Pittonia :A Series of Papers Relating to Botany and Botanists /By Edward L
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Between-Year Variation in Seed Weights Across Altitudes in the High-Alpine Plant Eritrichium Nanum
Plant Ecol (2010) 207:227–231 DOI 10.1007/s11258-009-9667-3 Between-year variation in seed weights across altitudes in the high-alpine plant Eritrichium nanum Lea R. Wirth Æ Rene´ Graf Æ Felix Gugerli Æ Urs Landergott Æ Rolf Holderegger Received: 6 May 2009 / Accepted: 9 September 2009 / Published online: 16 September 2009 Ó Springer Science+Business Media B.V. 2009 Abstract Seed weight is a prominent life history Introduction trait of plants affecting dispersal, establishment, and survival. In alpine environments, the few studies When comparing lowland with alpine plant species, investigating the effect of elevation on seed weight an obvious adaptation to the adverse alpine environ- within species have mainly detected a decrease in seed ment is the reduced size of alpine plants (Jenny-Lips weight with increasing elevation. This relationship is 1948;Ko¨rner 2003). In contrast, it has been observed generally attributed to the adverse climate at high that seed weight or seed size is often increased in elevations. In order to test this hypothesis, we alpine species as compared with taxonomically analyzed seed weight variation across altitudes related lowland species (Blionis and Vokou 2005; (2,435–3,055 m a.s.l.) in two consecutive years that Pluess et al. 2005; but see Baker 1972). Seed size is differed in weather conditions in the high-alpine of special interest, because it is a prominent life cushion plant Eritrichium nanum. We found a signif- history trait of plants that affects dispersal, establish- icant reduction in seed weight with increasing eleva- ment, and seedling survival (Leishman et al. -
INTRODUCTION BARLEY Barley (Also Known As Groats) Is a Cereal
INTRODUCTION BARLEY Barley (also known as groats) is a cereal grain botanically known as Hordeum vulgare L. , and is believed for its origin from western Asia or Ethiopia. Barley is still considered one of the top five cereal grains in the world. Only ten percent of barley is used as human food, while the remaining percentage is used for brewing malt beverages, including beer and whiskey. However, the majority of harvest barley is used for livestock feed. Barley is also a prime ingredient in the making of variety of the popular foods in the world. The exact origin of barley is debatable, possibly originating in Egypt, Ethiopia, and the near East of Tibet (4). However, it is confirmed that certain barley species was among the earliest cultivated grains, around the same time as domestication of wheat, Barley was grown in the Middle East prior to 10,000 BC (5), but barley's cultivation in China and India probably occurred later (5, 20, 31) . The old English word for 'barley' was baere, which traces back to Proto-Indo- European and is cognate to the Latin word farina "flour". The un-derived world ‘baere’ survives in the north of Scotland as bere , and refers to a specific strain of six-row barley (4, 15). The word barn, which originally meant barley-house, is also rooted in these words (2). In a ranking of cereal crops (2007) in the world, barley was fourth both in terms of quantity produced (136 million tons) and in area of cultivation (566,000 km²) 6. 1 BARLEY IN ISLAMIC LITERATURE According to the scholars of Hadiths (Prophetic sayings) barley supposed to be very nutritious, beneficial in coughs and inflammation of the stomach. -
The Hordeum Toolbox: the Barley Coordinated Agricultural Project Genotype and Phenotype Resource
ORIGINAL RESEARCH The Hordeum Toolbox: The Barley Coordinated Agricultural Project Genotype and Phenotype Resource Victoria C. Blake,* Jennifer G. Kling, Patrick M. Hayes, Jean-Luc Jannink, Suman R. Jillella, John Lee, David E. Matthews, Shiaoman Chao, Timothy J. Close, Gary J. Muehlbauer, Kevin P. Smith, Roger P. Wise, and Julie A. Dickerson Abstract RADITIONALLY, plant breeders have collected phenotype The use of DNA markers in public sector plant breeding is now Tdata from breeding populations and used it to select the norm. Such markers are common across breeding programs for superior genotypes. Data access was limited to indi- and this commonality enables and enhances collaboration. vidual programs via spreadsheets or in-house databases. Therefore, large collaborative research projects that measure Th is approach has been successful in developing novel several phenotypes across multiple environments coupled with germplasm and varieties. However, with the exception the expanding amount of genotype data attainable with current of the few lines being grown in regional nurseries, the marker technologies are on the rise and these projects demand only scientists that had access to these extensive datasets effi cient data delivery. However, development of computational were those that were intimately associated with the pro- tools for advanced data integration, visualization, and analysis is grams that generated the data. Th erefore, there was little still a bottleneck, even though these resources have the greatest understanding of the relationship of germplasm between potential impact for users who are extracting and developing programs, and the ability to share germplasm between hypothesis-based solutions. The Hordeum Toolbox (THT) was programs in an intelligent manner was restricted. -
Approaches and Limitations of Species Level Diagnostics in Flowering Plants
Genetic Food Diagnostics Approaches and Limitations of Species Level Diagnostics in Flowering Plants Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN (Dr. rer. nat.) Fakultät für Chemie und Biowissenschaften Karlsruher Institut für Technologie (KIT) - Universitätsbereich genehmigte DISSERTATION von Dipl. Biologe Thomas Horn aus 77709 Wolfach Dekan: Prof. Dr. Peter Roesky Referent: Prof. Dr. Peter Nick Korreferent: Prof. Dr. Horst Taraschewski Tag der mündlichen Prüfung: 17.04.2014 Parts of this work are derived from the following publications: Horn T, Völker J, Rühle M, Häser A, Jürges G, Nick P; 2013; Genetic authentication by RFLP versus ARMS? The case of Moldavian Dragonhead (Dracocephalum moldavica L.). European Food Research and Technology, doi 10.1007/s00217-013-2089-4 Horn T, Barth A, Rühle M, Häser A, Jürges G, Nick P; 2012; Molecular Diagnostics of Lemon Myrtle (Backhousia citriodora versus Leptospermum citratum). European Food Research and Technology, doi 10.1007/s00217-012-1688-9 Also included are works from the following teaching projects: RAPD Analysis and SCAR design in the TCM complex Clematis Armandii Caulis (chuān mù tōng), F2 Plant Evolution, 2011 Effects of highly fragmented DNA on PCR, F3, Lidija Krebs, 2012 1 I. Acknowledgement “Nothing is permanent except change” Heraclitus of Ephesus Entering adolescence – approximately 24 years ago – many aspects of life pretty much escaped my understanding. After a period of turmoil and subsequent experience of a life as laborer lacking an education, I realized that I did not want to settle for this kind of life. I wanted to change. With this work I would like to thank all people that ever bothered trying to explain the world to me, that allowed me to find my way and nurtured my desire to change. -
FLORA from FĂRĂGĂU AREA (MUREŞ COUNTY) AS POTENTIAL SOURCE of MEDICINAL PLANTS Silvia OROIAN1*, Mihaela SĂMĂRGHIŢAN2
ISSN: 2601 – 6141, ISSN-L: 2601 – 6141 Acta Biologica Marisiensis 2018, 1(1): 60-70 ORIGINAL PAPER FLORA FROM FĂRĂGĂU AREA (MUREŞ COUNTY) AS POTENTIAL SOURCE OF MEDICINAL PLANTS Silvia OROIAN1*, Mihaela SĂMĂRGHIŢAN2 1Department of Pharmaceutical Botany, University of Medicine and Pharmacy of Tîrgu Mureş, Romania 2Mureş County Museum, Department of Natural Sciences, Tîrgu Mureş, Romania *Correspondence: Silvia OROIAN [email protected] Received: 2 July 2018; Accepted: 9 July 2018; Published: 15 July 2018 Abstract The aim of this study was to identify a potential source of medicinal plant from Transylvanian Plain. Also, the paper provides information about the hayfields floral richness, a great scientific value for Romania and Europe. The study of the flora was carried out in several stages: 2005-2008, 2013, 2017-2018. In the studied area, 397 taxa were identified, distributed in 82 families with therapeutic potential, represented by 164 medical taxa, 37 of them being in the European Pharmacopoeia 8.5. The study reveals that most plants contain: volatile oils (13.41%), tannins (12.19%), flavonoids (9.75%), mucilages (8.53%) etc. This plants can be used in the treatment of various human disorders: disorders of the digestive system, respiratory system, skin disorders, muscular and skeletal systems, genitourinary system, in gynaecological disorders, cardiovascular, and central nervous sistem disorders. In the study plants protected by law at European and national level were identified: Echium maculatum, Cephalaria radiata, Crambe tataria, Narcissus poeticus ssp. radiiflorus, Salvia nutans, Iris aphylla, Orchis morio, Orchis tridentata, Adonis vernalis, Dictamnus albus, Hammarbya paludosa etc. Keywords: Fărăgău, medicinal plants, human disease, Mureş County 1. -
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
Nettles and the Romanian Traditions
Nettle ( Urtica dioica ) – its role and its importance in the life of the Romanian people and in popular traditions A. Stroia, C.Cace, C.Costea, L. Libardea There isn’t a single person in Romania – from a small child to an 80 year old person, who, when asked: • „What is the nettle?”, or • „What is the nettle traditionally used for in Romania? Not to be able to offer a perfectly documented answer. But what would you say if the interlocutor you are asking these questions would answer: „When I hear the word nettle, it takes me back to my childhood, to the renowned “Nettle soup”, to the renowned “Mashed nettles”, “Nettles with garlic”, to the “pleasant, refined and special taste of the traditional Romanian dishes I have known as a child!” The nettle is a very well known plant in Romania, because it is used in the cuisine. For this reason, few think about its healing properties, to the fact that it can contribute to a better health. Its name in English, “nettle”, comes from the Dutch word “netel”, which means “needle”, due to the fact that upon touching, when the plant is young, it stings. In spite of this, nettles that are cooked or used as infusion no longer sting and have a pleasant taste. In Romania, as in the whole of Europe, North of Africa, Asia and North America, the nettle (Urtica dioica) is spread in uncultivated lands, in the plains, hillsides or mountains, on the edges of forests or roads, at the base of trees etc, being one of the many species of “spontaneous flora”. -
Hybrid Speciation with External Barriers: Encelia
Hybridspeciationwithexternalbarriers: Encelia (Asteraceae:Heliantheae),acasestudy CurtisClarkandGerardJ.Allan BiologicalSciences,CaliforniaStatePolytechnicUniversity,Pomona,andRanchoSantaAnaBotanicGarden Abstract Most well-documented cases of homoploid hybrid speciation follow the recombinational model, in which the new species passes through a period of genetic rearrangement and reduced fertility. An alternate model has been presented, in which external barriers to gene flow prevent genetic swamping of the new species by the parent species. The two documented cases of hybrid speciation in Encelia (E. virginensis and E. asperifolia) appear to follow this model. In both cases, the species of hybrid origin are morphologically intermediate to the parents, and E. virginensis is also similar to artificial F1 hybrids. In both cases, the species of hybrid origin share random amplified polymorphic DNA (RAPD) markers with each of the parent species. A single sampled individual of each species of hybrid origin combines the nrDNA internal transcribed spacer (ITS) sequences of its parents. All North American Encelia species are obligate outcrossers with n = 18 chromosomes, and in cultivation they form fertile hybrids apparently in all combinations. In the natural environment, plants of F1 phenotype are locally common, but backcross progeny are rare, being confined primarily to areas of human disturbance, and there is no evidence of introgression. Progeny tests in one case of natural hybridisation suggested that backcross progeny are eliminated after seed dispersal. This suggests that the F1 phenotype represents a “local optimum” on the selective landscape, and that the selection against backcrosses strongly reduces gene flow between the incipient hybrid species and the parents. Espèciation hybride avec barrières externes: Encelia (Asteraceae: Heliantheae), une étude de cas La plupart des cas bien documentés de l’espèciation homoploïde hybride suivent le modèle recombinaisonal, où l’espèce nouvelle passe par une durée de réarrangement génétique et la fertilité reduite. -
Ongoing Evolution in the Genus Crocus: Diversity of Flowering Strategies on the Way to Hysteranthy
plants Article Ongoing Evolution in the Genus Crocus: Diversity of Flowering Strategies on the Way to Hysteranthy Teresa Pastor-Férriz 1, Marcelino De-los-Mozos-Pascual 1, Begoña Renau-Morata 2, Sergio G. Nebauer 2 , Enrique Sanchis 2, Matteo Busconi 3 , José-Antonio Fernández 4, Rina Kamenetsky 5 and Rosa V. Molina 2,* 1 Departamento de Gestión y Conservación de Recursos Fitogenéticos, Centro de Investigación Agroforestal de Albadaledejito, 16194 Cuenca, Spain; [email protected] (T.P.-F.); [email protected] (M.D.-l.-M.-P.) 2 Departamento de Producción Vegetal, Universitat Politècnica de València, 46022 Valencia, Spain; [email protected] (B.R.-M.); [email protected] (S.G.N.); [email protected] (E.S.) 3 Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; [email protected] 4 IDR-Biotechnology and Natural Resources, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; [email protected] 5 Department of Ornamental Horticulture and Biotechnology, The Volcani Center, ARO, Rishon LeZion 7505101, Israel; [email protected] * Correspondence: [email protected] Abstract: Species of the genus Crocus are found over a wide range of climatic areas. In natural habitats, these geophytes diverge in the flowering strategies. This variability was assessed by analyzing the flowering traits of the Spanish collection of wild crocuses, preserved in the Bank of Plant Germplasm Citation: Pastor-Férriz, T.; of Cuenca. Plants of the seven Spanish species were analyzed both in their natural environments De-los-Mozos-Pascual, M.; (58 native populations) and in common garden experiments (112 accessions). -
National Wetlands Inventory Map Report for Quinault Indian Nation
National Wetlands Inventory Map Report for Quinault Indian Nation Project ID(s): R01Y19P01: Quinault Indian Nation, fiscal year 2019 Project area The project area (Figure 1) is restricted to the Quinault Indian Nation, bounded by Grays Harbor Co. Jefferson Co. and the Olympic National Park. Appendix A: USGS 7.5-minute Quadrangles: Queets, Salmon River West, Salmon River East, Matheny Ridge, Tunnel Island, O’Took Prairie, Thimble Mountain, Lake Quinault West, Lake Quinault East, Taholah, Shale Slough, Macafee Hill, Stevens Creek, Moclips, Carlisle. • < 0. Figure 1. QIN NWI+ 2019 project area (red outline). Source Imagery: Citation: For all quads listed above: See Appendix A Citation Information: Originator: USDA-FSA-APFO Aerial Photography Field Office Publication Date: 2017 Publication place: Salt Lake City, Utah Title: Digital Orthoimagery Series of Washington Geospatial_Data_Presentation_Form: raster digital data Other_Citation_Details: 1-meter and 1-foot, Natural Color and NIR-False Color Collateral Data: . USGS 1:24,000 topographic quadrangles . USGS – NHD – National Hydrography Dataset . USGS Topographic maps, 2013 . QIN LiDAR DEM (3 meter) and synthetic stream layer, 2015 . Previous National Wetlands Inventories for the project area . Soil Surveys, All Hydric Soils: Weyerhaeuser soil survey 1976, NRCS soil survey 2013 . QIN WET tables, field photos, and site descriptions, 2016 to 2019, Janice Martin, and Greg Eide Inventory Method: Wetland identification and interpretation was done “heads-up” using ArcMap versions 10.6.1. US Fish & Wildlife Service (USFWS) National Wetlands Inventory (NWI) mapping contractors in Portland, Oregon completed the original aerial photo interpretation and wetland mapping. Primary authors: Nicholas Jones of SWCA Environmental Consulting. 100% Quality Control (QC) during the NWI mapping was provided by Michael Holscher of SWCA Environmental Consulting. -
Illinois Bundleflower (Desmanthus Illinoensis) Story by Alan Shadow, Manager USDA-NRCS East Texas Plant Materials Center Nacogdoches, Texas
Helping People Help The Land September/October 2011 Issue No. 11 The Reverchon Naturalist Recognizing the work of French botanist Julien Reverchon, who began collecting throughout the North Central Texas area in 1876, and all the botanists/naturalists who have followed ... Drought, Heat and Native Trees ranging from simple things like more extensive root systems, to more drastic measures like pre- Story by Bruce Kreitler mature defoliation, what they actually have little Abilene, Texas defense against is a very prolonged period of no appreciable water supply. nybody that has traveled in Texas this year A will have noticed that not only most of the By the way, even though they are usually the land browned out, but also if you look at the trees same species, there is a difference in landscape in the fields and beside the roads, they aren't trees and native trees, which are untended plants looking so good either. It doesn't take a rocket that have to fend for themselves. While they are scientist to realize that extreme high temperatures indeed the same basic trees, the differences be- combined with, and partially caused by, drought tween the environments that they live in are huge are hard on trees. and thus overall general environmental factors such as drought, temperature, and insect infesta- Since I'm pretty sure that most of the people read- tions act on them differently. For the purposes of ing this article understand very well that drought this article, I'm referring to trees that are on their is a problem for trees, the question isn't is the pre- own, untended for their entire lives in fields, pas- sent drought going to have an effect on trees, but tures, forests, or just wherever nature has placed rather, what are the present effects of the drought them and refer to them as native trees. -
Dicentra Formosa
Plant Propagation Protocol for [Dicentra formosa] ESRM 412 – Native Plant Production Spring 2015 Protocol URL: https://courses.washington.edu/esrm412/protocols/DIFO.pdf Adding information from: http://depts.washington.edu/propplnt/Plants/bleeding_heart.htm North America Distribution Washington State Distribution From the USDA Plants Database6 TAXONOMY Plant Family Scientific Name Fumariaceae Common Name Fumitory Species Scientific Name Scientific Name Dicentra formosa (Haw.) Walp. Varieties Dicentra formosa (Haw.) Walp. var. brevifolia L.F. Hend. Dicentra formosa (Haw.) Walp. var. brevipes L.F. Hend. Sub-species Dicentra formosa (Haw.) Walp. ssp. formosa Dicentra formosa (Haw.) Walp. ssp. oregona (Eastw.) Munz Dicentra formosa (Haw.) Walp. ssp. nevadensis (Eastw.) Munz Cultivar Common Synonym(s) Common Name(s) Bleeding heart, Pacific bleeding heart, Oregon bleeding heart, Sierra bleeding heart Species Code (as per DIFO6 USDA Plants database) GENERAL INFORMATION Geographical range Southern British Colombia to Central California, mid-elevation Cascades and below7; See maps above for North American and Washington State distribution6. Ecological distribution Moist woody to dry open areas, shade preferred7. Climate and elevation Low-middle elevations, mild climate7. range Local habitat and Pseduotsuga menziesii, Tusga heterophylla; typically found in abundance coniferous forests11. Plant strategy type / Late successional plant7. successional stage Plant characteristics Perennial forb growing from a rhizome, pink-purple heart-shaped flowers on leafless stems12. Leaves are divided and fern-like4. PROPAGATION DETAILS Ecotype Propagation Goal Plants Propagation Method Seed5 Product Type Seeds and containers Stock Type Seeds or container plants Propagation Method Vegetative5 Product Type Bareroot and cuttings Stock Type Bareroot Propagule Collection After parent plant has finished blooming and is preparing for Instructions winter, collect seeds for storage; plant seeds in late fall.