Annual Report 2017 Caastro 1 Annual Report 2017
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Astro2020 Science White Paper
Astro2020 Science White Paper QUASAR MICROLENSING: REVOLUTIONIZING OUR UNDERSTANDING OF QUASAR STRUCTURE AND DYNAMICS Thematic Area: ☒ Galaxy Evolution Principal Author: Name: Leonidas A Moustakas Institution: Jet Propulsion Laboratory, California Institute of Technology Email: [email protected] Phone: 818-393-5095 Co-authors: Timo Anguita (Universidad Andres Bello), George Chartas (College of Charleston), Matthew Cornachione (US Naval Academy), Xinyu Dai (University of Oklahoma), Carina Fian (Instituto de Astrofísica de Canarias and Departamento de Astrofísica, Universidad de la Laguna), Jorge Jimenez-Vicente (Univ. de Granada), Kathleen Labrie (Gemini Observatory), Chelsea Macleod (Center for Astrophysics, Harvard University), Evencio Mediavilla (Instituto de Astrofísica de Canarias), Christopher W Morgan (US Naval Academy), Matthew O’Dowd (Lehman College, City University of New York), Geraint Lewis (University of Sydney), Chelsea MacLeod (Center for Astrophysics, Harvard-Smithsonian), Evencio Mediavilla, (Instituto de Astrofísica de Canarias), Veronica Motta (Universidad de Valparaiso), Anna Nierenberg (Jet Propulsion Laboratory), David Pooley (Trinity University), Karina Rojas (Ecole Polytechnique Fédérale de Lausanne and LSSTC Data Science Fellow), Dominique Sluse (STAR institute, University of Liège), Georgios Vernardos (University of Groningen), Rachel Webster (University of Melbourne), Suk Yee Yong (University of Melbourne) Abstract: Microlensing by stars within distant galaxies acting as strong gravitational lenses of multiply-imaged quasars, provides a unique and direct measurement of the internal structure of the lensed quasar on nano-arcsecond scales. The measurement relies on the temporal variation of high-magnification caustic crossings which vary on timescales of days to years. Multiwavelength observations provide information from distinct emission regions in the quasar. Through monitoring of these strong gravitational lenses, a full tomographic view can emerge with Astronomical-Unit scale resolution. -
A Unifying Theory of Dark Energy and Dark Matter: Negative Masses and Matter Creation Within a Modified ΛCDM Framework J
Astronomy & Astrophysics manuscript no. theory_dark_universe_arxiv c ESO 2018 November 5, 2018 A unifying theory of dark energy and dark matter: Negative masses and matter creation within a modified ΛCDM framework J. S. Farnes1; 2 1 Oxford e-Research Centre (OeRC), Department of Engineering Science, University of Oxford, Oxford, OX1 3QG, UK. e-mail: [email protected]? 2 Department of Astrophysics/IMAPP, Radboud University, PO Box 9010, NL-6500 GL Nijmegen, the Netherlands. Received February 23, 2018 ABSTRACT Dark energy and dark matter constitute 95% of the observable Universe. Yet the physical nature of these two phenomena remains a mystery. Einstein suggested a long-forgotten solution: gravitationally repulsive negative masses, which drive cosmic expansion and cannot coalesce into light-emitting structures. However, contemporary cosmological results are derived upon the reasonable assumption that the Universe only contains positive masses. By reconsidering this assumption, I have constructed a toy model which suggests that both dark phenomena can be unified into a single negative mass fluid. The model is a modified ΛCDM cosmology, and indicates that continuously-created negative masses can resemble the cosmological constant and can flatten the rotation curves of galaxies. The model leads to a cyclic universe with a time-variable Hubble parameter, potentially providing compatibility with the current tension that is emerging in cosmological measurements. In the first three-dimensional N-body simulations of negative mass matter in the scientific literature, this exotic material naturally forms haloes around galaxies that extend to several galactic radii. These haloes are not cuspy. The proposed cosmological model is therefore able to predict the observed distribution of dark matter in galaxies from first principles. -
A Wideband Polarization Survey of the Extragalactic Sky at 2-4 Ghz: A
A Wideband Polarization Survey of the Extragalactic Sky at 2-4 GHz: A Science White Paper for the VLA Sky Survey Sui Ann Mao (NRAO, U Wisconsin Madison, [email protected]), Julie Banfield (CASS, CSIRO), Bryan Gaensler (CAASTRO, University of Sydney), Lawrence Rudnick (U Minnesota), Jeroen Stil (U Calgary), Cormac Purcell (University of Sydney), Rainer Beck (MPIfR), Jamie Farnes (University of Sydney), Shane O’Sullivan (University of Sydney), Dominic Schnitzeler (MPIfR), Tony Willis (DRAO), Xiaohui Sun (Uni- versity of Sydney), Ettore Carretti (CASS, CSRIO), Klaus Dolag (U Munich), Dmitry Sokoloff (Moscow State University), Roland Kothes (DRAO), Maik Wolleben (U Calgary), George Heald (ASTRON), Joern Geisbuesch (DRAO), Tim Robishaw (DRAO), Jose Afonso (Observatorio Astronomico de Lisboa), Antonio Mario Magalh˜aes (U S˜ao Paulo), Britt Lundgren (U Wisconsin Madison), Marijke Haverkorn (Radboud University Nijmegen), Niels Oppermann (CITA), Russ Taylor (U Calgary) Abstract A VLA Sky Survey of the extragalactic sky at S band (2-4 GHz) with polarization information can uniquely probe the magneto-ionic medium in a wide range of astrophysical environments over cosmic time. For a shallow all-sky survey, we expect to detect over 4 million sources in total intensity > 0.45 mJy beam−1 and over 2.2 105 sources in polarized intensity. With × these new observations, we expect to discover new classes of polarized radio sources in very turbulent astrophysical environments and those with extreme values of Faraday depth. Moreover, by determining reliable -
The State of Anthro–Earth
The Rosette Gazette Volume 22,, IssueIssue 7 Newsletter of the Rose City Astronomers July, 2010 RCA JULY 19 GENERAL MEETING The State Of Anthro–Earth THE STATE OF ANTHRO-EARTH: A Visitor From Far, Far Away Reviews the Status of Our Planet In This Issue: A Talk (in Earth-English) By Richard Brenne 1….General Meeting Enrico Fermi famously wondered why we hadn't heard from any other planetary 2….Club Officers civilizations, and Richard Brenne, who we'd always suspected was probably from another planet, thinks he might know the answer. Carl Sagan thought it was likely …...Magazines because those on other planets blew themselves up with nuclear weapons, but Richard …...RCA Library thinks its more likely that burning fossil fuels changed the climates and collapsed the 3….Local Happenings civilizations of those we might otherwise have heard from. Only someone from another planet could discuss this most serious topic with Richard's trademark humor 4…. Telescope (in a previous life he was an award-winning screenwriter - on which planet we're not Transformation sure) and bemused detachment. 5….Special Interest Groups Richard Brenne teaches a NASA-sponsored Global Climate Change class, serves on 6….Star Party Scene the American Meteorological Society's Committee to Communicate Climate Change, has written and produced documentaries about climate change since 1992, and has 7.…Observers Corner produced and moderated 50 hours of panel discussions about climate change with 18...RCA Board Minutes many of the world's top climate change scientists. Richard writes for the blog "Climate Progress" and his forthcoming book is titled "Anthro-Earth", his new name 20...Calendars for his adopted planet. -
Extragalactic Continuum (And Spectral Line) Surveys with the SKA
Netherlands Institute for Radio Astronomy Extragalactic Continuum (and spectral line) surveys with the SKA John McKean (ASTRON and Kapteyn Astronomical Institute) on behalf of Extragalactic continuum/line SWG ASTRON is part of the Netherlands Organisation for Scientific Research (NWO) 1 Extragalactic continuum SWG § AIM: SWG established to investigate survey strategies and science capabilities of using continuum science (mainly star-forming galaxies and active galaxies). § OUTLINE: 1.Continuum science (overview) 2.NL focus / interests (KSP) 3.Issues and concerns § THE TEAM: • Chairs: Mark Sargent (Sussex) and Natasha Hurley-Walker (Curtin) • Associate Members: 103 from 21 countries • NL Team Members: John McKean (core), Ilse van Bemmel, Jamie Farnes, Huib Intema, Carole Jackson, Tom Oosterloo, Jack Radcliffe, Huub Rottgering, Tim Shimwell, Reinout van Weeren, Continuum science (low-frequencies) LOFAR (Shimwell et al. 2017) Continuum science (low-frequencies) LOFAR (van Weeren et al. 2016) Key science: Testing particle acceleration in the largest colliders. Key lesson: Calibration needs the raw visibilities. (Shimwell et al. 2017) Continuum science (low-frequencies) (McKean et al. 2017) (Morabito et al. 2016) Key science: Test AGN feedback at the jet/interstellar medium interface. SKA Continuum survey plans Main science goal: Study the evolution of star-formation and active galactic nuclei activity across cosmic time (in competition with JWST and ALMA). Methodology: Will be carried out in a tiered survey approach from wide-shallow to narrow-deep. General user: Continuum science will be the basic observing mode for the SKA and will have extensive general user appeal, requiring additional observations with different field of view and frequency requirements — user friendly? SKA Continuum survey plans (Dark Matter and Energy) Key questions: 1) What is dark energy? 2) What is dark matter? Large surveys aimed to answer these question (LSST, DES, Euclid). -
Print Special Issue Flyer
CITESCORE 2.8 SCOPUS an Open Access Journal by MDPI The Power of Faraday Tomography Guest Editors: Message from the Guest Editors Dr. Mami Machida Dear Colleagues, [email protected] We invite you to submit manuscripts for a Special Issue Dr. Marijke Haverkorn o f Galaxies on “The Power of Faraday Tomography”. [email protected] Magnetic fields play vital roles on all scales throughout the Dr. Takuya Akahori Universe, allowing the creation of stars and exoplanets, [email protected] affecting the gas flows in the interstellar medium, forming galactic and AGN jet structures, and permeating the cosmic Dr. Jamie Farnes web such as galaxy clusters. Yet the origin of these cosmic [email protected] magnets and the mechanisms of field amplification/ordering over the history of the Universe are still largely unsolved. Recent developments from new Deadline for manuscript astronomical messengers, such as fast radio bursts (FRBs), submissions: in combination with new polarimetric radio surveys, are closed (1 November 2018) rapidly developing this field from a data-restricted niche into a diverse and rapidly-developing field. This Special Issue aims to review the current status and future prospects of the Faraday tomography method, by combining astronomical observations, numerical simulations, and astrophysical theories. mdpi.com/si/16169 SpeciaIslsue CITESCORE 2.8 SCOPUS an Open Access Journal by MDPI Editor-in-Chief Message from the Editor-in-Chief Prof. Dr. Emilio Elizalde Galaxies provides an advanced forum for studies related to Consejo Superior de astronomy, astrophysics, and cosmology, including all of Investigaciones Científicas, their subfields. -
07037 Melbuni MUM AUG07 ART.Indd
Melbouru ne University Magazine AUGUST EDITION 2007 Noise: A loud and clear cinematic success story for Matthew Saville Medical tourism: First world medicine at third world prices? Climate change: Can we get it right? Analysis: David Hicks’ guilty plea, what it really means Review Noise: An Australian Medical tourism film of striking 04 06 power 08 Melbourne University Magazine 2 0 07, Editorial Board August Edition Sean Cubitt – Director Media and Melbourne University Magazine is a publication Communications Program for alumni and friends of the University of Faculty of Arts (Chair) Melbourne. All correspondence relating to Silvia Dropulich – Writer & Editor, Marketing the editorial content of the magazine should & Communications (Editor/Managing Editor) be addressed to: Campbell Bairstow – General Manager, The Editor: Silvia Dropulich Alumni Relations, Advancement Melbourne University Magazine, Marketing and Communications, Dr Elizabeth Presa – Head and Academic The University of Melbourne, Coordinator, Centre for Ideas, VCA Victoria 3010 Dr Philip Batterham – Associate Professor Phone: +61 3 8344 7999 and Reader, Bio21 Institute of Molecular Fax: +61 3 8344 4921 Science and Biotechnology Email: [email protected] Dr Douglas Parbery – Committee of Cover: From the movie Noise, image supplied Convocation courtesy of Madman Cinema Change of address: Yee Fui Ng – International Law Alumna If you would like to be added to the Views expressed by contributors are not Melbourne University Magazine mailing list, or necessarily endorsed by -
Arxiv:1802.01597V1 [Astro-Ph.GA] 5 Feb 2018 Born 1991)
Astronomy & Astrophysics manuscript no. AA_2017_32084 c ESO 2018 February 7, 2018 Mapping the core of the Tarantula Nebula with VLT-MUSE? I. Spectral and nebular content around R136 N. Castro1, P. A. Crowther2, C. J. Evans3, J. Mackey4, N. Castro-Rodriguez5; 6; 7, J. S. Vink8, J. Melnick9 and F. Selman9 1 Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109-1107, USA e-mail: [email protected] 2 Department of Physics & Astronomy, University of Sheffield, Hounsfield Road, Sheffield, S3 7RH, UK 3 UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, UK 4 Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin, Ireland 5 GRANTECAN S. A., E-38712, Breña Baja, La Palma, Spain 6 Instituto de Astrofísica de Canarias, E-38205 La Laguna, Spain 7 Departamento de Astrofísica, Universidad de La Laguna, E-38205 La Laguna, Spain 8 Armagh Observatory and Planetarium, College Hill, Armagh BT61 9DG, Northern Ireland, UK 9 European Southern Observatory, Alonso de Cordova 3107, Santiago, Chile February 7, 2018 ABSTRACT We introduce VLT-MUSE observations of the central 20 × 20 (30 × 30 pc) of the Tarantula Nebula in the Large Magellanic Cloud. The observations provide an unprecedented spectroscopic census of the massive stars and ionised gas in the vicinity of R136, the young, dense star cluster located in NGC 2070, at the heart of the richest star-forming region in the Local Group. Spectrophotometry and radial-velocity estimates of the nebular gas (superimposed on the stellar spectra) are provided for 2255 point sources extracted from the MUSE datacubes, and we present estimates of stellar radial velocities for 270 early-type stars (finding an average systemic velocity of 271 ± 41 km s−1). -
Here Is an Opportunity to Advertise Your Poster Within 1 Minute
Logging, Laxze Hitotsuba, Front: 2nd Floor Welcome Party (27th May) Reception, 1st Floor May 28 (Mon) - June 2 (Sat), 2018, Cottage Himuka, Miyazaki, Japan http://ska-jp.org/ws/SKAJP_MAGWS2018/ #SKA_JAPAN_MAG2018 PROGRAM Talks Invited talks are 30 min + 10 min for questions. Contributed talks are 15 min + 5 min. Please check the connection to the projector before your talk. Posters Posters should be a maximum of A0 size format, in portrait orientation. There is an opportunity to advertise your poster within 1 minute. Please check the connection to the projector before your talk. Twitter If you post on Twitter about the conference, please use the hashtag #SKA_JAPAN_MAG2018 Time Table Time 28 Mon 29 Tue 30 Wed 31 Thu 1 Fri 2 Sat 09:00-09:20 Opening T. Kawashima V. Vacca B. Gaensler 09:20-09:40 H. Takahashi S. Ideguchi 09:40-10:00 H. Akamatsu Discussion 4 T. Vernstrom 10:00-10:20 C. Purcell M. Takizawa C. Van Eck 10:20-10:40 W. Raja M Hoeft Coffee/Tea AIPS 10:40-11:00 Coffee/Tea Coffee/Tea Coffee/Tea (40 min) POSSUM CASA 11:00-11:20 (40 min) (40 min) (40 min) Tutorial G. Heald 11:20-11:40 Y. Miyashita A. Hills V. Ravi 11:40-12:00 P. Arras T. Zenko J. Farnes 12:00-12:20 T. Akahori J. Bray J. West Summary & 12:20-12:40 Discussion 1 Discussion 2+3 M. Alves Discussion 12:40-13:40 Lunch (60 min) 13:40-14:00 J. Green D. Ryu S. O’Sullivan 14:00-14:20 O. -
Dark Energy Survey Results
Dark Energy Survey Results The Dark Energy Survey (DES) program uses the patterns of cosmic structure as seen in the spatial distribution of hundreds of millions of galaxies to reveal the nature of "dark energy," the source of cosmic acceleration. [32] Key components for the sky-mapping Dark Energy Spectroscopic Instrument (DESI), weighing about 12 tons, were hoisted atop the Mayall Telescope at Kitt Peak National Observatory (KPNO) near Tucson, Arizona, and bolted into place Wednesday, marking a major project milestone. [31] Scientists at the University of Oxford may have solved one of the biggest questions in modern physics, with a new paper unifying dark matter and dark energy into a single phenomenon: a fluid which possesses 'negative mass." [30] Researchers at the Max Planck Institute for Radio Astronomy in Bonn, Germany, have proposed a new experiment that makes use of super-dense stars to learn more about the interaction of dark matter with standard matter. [29] CfA astronomer Qirong Zhu led a group of four scientists investigating the possibility that today's dark HYPERLINK "https://phys.org/tags/matter/" matter is composed of primordial black holes, following up on previously published suggestions. If galaxy halos are made of black holes, they should have a different density distribution than halos made of exotic particles. [28] A signal caused by the very first stars to form in the universe has been picked up by a tiny but highly specialised radio telescope in the remote Western Australian desert. [27] This week, scientists from around the world who gathered at the University of California, Los Angeles, at the Dark Matter 2018 Symposium learned of new results in the search for evidence of the elusive material in Weakly Interacting Massive Particles (WIMPs) by the DarkSide-50 HYPERLINK "https://phys.org/tags/detector/" detector. -
Ngc Catalogue Ngc Catalogue
NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39 -
Arxiv:1803.10763V1 [Astro-Ph.GA] 28 Mar 2018
Draft version October 10, 2018 Typeset using LATEX default style in AASTeX61 TRACERS OF STELLAR MASS-LOSS - II. MID-IR COLORS AND SURFACE BRIGHTNESS FLUCTUATIONS Rosa A. Gonzalez-L´ opezlira´ 1 1Instituto de Radioastronomia y Astrofisica, UNAM, Campus Morelia, Michoacan, Mexico, C.P. 58089 (Received 2017 October 20; Revised 2018 February 20; Accepted 2018 February 21) Submitted to ApJ ABSTRACT I present integrated colors and surface brightness fluctuation magnitudes in the mid-IR, derived from stellar popula- tion synthesis models that include the effects of the dusty envelopes around thermally pulsing asymptotic giant branch (TP-AGB) stars. The models are based on the Bruzual & Charlot CB∗ isochrones; they are single-burst, range in age from a few Myr to 14 Gyr, and comprise metallicities between Z = 0.0001 and Z = 0.04. I compare these models to mid-IR data of AGB stars and star clusters in the Magellanic Clouds, and study the effects of varying self-consistently the mass-loss rate, the stellar parameters, and the output spectra of the stars plus their dusty envelopes. I find that models with a higher than fiducial mass-loss rate are needed to fit the mid-IR colors of \extreme" single AGB stars in the Large Magellanic Cloud. Surface brightness fluctuation magnitudes are quite sensitive to metallicity for 4.5 µm and longer wavelengths at all stellar population ages, and powerful diagnostics of mass-loss rate in the TP-AGB for intermediater-age populations, between 100 Myr and 2-3 Gyr. Keywords: stars: AGB and post{AGB | stars: mass-loss | Magellanic Clouds | infrared: stars | stars: evolution | galaxies: stellar content arXiv:1803.10763v1 [astro-ph.GA] 28 Mar 2018 Corresponding author: Rosa A.