Val Fitch, visiting French physicist René Turlay and graduate Alternating Gradient Synchrotron. Visible here are the two student Jim Christenson, had spent months asking themselves the spectrometer magnets positioned at 22° to the beam. Spark CERN_125x193:Mise en page 1 18/09/12 17:17 Page 1 same questions, testing and cross-checking their results thoroughly.
    [Show full text]
  • Landau Quantization of Dirac Fermions in Graphene and Its Multilayers
    Front. Phys. 12(4), 127208 (2017) DOI 10.1007/s11467-016-0655-5 REVIEW ARTICLE Landau quantization of Dirac fermions in graphene and its multilayers Long-jing Yin (殷隆晶), Ke-ke Bai (白珂珂), Wen-xiao Wang (王文晓), Si-Yu Li (李思宇), Yu Zhang (张钰), Lin He (何林)ǂ The Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, China Corresponding author. E-mail: ǂ[email protected] Received December 28, 2016; accepted January 26, 2017 When electrons are confined in a two-dimensional (2D) system, typical quantum–mechanical phenomena such as Landau quantization can be detected. Graphene systems, including the single atomic layer and few-layer stacked crystals, are ideal 2D materials for studying a variety of quantum–mechanical problems. In this article, we review the experimental progress in the unusual Landau quantized behaviors of Dirac fermions in monolayer and multilayer graphene by using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). Through STS measurement of the strong magnetic fields, distinct Landau-level spectra and rich level-splitting phenomena are observed in different graphene layers. These unique properties provide an effective method for identifying the number of layers, as well as the stacking orders, and investigating the fundamentally physical phenomena of graphene. Moreover, in the presence of a strain and charged defects, the Landau quantization of graphene can be significantly modified, leading to unusual spectroscopic and electronic properties. Keywords Landau quantization, graphene, STM/STS, stacking order, strain and defect PACS numbers Contents 1 Introduction ....................................................................................................................... 2 2 Landau quantization in graphene monolayer, Bernal bilayer, and Bernal trilayer ...........
    [Show full text]
  • Carrier Multiplication in Graphene Under Landau Quantization
    ARTICLE Received 17 Sep 2013 | Accepted 21 Mar 2014 | Published 16 Apr 2014 DOI: 10.1038/ncomms4703 Carrier multiplication in graphene under Landau quantization Florian Wendler1, Andreas Knorr1 & Ermin Malic1 Carrier multiplication is a many-particle process giving rise to the generation of multiple electron-hole pairs. This process holds the potential to increase the power conversion efficiency of photovoltaic devices. In graphene, carrier multiplication has been theoretically predicted and recently experimentally observed. However, due to the absence of a bandgap and competing phonon-induced electron-hole recombination, the extraction of charge carriers remains a substantial challenge. Here we present a new strategy to benefit from the gained charge carriers by introducing a Landau quantization that offers a tunable bandgap. Based on microscopic calculations within the framework of the density matrix formalism, we report a significant carrier multiplication in graphene under Landau quantization. Our calculations reveal a high tunability of the effect via externally accessible pump fluence, temperature and the strength of the magnetic field. 1 Institute of Theoretical Physics, Nonlinear Optics and Quantum Electronics, Technical University Berlin, Hardenbergstrasse 36, Berlin 10623, Germany. Correspondence and requests for materials should be addressed to F.W. (email: fl[email protected]). NATURE COMMUNICATIONS | 5:3703 | DOI: 10.1038/ncomms4703 | www.nature.com/naturecommunications 1 & 2014 Macmillan Publishers Limited. All rights reserved. ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4703 n 1961 Schockley and Queisser1 predicted a fundamental limit n of B30% for the power conversion efficiency of single- +4 Ijunction solar cells. Their calculation is based on a simple +3 model, in which the excess energy of absorbed photons is +2 assumed to dissipate as heat.
    [Show full text]