Geometric Algebra in Euclidean Space 44 6.1 Twodimensionsandcomplexnumbers

Total Page:16

File Type:pdf, Size:1020Kb

Geometric Algebra in Euclidean Space 44 6.1 Twodimensionsandcomplexnumbers May 29, 2012 Geometric Algebra Eric Chisolm Abstract This is an introduction to geometric algebra, an alternative to traditional vector algebra that expands on it in two ways: 1. In addition to scalars and vectors, it defines new objects representing subspaces of any dimension. 2. It defines a product that’s strongly motivated by geometry and can be taken between any two objects. For example, the product of two vectors taken in a certain way represents their common plane. This system was invented by William Clifford and is more commonly known as Clifford algebra. It’s actually older than the vector algebra that we use today (due to Gibbs) and includes it as a subset. Over the years, various parts of Clifford algebra have been reinvented independently by many people who found they needed it, often not realizing that all those parts belonged in one system. This suggests that Clifford had the right idea, and that geometric algebra, not the reduced version we use today, deserves to be the standard “vector algebra.” My goal in these notes is to describe geometric algebra from that standpoint and illustrate its usefulness. The notes are work in progress; I’ll keep adding new topics as I learn them myself. Contents 1 Introduction 3 1.1 Motivation ......................................... ..... 3 1.2 Simple applications . ...... 5 1.3 Wherenow?........................................ ...... 8 1.4 Referencesandcomments .. .. .. .. .. .. .. .. .. .. .. .. .......... 9 2 Definitions and axioms 10 3 The contents of a geometric algebra 13 arXiv:1205.5935v1 [math-ph] 27 May 2012 4 The inner, outer, and geometric products 16 4.1 The inner, outer, and geometric products of a vector with anything............... 17 4.2 The general inner product, outer product, and geometric product................ 20 4.3 The geometric meaning of the inner and outer products . .............. 27 5 Other operations 31 5.1 Gradeinvolution ..................................... ...... 31 5.2 Reversion ......................................... ...... 32 5.3 Cliffordconjugation .................................. ....... 34 5.4 Thescalarproduct .................................. ........ 35 5.5 Thedual.......................................... ...... 39 5.6 Thecommutator .................................... ....... 42 1 6 Geometric algebra in Euclidean space 44 6.1 Twodimensionsandcomplexnumbers . ......... 44 6.2 Three dimensions, Pauli matrices, and quaternions . .............. 45 7 More on projections, reflections, and rotations 48 7.1 Orthogonalprojectionsandrejections . .............. 48 7.1.1 Projectingavectorintoasubspace. ......... 48 7.1.2 Projecting a multivector into a subspace . ......... 50 7.2 Reflections........................................ ....... 51 7.2.1 Reflectingavectorinasubspace . ....... 51 7.2.2 Reflecting a multivector in a subspace . ....... 52 7.3 Rotations ......................................... ...... 53 7.3.1 Rotating a multivector in a plane . ..... 54 7.3.2 Rotations in three dimensions . ...... 54 8 Frames and bases 54 8.1 Reciprocalframes.................................. ......... 55 8.2 Multivectorbases................................... ........ 56 8.3 Orthogonalprojectionsusingframes . ............. 60 9 Linear algebra 61 9.1 Preliminaries . ..... 61 9.2 Theadjoint ........................................ ...... 62 9.3 Normaloperators.................................. ......... 64 9.4 Symmetricandskewsymmetricoperators . ............ 65 9.5 Isometries andorthogonaltransformations . ................ 66 9.5.1 Isometriesandversors ............................. ....... 66 9.5.2 Rotorsandbiversors............................... ...... 68 9.6 Extending linear functions to the whole algebra . ............ 70 9.6.1 Outermorphisms ................................... .... 70 9.6.2 Outermorphismextensions . ...... 72 9.7 Eigenblades and invariant subspaces . ........... 75 9.8 Thedeterminant .................................... ....... 76 10 Applications 78 10.1 Classical particle mechanics . .......... 78 10.1.1 Angularmomentumasabivector. ....... 78 10.1.2 TheKeplerproblem ................................. .... 79 A Summary of definitions and formulas 81 A.1 Notation.......................................... ...... 81 A.2 Axioms ............................................ .... 82 A.3 Contentsofageometricalgebra. ........... 83 A.4 Theinner,outer,andgeometricproducts . ............. 83 A.5 The geometric meaning of the inner and outer products . .............. 85 A.6 Gradeinvolution ..................................... ...... 85 A.7 Reversion ......................................... ...... 86 A.8 Cliffordconjugation .................................. ....... 86 A.9 Thescalarproductandnorm . .. .. .. .. .. .. .. .. .. .. .. ......... 87 A.10Thedual......................................... ....... 88 A.11Thecommutator ................................... ........ 88 A.12Framesandbases.................................. ......... 89 A.13Theadjointofalinearoperator. ........... 90 A.14Symmetricandskewsymmetricoperators . ............. 90 2 A.15Isometries and orthogonal transformations . ................. 90 A.16 Eigenvalues, invariant subspaces, and determinants . ................. 91 B Topics for future versions 91 References 92 1. Introduction 1.1. Motivation I’d say the best intuitive definition of a vector is “anything that can be represented by arrows that add head-to-tail.” Such objects have magnitude (how long is the arrow) and direction (which way does it point). Real numbers have two analogous properties: a magnitude (absolute value) and a sign (plus or minus). Higher-dimensional objects in real vector spaces also have these properties: for example, a surface element is a plane with a magnitude (area) and an orientation (clockwise or counterclockwise). If we associate real scalars with zero-dimensional spaces, then we can say that scalars, vectors, planes, etc. have three features in common: 1. An attitude: exactly which subspace is represented. 2. A weight: an amount, or a length, area, volume, etc. 3. An orientation: positive or negative, forward or backward, clockwise or counterclockwise. No matter what the dimension of the space, there are always only two orientations. If spaces of any dimension have these features, and we have algebraic objects representing the zero- and one-dimensional cases, then maybe we could make objects representing the other cases too. This is exactly what geometric algebra gives us; in fact, it goes farther by including all of these objects on equal footing in a single system, in which anything can be added to or multiplied by anything else. I’ll illustrate by starting in three-dimensional Euclidean space. My goal is to create a product of vectors, called the geometric product, which will allow me to build up objects that represent all the higher-dimensional subspaces. Given two vectors u and v, traditional vector algebra lets us perform two operations on them: the dot product (or inner product) and the cross product. The dot product is used to project one vector along another; the projection of v along u is u v P (v)= · u (1) u u 2 | | where u v is the inner product and u 2 = u u is the square of the length of u. The cross product represents the oriented· plane defined by u and| v| ; it points· along the normal to the plane and its direction indicates orientation. This has two limitations: 1. It works only in three dimensions, because only there does every plane have a unique normal. 2. Even where it works, it depends on an arbitrarily chosen convention: whether to use the right or left hand to convert orientations to directions. So the resulting vector does not simply represent the plane itself. Because of this, I’ll replace the cross product with a new object that represents the plane directly, and it will generalize beyond three dimensions as easily as vectors themselves do. I begin with a formal product of vectors uv that obeys the usual rules for multiplication; for example, it’s associative and distributive over addition. Given these rules I can write 1 1 uv = (uv + vu)+ (uv vu). (2) 2 2 − 3 The first term is symmetric and bilinear, just like a generic inner product; therefore I set it equal to the Euclidean inner product, or 1 (uv + vu) := u v. (3) 2 · I can immediately do something interesting with this: notice that u2 = u u = u 2, so the square of any vector is just its squared length. Therefore, the vector · | | u u−1 := (4) u2 is the multiplicative inverse of u, since obviously uu−1 = u2/u2 = 1. So in a certain sense we can divide by vectors. That’s neat. By the way, the projection of v along u from Eq. (1) can now be written P (v) = (v u)u−1. (5) u · In non-Euclidean spaces, some vectors are null, so they aren’t invertible. That means that this projection operator won’t be defined. As it turns out, projection along noninvertible vectors doesn’t make sense geometrically; I’ll explain why in Section 7.1. Thus we come for the first time to a consistent theme in geometric algebra: algebraic properties of objects frequently have direct geometric meaning. What about the second term in Eq. (2)? I call it the outer product or wedge product and represent it with the symbol , so now the geometric product can be decomposed as ∧ uv = u v + u v. (6) · ∧ To get some idea of what u v is, I’ll use the fact that it’s antisymmetric in u and v, while u v is symmetric, to modify Eq. (6) and get ∧ · vu = u v u v. (7) · − ∧ Multiplying these equations together I find uvvu = (u v)2 (u v)2. (8) · − ∧ Now vv = v 2, and the same
Recommended publications
  • Geometric Algebra for Vector Fields Analysis and Visualization: Mathematical Settings, Overview and Applications Chantal Oberson Ausoni, Pascal Frey
    Geometric algebra for vector fields analysis and visualization: mathematical settings, overview and applications Chantal Oberson Ausoni, Pascal Frey To cite this version: Chantal Oberson Ausoni, Pascal Frey. Geometric algebra for vector fields analysis and visualization: mathematical settings, overview and applications. 2014. hal-00920544v2 HAL Id: hal-00920544 https://hal.sorbonne-universite.fr/hal-00920544v2 Preprint submitted on 18 Sep 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Geometric algebra for vector field analysis and visualization: mathematical settings, overview and applications Chantal Oberson Ausoni and Pascal Frey Abstract The formal language of Clifford’s algebras is attracting an increasingly large community of mathematicians, physicists and software developers seduced by the conciseness and the efficiency of this compelling system of mathematics. This contribution will suggest how these concepts can be used to serve the purpose of scientific visualization and more specifically to reveal the general structure of complex vector fields. We will emphasize the elegance and the ubiquitous nature of the geometric algebra approach, as well as point out the computational issues at stake. 1 Introduction Nowadays, complex numerical simulations (e.g. in climate modelling, weather fore- cast, aeronautics, genomics, etc.) produce very large data sets, often several ter- abytes, that become almost impossible to process in a reasonable amount of time.
    [Show full text]
  • Quaternions and Cli Ord Geometric Algebras
    Quaternions and Cliord Geometric Algebras Robert Benjamin Easter First Draft Edition (v1) (c) copyright 2015, Robert Benjamin Easter, all rights reserved. Preface As a rst rough draft that has been put together very quickly, this book is likely to contain errata and disorganization. The references list and inline citations are very incompete, so the reader should search around for more references. I do not claim to be the inventor of any of the mathematics found here. However, some parts of this book may be considered new in some sense and were in small parts my own original research. Much of the contents was originally written by me as contributions to a web encyclopedia project just for fun, but for various reasons was inappropriate in an encyclopedic volume. I did not originally intend to write this book. This is not a dissertation, nor did its development receive any funding or proper peer review. I oer this free book to the public, such as it is, in the hope it could be helpful to an interested reader. June 19, 2015 - Robert B. Easter. (v1) [email protected] 3 Table of contents Preface . 3 List of gures . 9 1 Quaternion Algebra . 11 1.1 The Quaternion Formula . 11 1.2 The Scalar and Vector Parts . 15 1.3 The Quaternion Product . 16 1.4 The Dot Product . 16 1.5 The Cross Product . 17 1.6 Conjugates . 18 1.7 Tensor or Magnitude . 20 1.8 Versors . 20 1.9 Biradials . 22 1.10 Quaternion Identities . 23 1.11 The Biradial b/a .
    [Show full text]
  • The Grassmann Manifold
    The Grassmann Manifold 1. For vector spaces V and W denote by L(V; W ) the vector space of linear maps from V to W . Thus L(Rk; Rn) may be identified with the space Rk£n of k £ n matrices. An injective linear map u : Rk ! V is called a k-frame in V . The set k n GFk;n = fu 2 L(R ; R ): rank(u) = kg of k-frames in Rn is called the Stiefel manifold. Note that the special case k = n is the general linear group: k k GLk = fa 2 L(R ; R ) : det(a) 6= 0g: The set of all k-dimensional (vector) subspaces ¸ ½ Rn is called the Grassmann n manifold of k-planes in R and denoted by GRk;n or sometimes GRk;n(R) or n GRk(R ). Let k ¼ : GFk;n ! GRk;n; ¼(u) = u(R ) denote the map which assigns to each k-frame u the subspace u(Rk) it spans. ¡1 For ¸ 2 GRk;n the fiber (preimage) ¼ (¸) consists of those k-frames which form a basis for the subspace ¸, i.e. for any u 2 ¼¡1(¸) we have ¡1 ¼ (¸) = fu ± a : a 2 GLkg: Hence we can (and will) view GRk;n as the orbit space of the group action GFk;n £ GLk ! GFk;n :(u; a) 7! u ± a: The exercises below will prove the following n£k Theorem 2. The Stiefel manifold GFk;n is an open subset of the set R of all n £ k matrices. There is a unique differentiable structure on the Grassmann manifold GRk;n such that the map ¼ is a submersion.
    [Show full text]
  • Exploring Physics with Geometric Algebra, Book II., , C December 2016 COPYRIGHT
    peeter joot [email protected] EXPLORINGPHYSICSWITHGEOMETRICALGEBRA,BOOKII. EXPLORINGPHYSICSWITHGEOMETRICALGEBRA,BOOKII. peeter joot [email protected] December 2016 – version v.1.3 Peeter Joot [email protected]: Exploring physics with Geometric Algebra, Book II., , c December 2016 COPYRIGHT Copyright c 2016 Peeter Joot All Rights Reserved This book may be reproduced and distributed in whole or in part, without fee, subject to the following conditions: • The copyright notice above and this permission notice must be preserved complete on all complete or partial copies. • Any translation or derived work must be approved by the author in writing before distri- bution. • If you distribute this work in part, instructions for obtaining the complete version of this document must be included, and a means for obtaining a complete version provided. • Small portions may be reproduced as illustrations for reviews or quotes in other works without this permission notice if proper citation is given. Exceptions to these rules may be granted for academic purposes: Write to the author and ask. Disclaimer: I confess to violating somebody’s copyright when I copied this copyright state- ment. v DOCUMENTVERSION Version 0.6465 Sources for this notes compilation can be found in the github repository https://github.com/peeterjoot/physicsplay The last commit (Dec/5/2016), associated with this pdf was 595cc0ba1748328b765c9dea0767b85311a26b3d vii Dedicated to: Aurora and Lance, my awesome kids, and Sofia, who not only tolerates and encourages my studies, but is also awesome enough to think that math is sexy. PREFACE This is an exploratory collection of notes containing worked examples of more advanced appli- cations of Geometric Algebra (GA), also known as Clifford Algebra.
    [Show full text]
  • 21. Orthonormal Bases
    21. Orthonormal Bases The canonical/standard basis 011 001 001 B C B C B C B0C B1C B0C e1 = B.C ; e2 = B.C ; : : : ; en = B.C B.C B.C B.C @.A @.A @.A 0 0 1 has many useful properties. • Each of the standard basis vectors has unit length: q p T jjeijj = ei ei = ei ei = 1: • The standard basis vectors are orthogonal (in other words, at right angles or perpendicular). T ei ej = ei ej = 0 when i 6= j This is summarized by ( 1 i = j eT e = δ = ; i j ij 0 i 6= j where δij is the Kronecker delta. Notice that the Kronecker delta gives the entries of the identity matrix. Given column vectors v and w, we have seen that the dot product v w is the same as the matrix multiplication vT w. This is the inner product on n T R . We can also form the outer product vw , which gives a square matrix. 1 The outer product on the standard basis vectors is interesting. Set T Π1 = e1e1 011 B C B0C = B.C 1 0 ::: 0 B.C @.A 0 01 0 ::: 01 B C B0 0 ::: 0C = B. .C B. .C @. .A 0 0 ::: 0 . T Πn = enen 001 B C B0C = B.C 0 0 ::: 1 B.C @.A 1 00 0 ::: 01 B C B0 0 ::: 0C = B. .C B. .C @. .A 0 0 ::: 1 In short, Πi is the diagonal square matrix with a 1 in the ith diagonal position and zeros everywhere else.
    [Show full text]
  • Vectors, Matrices and Coordinate Transformations
    S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between them, physical laws can often be written in a simple form. Since we will making extensive use of vectors in Dynamics, we will summarize some of their important properties. Vectors For our purposes we will think of a vector as a mathematical representation of a physical entity which has both magnitude and direction in a 3D space. Examples of physical vectors are forces, moments, and velocities. Geometrically, a vector can be represented as arrows. The length of the arrow represents its magnitude. Unless indicated otherwise, we shall assume that parallel translation does not change a vector, and we shall call the vectors satisfying this property, free vectors. Thus, two vectors are equal if and only if they are parallel, point in the same direction, and have equal length. Vectors are usually typed in boldface and scalar quantities appear in lightface italic type, e.g. the vector quantity A has magnitude, or modulus, A = |A|. In handwritten text, vectors are often expressed using the −→ arrow, or underbar notation, e.g. A , A. Vector Algebra Here, we introduce a few useful operations which are defined for free vectors. Multiplication by a scalar If we multiply a vector A by a scalar α, the result is a vector B = αA, which has magnitude B = |α|A. The vector B, is parallel to A and points in the same direction if α > 0.
    [Show full text]
  • Multivector Differentiation and Linear Algebra 0.5Cm 17Th Santaló
    Multivector differentiation and Linear Algebra 17th Santalo´ Summer School 2016, Santander Joan Lasenby Signal Processing Group, Engineering Department, Cambridge, UK and Trinity College Cambridge [email protected], www-sigproc.eng.cam.ac.uk/ s jl 23 August 2016 1 / 78 Examples of differentiation wrt multivectors. Linear Algebra: matrices and tensors as linear functions mapping between elements of the algebra. Functional Differentiation: very briefly... Summary Overview The Multivector Derivative. 2 / 78 Linear Algebra: matrices and tensors as linear functions mapping between elements of the algebra. Functional Differentiation: very briefly... Summary Overview The Multivector Derivative. Examples of differentiation wrt multivectors. 3 / 78 Functional Differentiation: very briefly... Summary Overview The Multivector Derivative. Examples of differentiation wrt multivectors. Linear Algebra: matrices and tensors as linear functions mapping between elements of the algebra. 4 / 78 Summary Overview The Multivector Derivative. Examples of differentiation wrt multivectors. Linear Algebra: matrices and tensors as linear functions mapping between elements of the algebra. Functional Differentiation: very briefly... 5 / 78 Overview The Multivector Derivative. Examples of differentiation wrt multivectors. Linear Algebra: matrices and tensors as linear functions mapping between elements of the algebra. Functional Differentiation: very briefly... Summary 6 / 78 We now want to generalise this idea to enable us to find the derivative of F(X), in the A ‘direction’ – where X is a general mixed grade multivector (so F(X) is a general multivector valued function of X). Let us use ∗ to denote taking the scalar part, ie P ∗ Q ≡ hPQi. Then, provided A has same grades as X, it makes sense to define: F(X + tA) − F(X) A ∗ ¶XF(X) = lim t!0 t The Multivector Derivative Recall our definition of the directional derivative in the a direction F(x + ea) − F(x) a·r F(x) = lim e!0 e 7 / 78 Let us use ∗ to denote taking the scalar part, ie P ∗ Q ≡ hPQi.
    [Show full text]
  • Exercise 1 Advanced Sdps Matrices and Vectors
    Exercise 1 Advanced SDPs Matrices and vectors: All these are very important facts that we will use repeatedly, and should be internalized. • Inner product and outer products. Let u = (u1; : : : ; un) and v = (v1; : : : ; vn) be vectors in n T Pn R . Then u v = hu; vi = i=1 uivi is the inner product of u and v. T The outer product uv is an n × n rank 1 matrix B with entries Bij = uivj. The matrix B is a very useful operator. Suppose v is a unit vector. Then, B sends v to u i.e. Bv = uvT v = u, but Bw = 0 for all w 2 v?. m×n n×p • Matrix Product. For any two matrices A 2 R and B 2 R , the standard matrix Pn product C = AB is the m × p matrix with entries cij = k=1 aikbkj. Here are two very useful ways to view this. T Inner products: Let ri be the i-th row of A, or equivalently the i-th column of A , the T transpose of A. Let bj denote the j-th column of B. Then cij = ri cj is the dot product of i-column of AT and j-th column of B. Sums of outer products: C can also be expressed as outer products of columns of A and rows of B. Pn T Exercise: Show that C = k=1 akbk where ak is the k-th column of A and bk is the k-th row of B (or equivalently the k-column of BT ).
    [Show full text]
  • 2 Hilbert Spaces You Should Have Seen Some Examples Last Semester
    2 Hilbert spaces You should have seen some examples last semester. The simplest (finite-dimensional) ex- C • A complex Hilbert space H is a complete normed space over whose norm is derived from an ample is Cn with its standard inner product. It’s worth recalling from linear algebra that if V is inner product. That is, we assume that there is a sesquilinear form ( , ): H H C, linear in · · × → an n-dimensional (complex) vector space, then from any set of n linearly independent vectors we the first variable and conjugate linear in the second, such that can manufacture an orthonormal basis e1, e2,..., en using the Gram-Schmidt process. In terms of this basis we can write any v V in the form (f ,д) = (д, f ), ∈ v = a e , a = (v, e ) (f , f ) 0 f H, and (f , f ) = 0 = f = 0. i i i i ≥ ∀ ∈ ⇒ ∑ The norm and inner product are related by which can be derived by taking the inner product of the equation v = aiei with ei. We also have n ∑ (f , f ) = f 2. ∥ ∥ v 2 = a 2. ∥ ∥ | i | i=1 We will always assume that H is separable (has a countable dense subset). ∑ Standard infinite-dimensional examples are l2(N) or l2(Z), the space of square-summable As usual for a normed space, the distance on H is given byd(f ,д) = f д = (f д, f д). • • ∥ − ∥ − − sequences, and L2(Ω) where Ω is a measurable subset of Rn. The Cauchy-Schwarz and triangle inequalities, • √ (f ,д) f д , f + д f + д , | | ≤ ∥ ∥∥ ∥ ∥ ∥ ≤ ∥ ∥ ∥ ∥ 2.1 Orthogonality can be derived fairly easily from the inner product.
    [Show full text]
  • Vector Analysis
    DOING PHYSICS WITH MATLAB VECTOR ANANYSIS Ian Cooper School of Physics, University of Sydney [email protected] DOWNLOAD DIRECTORY FOR MATLAB SCRIPTS cemVectorsA.m Inputs: Cartesian components of the vector V Outputs: cylindrical and spherical components and [3D] plot of vector cemVectorsB.m Inputs: Cartesian components of the vectors A B C Outputs: dot products, cross products and triple products cemVectorsC.m Rotation of XY axes around Z axis to give new of reference X’Y’Z’. Inputs: rotation angle and vector (Cartesian components) in XYZ frame Outputs: Cartesian components of vector in X’Y’Z’ frame mscript can be modified to calculate the rotation matrix for a [3D] rotation and give the Cartesian components of the vector in the X’Y’Z’ frame of reference. Doing Physics with Matlab 1 SPECIFYING a [3D] VECTOR A scalar is completely characterised by its magnitude, and has no associated direction (mass, time, direction, work). A scalar is given by a simple number. A vector has both a magnitude and direction (force, electric field, magnetic field). A vector can be specified in terms of its Cartesian or cylindrical (polar in [2D]) or spherical coordinates. Cartesian coordinate system (XYZ right-handed rectangular: if we curl our fingers on the right hand so they rotate from the X axis to the Y axis then the Z axis is in the direction of the thumb). A vector V in specified in terms of its X, Y and Z Cartesian components ˆˆˆ VVVV x,, y z VViVjVk x y z where iˆˆ,, j kˆ are unit vectors parallel to the X, Y and Z axes respectively.
    [Show full text]
  • A Clifford Dyadic Superfield from Bilateral Interactions of Geometric Multispin Dirac Theory
    A CLIFFORD DYADIC SUPERFIELD FROM BILATERAL INTERACTIONS OF GEOMETRIC MULTISPIN DIRAC THEORY WILLIAM M. PEZZAGLIA JR. Department of Physia, Santa Clam University Santa Clam, CA 95053, U.S.A., [email protected] and ALFRED W. DIFFER Department of Phyaia, American River College Sacramento, CA 958i1, U.S.A. (Received: November 5, 1993) Abstract. Multivector quantum mechanics utilizes wavefunctions which a.re Clifford ag­ gregates (e.g. sum of scalar, vector, bivector). This is equivalent to multispinors con­ structed of Dirac matrices, with the representation independent form of the generators geometrically interpreted as the basis vectors of spacetime. Multiple generations of par­ ticles appear as left ideals of the algebra, coupled only by now-allowed right-side applied (dextral) operations. A generalized bilateral (two-sided operation) coupling is propoeed which includes the above mentioned dextrad field, and the spin-gauge interaction as partic­ ular cases. This leads to a new principle of poly-dimensional covariance, in which physical laws are invariant under the reshuffling of coordinate geometry. Such a multigeometric su­ perfield equation is proposed, whi~h is sourced by a bilateral current. In order to express the superfield in representation and coordinate free form, we introduce Eddington E-F double-frame numbers. Symmetric tensors can now be represented as 4D "dyads", which actually are elements of a global SD Clifford algebra.. As a restricted example, the dyadic field created by the Greider-Ross multivector current (of a Dirac electron) describes both electromagnetic and Morris-Greider gravitational interactions. Key words: spin-gauge, multivector, clifford, dyadic 1. Introduction Multi vector physics is a grand scheme in which we attempt to describe all ba­ sic physical structure and phenomena by a single geometrically interpretable Algebra.
    [Show full text]
  • Refinements of the Weyl Tensor Classification in Five Dimensions
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Ghent University Academic Bibliography Home Search Collections Journals About Contact us My IOPscience Refinements of the Weyl tensor classification in five dimensions This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2012 Class. Quantum Grav. 29 155016 (http://iopscience.iop.org/0264-9381/29/15/155016) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 157.193.53.227 The article was downloaded on 16/07/2012 at 16:13 Please note that terms and conditions apply. IOP PUBLISHING CLASSICAL AND QUANTUM GRAVITY Class. Quantum Grav. 29 (2012) 155016 (50pp) doi:10.1088/0264-9381/29/15/155016 Refinements of the Weyl tensor classification in five dimensions Alan Coley1, Sigbjørn Hervik2, Marcello Ortaggio3 and Lode Wylleman2,4,5 1 Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia B3H 3J5, Canada 2 Faculty of Science and Technology, University of Stavanger, N-4036 Stavanger, Norway 3 Institute of Mathematics, Academy of Sciences of the Czech Republic, Zitnˇ a´ 25, 115 67 Prague 1, Czech Republic 4 Department of Mathematical Analysis EA16, Ghent University, 9000 Gent, Belgium 5 Department of Mathematics, Utrecht University, 3584 CD Utrecht, The Netherlands E-mail: [email protected], [email protected], [email protected] and [email protected] Received 31 March 2012, in final form 21 June 2012 Published 16 July 2012 Online at stacks.iop.org/CQG/29/155016 Abstract We refine the null alignment classification of the Weyl tensor of a five- dimensional spacetime.
    [Show full text]