Part I. the Isolation and Characterization of Alkaloids of Caulophyllum Thalictroides (L.) Michx.; Part II. the Isolation and Characterization of Alkaloid and Neutral Principles of Magnolia

Total Page:16

File Type:pdf, Size:1020Kb

Part I. the Isolation and Characterization of Alkaloids of Caulophyllum Thalictroides (L.) Michx.; Part II. the Isolation and Characterization of Alkaloid and Neutral Principles of Magnolia 71-27,470 FLOM, Michael Stephen, 1940- PART I. THE ISOLATION AND CHARACTERIZATION OF ALKALOIDS OF CAULOPHYLLUM THALICTROIDES (L.) MICHX. PART II. THE ISOLATION AND CHARACTERIZATION OF ALKALOID AND NEUTRAL PRINCIPLES OF MAGNOLIA ACUMINATA L. The Ohio State University, Ph.D., 1971 P harmacology University Microfilms, A XEROX Company , Ann Arbor, Michigan THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED PART I. THE ISOLATION AND CHARACTERIZATION OF ALKALOIDS OF CAULOPHYLLUM THALICTROIDES (L.) MICHX. PART II. THE ISOLATION AND CHARACTERIZATION OF ALKALOID AND NEUTRAL PRINCIPLES OF MAGNOLIA ACUMINATA L. DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University by Michael Stephen Flom, B .Sc., M.Sc. sjt * * * * * The Ohio State University Approved by A dviser College of Pharmacy ACKNOWLEDGMENTS I wish to acknowledge my adviser, Professor Raymond W. Doskotch, for his direction, assistance, and patience throughout this study. Also, I gratefully thank my parents whose undying faith has been an inspiration to me in my undergraduate and graduate career. Finally, my greatest appreciation belongs to my wife, Elaine, who has stood as a solid foundation to support me throughout my graduate studies. As to my son, Bradley, and daughter, Jessica, they have eased the burden of my studies and brought untold joy to me. VITA January 9, 1940................................... Born - St. Louis, Missouri 1962 .......................................................... B.Sc. Chemistry; University of California at Los Angeles; Los Angeles, California 1962-196 3 ............................................... Teaching Assistant; College of Phar­ macy, University of Wisconsin; Madison, Wisconsin 1963-196 5 ............................................... Research Assistant; College of Phar­ macy, University of Wisconsin; Madison, Wisconsin 1965 .......................................................... M.Sc. Pharmacy (Pharmaceutical Chemistry); University of Wisconsin; Madison, Wisconsin 1965-1968 .......................................... „. Research Assistant; College of Phar­ macy, The Ohio State University, Columbus, Ohio 1968-1970............................................... Quality Control Director, International Chemical and Nuclear Corp., Irvine California 1970-1971............................................... Graduate Student; College of Pharmacy, The Ohio State University; Columbus, Ohio PUBLICATIONS ’’Isolation and Characterization of Alkaloids from Caulophyllum thalictroides”. Flom, M. S., Doskotch, R. W. and Beal, J. L ., J. Pharm. Sci., 56, 1515 (1967). iii "Steroid Hormone Analogs. IV. C-Nor-D-homoestrone", Kupchan, S. M ., By, A. W. and Flom, M. S., J. Org. Chem., 33, 911 (1968). FIELDS OF STUDY Major Field: Pharmacognosy and Natural Products Chemistry Studies in Organic Chemistry. Professors Melvin Newman, Harold Shechter, Leo Paquette and Robert Ouellette. Studies in Biochemistry. Professors Thomas Diamondstone, Joseph Mendicino, Richard Moore, George Serif and Junius Snell. Studies in Pharmacognosy and Natural Products Chemistry. Professors Jack L. Beal and Raymond W. Doskotch. iv TABLE OF CONTENTS Page ACKNOWLEDGMENTS............................................................................................ ii VITA.............................................. iii LIST OF TABLES....................................................................................................... vii LIST OF FIGURES................................................................................................ viii PART I„ The Isolation and Characterization of Alkaloids of Caulophvllum thalictroides (L.) Michx. Introduction and Historical.......................................................................... 1 A. Botanical Description................................ .................................. 1 B. Prior Investigations of Caulophyllum thalictroides 1 C. Chemotaxonomy of the Lupine Alkaloids................................ 5 D. Objective of Research.................................................................. 5 Experimental...................................................................................................... 6 A. Source of Plant Material. .................................. 6 B. Methodology—Chemical and Physical Analysis ................. 6 C. Purity of Reagents ........................................................... 8 D. Extraction and Initial Separation.............................................. 8 E. Identification of Caulosaponin................................................... 9 F. Isolation of Magnoflorine Chloride............................................ 12 G. Separation and Identification of the Textiary Alkaloids... 13 D iscussion............................ 19 Summary of Findings....................................................................................... 22 Bibliography....................................................................................................... 109 v Page PART II. The Isolation and Characterization of Alkaloid and Neutral Principles of Magnolia acuminata L. Introduction.................................................................................................. 23 A. Botanical, Taxonomic, and Historical Description of Magnolia acuminata L....................................................... 23 B. Alkaloids of the Family Magnoliaceae. ...................... 24 C. Sesquiterpenes of the Family Magnoliaceae................. 34 D. Lignans of the Family Magnoliaceae................................. 35 E. Objective of Research............................................................. 38 Experimental................................................................................................ 39 A. Source of Plant Material....................................................... 39 B. Methodology—Chemical and Physical Analysis ............. 39 C. Extraction of Initial Separation........................................... 39 D. Examination of Tertiary Alkaloid Fraction...................... 42 E. Examination of the Quaternary Alkaloid Fraction 46 F. Examination of the Neutral Fraction of M. acuminata.............................................................................. 53 G. Syntheses of Epoxides and Biphenyls................................. 83 D iscussion....................................................................................................... 95 Summary of Findings................................................................................... 108 Bibliography....................................... I l l vi LIST OF TABLES Table Page 1. Separation of Tertiary Alkaloid Mixture from C. thalictroides......................... 15 2. Separation of Tertiary Alkaloid Mixture from M. acuminata. .......................................................................................... 43 3. Separation of Quaternary Alkaloid from M. acuminata 47 4. Eluting Solvents for Column of Neutral Fraction of M. acuminata............................................................................................ 54 5. Separation of Skellysolve B Fraction from M. acuminata.......................... 55 6 . Separation of Purified Neutral Fraction from M. acuminata............................................................................................ 6 8 vii LIST OF FIGURES Figure Page 1. Flowsheet for Separation of CL thalictroides............................ 10 2. Flowsheet for Separation of M. acuminata.................................. 41 3. Infrared Spectrum of N-Methyllindcarpine Methiodide in KBr................................................................................. 48 4. NMR Spectrum of N-Methyllindcarpine Methiodide in DMSO-dg............................................................................................ 51 5. NMR Spectrum of Calopiptin in CDClg.......................................... 58 6 . NMR Spectrum of Galgravin in CDClg......................................... 62 7. NMR Spectrum of Veraguensin in CDClg..................................... 65 8 . Infrared Spectrum of Aeuminatin in CHClg................................. 71 9. Mass Spectrum of Aeuminatin.......................................................... 73 10. NMR Spectrum of Aeuminatin in CDClg........................................ 75 viii PART I THE ISOLATION AND CHARACTERIZATION OF ALKALOIDS OF CAULOPHYLLUM THALICTROIDES (L„) MICHX. INTRODUCTION AND HISTORICAL A. Botanical Description (1) Caulophyllum thalictroides (L„) Michx. (family, Berberidaceae) is commonly called blue-cohosh or squaw root. According to Lloyd (1), blue- cohosh is derived from the Algonkian word cohosh which literally means rough with hairs and its color from the bluish color of the plant and berries. The latter common name was introduced by Peter Smith who stated that Indian squaws used the rhizomes to facilitate childbirth and for certain uterine disorders. The genus name Caulophyllum is derived from two Greek words meaning stem and leaf while the species was so named by Linnaeus, because of the similarity of the plant leaves to those of the genus Thalictrum. This North American plant, which grows to a height of two feet, is found in rich shady woods from New Brunswick and Southern Ontario to the Southern Alleghenies and between the Eastern coastal plain and the Mississippi Valley. B. Prior Investigations The plant was first examined by Mayer (2) who found it to contain a
Recommended publications
  • Virtual Screening for the Discovery of Bioactive Natural Products by Judith M
    Progress in Drug Research, Vol. 65 (Frank Petersen and René Amstutz, Eds.) © 2008 Birkhäuser Ver lag, Basel (Swit zer land) Virtual screening for the discovery of bioactive natural products By Judith M. Rollinger1, Hermann Stuppner1,2 and Thierry Langer2,3 1Institute of Pharmacy/Pharmacog- nosy, Leopold-Franzens University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria 2Inte:Ligand GmbH, Software Engineering and Consulting, Clemens Maria Hofbauergasse 6, 2344 Maria Enzersdorf, Austria 3Institute of Pharmacy/Pharmaceu- tical Chemistry/Computer Aided Molecular Design Group, Leopold- Franzens University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria <[email protected]> Virtual screening for the discovery of bioactive natural products Abstract In this survey the impact of the virtual screening concept is discussed in the field of drug discovery from nature. Confronted by a steadily increasing number of secondary metabolites and a growing number of molecular targets relevant in the therapy of human disorders, the huge amount of information needs to be handled. Virtual screening filtering experiments already showed great promise for dealing with large libraries of potential bioactive molecules. It can be utilized for browsing databases for molecules fitting either an established pharma- cophore model or a three dimensional (3D) structure of a macromolecular target. However, for the discovery of natural lead candidates the application of this in silico tool has so far almost been neglected. There are several reasons for that. One concerns the scarce availability of natural product (NP) 3D databases in contrast to synthetic libraries; another reason is the problematic compatibility of NPs with modern robotized high throughput screening (HTS) technologies.
    [Show full text]
  • The Phytochemistry of Cherokee Aromatic Medicinal Plants
    medicines Review The Phytochemistry of Cherokee Aromatic Medicinal Plants William N. Setzer 1,2 1 Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA; [email protected]; Tel.: +1-256-824-6519 2 Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA Received: 25 October 2018; Accepted: 8 November 2018; Published: 12 November 2018 Abstract: Background: Native Americans have had a rich ethnobotanical heritage for treating diseases, ailments, and injuries. Cherokee traditional medicine has provided numerous aromatic and medicinal plants that not only were used by the Cherokee people, but were also adopted for use by European settlers in North America. Methods: The aim of this review was to examine the Cherokee ethnobotanical literature and the published phytochemical investigations on Cherokee medicinal plants and to correlate phytochemical constituents with traditional uses and biological activities. Results: Several Cherokee medicinal plants are still in use today as herbal medicines, including, for example, yarrow (Achillea millefolium), black cohosh (Cimicifuga racemosa), American ginseng (Panax quinquefolius), and blue skullcap (Scutellaria lateriflora). This review presents a summary of the traditional uses, phytochemical constituents, and biological activities of Cherokee aromatic and medicinal plants. Conclusions: The list is not complete, however, as there is still much work needed in phytochemical investigation and pharmacological evaluation of many traditional herbal medicines. Keywords: Cherokee; Native American; traditional herbal medicine; chemical constituents; pharmacology 1. Introduction Natural products have been an important source of medicinal agents throughout history and modern medicine continues to rely on traditional knowledge for treatment of human maladies [1]. Traditional medicines such as Traditional Chinese Medicine [2], Ayurvedic [3], and medicinal plants from Latin America [4] have proven to be rich resources of biologically active compounds and potential new drugs.
    [Show full text]
  • Fingerprinting Analysis and Quality Control Methods of Herbal Medicines
    Fingerprinting Analysis and Quality Control Methods of Herbal Medicines Fingerprinting Analysis and Quality Control Methods of Herbal Medicines Ravindra Kumar Pandey Shiv Shankar Shukla Amber Vyas Vishal Jain Parag Jain Shailendra Saraf CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2019 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed on acid-free paper International Standard Book Number-13: 978-1-138-03694-9 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher can- not assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copy- right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc.
    [Show full text]
  • Diversity of the Mountain Flora of Central Asia with Emphasis on Alkaloid-Producing Plants
    diversity Review Diversity of the Mountain Flora of Central Asia with Emphasis on Alkaloid-Producing Plants Karimjan Tayjanov 1, Nilufar Z. Mamadalieva 1,* and Michael Wink 2 1 Institute of the Chemistry of Plant Substances, Academy of Sciences, Mirzo Ulugbek str. 77, 100170 Tashkent, Uzbekistan; [email protected] 2 Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany; [email protected] * Correspondence: [email protected]; Tel.: +9-987-126-25913 Academic Editor: Ipek Kurtboke Received: 22 November 2016; Accepted: 13 February 2017; Published: 17 February 2017 Abstract: The mountains of Central Asia with 70 large and small mountain ranges represent species-rich plant biodiversity hotspots. Major mountains include Saur, Tarbagatai, Dzungarian Alatau, Tien Shan, Pamir-Alai and Kopet Dag. Because a range of altitudinal belts exists, the region is characterized by high biological diversity at ecosystem, species and population levels. In addition, the contact between Asian and Mediterranean flora in Central Asia has created unique plant communities. More than 8100 plant species have been recorded for the territory of Central Asia; about 5000–6000 of them grow in the mountains. The aim of this review is to summarize all the available data from 1930 to date on alkaloid-containing plants of the Central Asian mountains. In Saur 301 of a total of 661 species, in Tarbagatai 487 out of 1195, in Dzungarian Alatau 699 out of 1080, in Tien Shan 1177 out of 3251, in Pamir-Alai 1165 out of 3422 and in Kopet Dag 438 out of 1942 species produce alkaloids. The review also tabulates the individual alkaloids which were detected in the plants from the Central Asian mountains.
    [Show full text]
  • An Overview on Potential Neuroprotective Compounds for Management of Alzheimer’S Disease
    Send Orders of Reprints at [email protected] 1006 CNS & Neurological Disorders - Drug Targets, 2012, 11, 1006-1011 An Overview on Potential Neuroprotective Compounds for Management of Alzheimer’s Disease Ishfaq Ahmed Sheikh1,§, Riyasat Ali2,§, Tanveer A. Dar 3 and Mohammad Amjad Kamal*,1 1King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Kingdom of Saudi Arabia 2Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India 3Department of Clinical Biochemistry, University of Kashmir, Hazratbal, Srinagar, 190006, India Abstract: Alzheimer’s disease (AD) is one of the major neurodegenerative diseases affecting almost 28 million people around the globe. It consistently remains one of the major health concerns of present world. Due to the clinical limitations like severe side effects of some synthesized drugs, alternative forms of treatments are gaining global acceptance in the treatment of AD. Neuroprotective compounds of natural origin and their synthetic derivatives exhibit promising results with minimal side effects and some of them are in their different phases of clinical trials. Alkaloids and their synthetic derivatives form one of the groups which have been used in treatment of neurodegenerative diseases like AD. We have further grouped these alkaloids into different sub groups like Indoles, piperdine and isoquinolines. Polyphenols form another important class of natural compounds used in AD management. Keywords: Alkaloids, polyphenols, Alzheimer’s disease, neuroprotective function. INTRODUCTION been proposed as one of the alternative forms of the treatment. Large number of these molecules have been Alzheimer’s disease (AD) is the most common type of reported to play significant roles in removal of deficiency of dementia and it accounts for an estimated 60 to 80 percent of neurotransmitters either by increasing their level using reported cases of dementia [1].
    [Show full text]
  • Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Tinnitus
    Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Tinnitus Chemical Activity Count (+)-ALPHA-VINIFERIN 1 (+)-AROMOLINE 1 (+)-BORNYL-ISOVALERATE 1 (+)-CATECHIN 1 (+)-EUDESMA-4(14),7(11)-DIENE-3-ONE 1 (+)-HERNANDEZINE 2 (+)-ISOLARICIRESINOL 1 (+)-NORTRACHELOGENIN 1 (+)-PSEUDOEPHEDRINE 1 (+)-SYRINGARESINOL-DI-O-BETA-D-GLUCOSIDE 1 (+)-T-CADINOL 1 (-)-16,17-DIHYDROXY-16BETA-KAURAN-19-OIC 1 (-)-ALPHA-BISABOLOL 1 (-)-ANABASINE 1 (-)-APOGLAZIOVINE 1 (-)-BETONICINE 1 (-)-BORNYL-CAFFEATE 1 (-)-BORNYL-FERULATE 1 (-)-BORNYL-P-COUMARATE 1 (-)-CANADINE 1 (-)-DICENTRINE 1 (-)-EPICATECHIN 2 (-)-EPIGALLOCATECHIN-GALLATE 1 (1'S)-1'-ACETOXYCHAVICOL-ACETATE 1 (E)-4-(3',4'-DIMETHOXYPHENYL)-BUT-3-EN-OL 1 1,7-BIS-(4-HYDROXYPHENYL)-1,4,6-HEPTATRIEN-3-ONE 1 1,8-CINEOLE 4 Chemical Activity Count 1-ETHYL-BETA-CARBOLINE 2 10-ACETOXY-8-HYDROXY-9-ISOBUTYLOXY-6-METHOXYTHYMOL 1 10-DEHYDROGINGERDIONE 1 10-GINGERDIONE 1 12-(4'-METHOXYPHENYL)-DAURICINE 1 12-METHOXYDIHYDROCOSTULONIDE 1 13',II8-BIAPIGENIN 1 13-HYDROXYLUPANINE 1 13-OXYINGENOL-ESTER 1 16,17-DIHYDROXY-16BETA-KAURAN-19-OIC 1 16-HYDROXY-4,4,10,13-TETRAMETHYL-17-(4-METHYL-PENTYL)-HEXADECAHYDRO- 1 CYCLOPENTA[A]PHENANTHREN-3-ONE 16-HYDROXYINGENOL-ESTER 1 2'-O-GLYCOSYLVITEXIN 1 2-BETA,3BETA-27-TRIHYDROXYOLEAN-12-ENE-23,28-DICARBOXYLIC-ACID 1 2-METHYLBUT-3-ENE-2-OL 2 2-VINYL-4H-1,3-DITHIIN 1 20-DEOXYINGENOL-ESTER 1 22BETA-ESCIN 1 24-METHYLENE-CYCLOARTANOL 2 3,3'-DIMETHYLELLAGIC-ACID 1 3,4-DIMETHOXYTOLUENE 2 3,4-METHYLENE-DIOXYCINNAMIC-ACID-BORNYL-ESTER 1 3,4-SECOTRITERPENE-ACID-20-EPI-KOETJAPIC-ACID
    [Show full text]
  • Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Dysmenorrhea
    Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Dysmenorrhea Chemical Activity Count (+)-ADLUMINE 1 (+)-ALLOMATRINE 1 (+)-ALPHA-VINIFERIN 1 (+)-BORNYL-ISOVALERATE 1 (+)-CATECHIN 4 (+)-EUDESMA-4(14),7(11)-DIENE-3-ONE 1 (+)-GALLOCATECHIN 1 (+)-HERNANDEZINE 1 (+)-ISOCORYDINE 2 (+)-PSEUDOEPHEDRINE 1 (+)-T-CADINOL 1 (-)-16,17-DIHYDROXY-16BETA-KAURAN-19-OIC 1 (-)-ALPHA-BISABOLOL 3 (-)-ANABASINE 1 (-)-ARGEMONINE 1 (-)-BETONICINE 1 (-)-BORNYL-CAFFEATE 1 (-)-BORNYL-FERULATE 1 (-)-BORNYL-P-COUMARATE 1 (-)-DICENTRINE 2 (-)-EPIAFZELECHIN 1 (-)-EPICATECHIN 1 (-)-EPIGALLOCATECHIN-GALLATE 1 (1'S)-1'-ACETOXYCHAVICOL-ACETATE 1 (15:1)-CARDANOL 1 (E)-4-(3',4'-DIMETHOXYPHENYL)-BUT-3-EN-OL 1 1,7-BIS-(4-HYDROXYPHENYL)-1,4,6-HEPTATRIEN-3-ONE 1 Chemical Activity Count 1,8-CINEOLE 6 10-ACETOXY-8-HYDROXY-9-ISOBUTYLOXY-6-METHOXYTHYMOL 1 10-DEHYDROGINGERDIONE 1 10-GINGERDIONE 1 11-HYDROXY-DELTA-8-THC 1 11-HYDROXY-DELTA-9-THC 1 12,118-BINARINGIN 1 12-ACETYLDEHYDROLUCICULINE 1 13',II8-BIAPIGENIN 1 13-OXYINGENOL-ESTER 1 16,17-DIHYDROXY-16BETA-KAURAN-19-OIC 1 16-EPIMETHUENINE 1 16-HYDROXYINGENOL-ESTER 1 2'-HYDROXY-FLAVONE 1 2'-O-GLYCOSYLVITEXIN 1 2-BETA,3BETA-27-TRIHYDROXYOLEAN-12-ENE-23,28-DICARBOXYLIC-ACID 1 2-METHYLBUT-3-ENE-2-OL 1 20-DEOXYINGENOL-ESTER 1 22BETA-ESCIN 1 24-METHYLENE-CYCLOARTANOL 2 3,4-DIMETHOXYTOLUENE 1 3,4-METHYLENE-DIOXYCINNAMIC-ACID-BORNYL-ESTER 2 3,4-SECOTRITERPENE-ACID-20-EPI-KOETJAPIC-ACID 1 3-ACETYLACONITINE 3 3-ACETYLNERBOWDINE 1 3-BETA-ACETOXY-20,25-EPOXYDAMMARANE-24-OL 1 3-BETA-HYDROXY-2,3-DIHYDROWITHANOLIDE-F
    [Show full text]
  • Introduction (Pdf)
    Dictionary of Natural Products on CD-ROM This introduction screen gives access to (a) a general introduction to the scope and content of DNP on CD-ROM, followed by (b) an extensive review of the different types of natural product and the way in which they are organised and categorised in DNP. You may access the section of your choice by clicking on the appropriate line below, or you may scroll through the text forwards or backwards from any point. Introduction to the DNP database page 3 Data presentation and organisation 3 Derivatives and variants 3 Chemical names and synonyms 4 CAS Registry Numbers 6 Diagrams 7 Stereochemical conventions 7 Molecular formula and molecular weight 8 Source 9 Importance/use 9 Type of Compound 9 Physical Data 9 Hazard and toxicity information 10 Bibliographic References 11 Journal abbreviations 12 Entry under review 12 Description of Natural Product Structures 13 Aliphatic natural products 15 Semiochemicals 15 Lipids 22 Polyketides 29 Carbohydrates 35 Oxygen heterocycles 44 Simple aromatic natural products 45 Benzofuranoids 48 Benzopyranoids 49 1 Flavonoids page 51 Tannins 60 Lignans 64 Polycyclic aromatic natural products 68 Terpenoids 72 Monoterpenoids 73 Sesquiterpenoids 77 Diterpenoids 101 Sesterterpenoids 118 Triterpenoids 121 Tetraterpenoids 131 Miscellaneous terpenoids 133 Meroterpenoids 133 Steroids 135 The sterols 140 Aminoacids and peptides 148 Aminoacids 148 Peptides 150 β-Lactams 151 Glycopeptides 153 Alkaloids 154 Alkaloids derived from ornithine 154 Alkaloids derived from lysine 156 Alkaloids
    [Show full text]
  • Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Jaundice
    Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Jaundice Chemical Activity Count (+)-ALPHA-VINIFERIN 2 (+)-CAMPHOR 1 (+)-CATECHIN 2 (+)-CATECHIN-7-O-GALLATE 1 (+)-CATECHOL 1 (+)-CYANIDANOL-3 1 (+)-EUDESMA-4(14),7(11)-DIENE-3-ONE 1 (+)-HERNANDEZINE 1 (+)-PSEUDOEPHEDRINE 1 (-)-16,17-DIHYDROXY-16BETA-KAURAN-19-OIC 1 (-)-ALPHA-BISABOLOL 1 (-)-BETONICINE 1 (-)-BORNYL-CAFFEATE 1 (-)-BORNYL-FERULATE 1 (-)-BORNYL-P-COUMARATE 1 (-)-EPICATECHIN 3 (-)-EPICATECHIN-3-O-GALLATE 1 (-)-EPIGALLOCATECHIN-GALLATE 3 (1'S)-1'-ACETOXYCHAVICOL-ACETATE 2 (E)-4-(3',4'-DIMETHOXYPHENYL)-BUT-3-EN-OL 1 1,2,3,4,6-PENTA-O-GALLOYL-GLUCOSE 1 1,4-DICAFFEOYLQUINIC-ACID 1 1,7-BIS-(4-HYDROXYPHENYL)-1,4,6-HEPTATRIEN-3-ONE 1 1,8-CINEOLE 3 1-O-GALLOYL-PEDUNCULAGIN 1 10-ACETOXY-8-HYDROXY-9-ISOBUTYLOXY-6-METHOXYTHYMOL 1 10-DEHYDROGINGERDIONE 2 Chemical Activity Count 10-GINGERDIONE 1 10-GINGEROL 1 10-METHOXYCAMPTOTHECIN 1 11-DEHYDROPAPYRIOGENIN 1 11-DEOXYGLYCYRRHETINIC-ACID 1 13',II8-BIAPIGENIN 2 13-OXYINGENOL-ESTER 1 16,17-DIHYDROXY-16BETA-KAURAN-19-OIC 1 16-EPISAIKOGENIN-C 1 16-HYDROXYINGENOL-ESTER 1 2'-O-GLYCOSYLVITEXIN 1 2,7-DIHYDROXYCADALENE 1 2-BETA,3BETA-27-TRIHYDROXYOLEAN-12-ENE-23,28-DICARBOXYLIC-ACID 1 2-METHYLTRICOSANE-8-ONE-23-OL 1 2-O-CAFFEOYL-(+)-ALLOHYDROXYCITRIC-ACID 1 20-DEOXYINGENOL-ESTER 1 22BETA-ESCIN 1 24-METHYLENE-CYCLOARTANOL 1 3,3'-DIMETHYLELLAGIC-ACID 1 3,3'-DIMETHYLQUERCETIN 1 3,4-METHYLENE-DIOXYCINNAMIC-ACID-BORNYL-ESTER 1 3,4-SECOTRITERPENE-ACID-20-EPI-KOETJAPIC-ACID 1 3,7'-DIMETHYLQUERCETIN 1 3-ACETYLACONITINE 1 3-BETA-HYDROXY-2,3-DIHYDROWITHANOLIDE-F
    [Show full text]
  • WO 2008/074896 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date PCT (10) International Publication Number 26 June 2008 (26.06.2008) WO 2008/074896 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 36/185 (2006.01) A61P 25/28 (2006.01) kind of national protection available): AE, AG, AL, AM, A61P 25/00 (2006.01) A61P 25/30 (2006.01) AT,AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, A6IP 25/16 (2006.01) CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, (21) International Application Number: IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, PCT/EP2007/064523 LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, (22) International Filing Date: PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, 2 1 December 2007 (21.12.2007) TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of regional protection available): ARIPO (BW, GH, (30) Priority Data: GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, 2006/0942 2 1 December 2006 (21.12.2006) IE ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), 0705001.6 15 March 2007 (15.03.2007) GB European (AT,BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, 60/923,084 12 April 2007 (12.04.2007) US FR, GB, GR, HU, IE, IS, IT, LT,LU, LV,MC, MT, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, (71) Applicant and GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).
    [Show full text]
  • Lab Analysis of Ingredients
    Output for D.T1.2.2 LAB ANALYSIS OF INGREDIENT Evaluation of the potential use of floral waters Author ENVIRONMENT PARK Summary ARTEMISIA ABSINTHIUM THUJONIFERA ........................................................... 3 ACHILLEA MILLEFOLIUM ...................................................................................... 3 ARTEMISIA VULGARIS ............................................................................................ 4 CENTAUREA CYANUS ............................................................................................. 4 JUNIPERUS OXYCEDRUS ........................................................................................ 5 DAUCUS CAROTA SSP. MAXIMUS ........................................................................ 5 CÈDRUS ATLANTICA ............................................................................................... 6 CUPRESSUS SEMPERVIRENS ................................................................................. 6 JUNIPERUS COMMUNIS ........................................................................................... 6 Helichrysum italicum .................................................................................................... 7 Hyssopus officinalis ...................................................................................................... 7 Lavandula angustifolia .................................................................................................. 8 Lavandula angustifolia cl. Mailette ..............................................................................
    [Show full text]
  • Evaluation of Antioxidant and Enzyme Inhibition Properties of Croton Hirtus L’Hér
    molecules Article Evaluation of Antioxidant and Enzyme Inhibition Properties of Croton hirtus L’Hér. Extracts Obtained with Different Solvents Stefano Dall’Acqua 1,* , Kouadio Ibrahime Sinan 2, Stefania Sut 1, Irene Ferrarese 1, Ouattara Katinan Etienne 3, Mohamad Fawzi Mahomoodally 4,* , Devina Lobine 4 and Gokhan Zengin 2 1 Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy; [email protected] (S.S.); [email protected] (I.F.) 2 Department of Biology, Science Faculty, Selcuk University, Campus, 42130 Konya, Turkey; [email protected] (K.I.S.); [email protected] (G.Z.) 3 Laboratoire de Botanique, UFR Biosciences, Université Félix Houphouët-Boigny, 00225 Abidjan, Côte d’Ivoire; [email protected] 4 Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, 230 Réduit, Mauritius; [email protected] * Correspondence: [email protected] (S.D.); [email protected] (M.F.M.) Abstract: Croton hirtus L’Hér methanol extract was studied by NMR and two different LC-DAD-MSn using electrospray (ESI) and atmospheric pressure chemical ionization (APCI) sources to obtain a quali-quantitative fingerprint. Forty different phytochemicals were identified, and twenty of them were quantified, whereas the main constituents were dihydro α ionol-O-[arabinosil(1-6) glucoside] (133 mg/g), dihydro β ionol-O-[arabinosil(1-6) glucoside] (80 mg/g), β-sitosterol (49 mg/g), and Citation: Dall’Acqua, S.; Sinan, K.I.; isorhamnetin-3-O-rutinoside (26 mg/g). C. hirtus was extracted with different solvents—namely, Sut, S.; Ferrarese, I.; Etienne, O.K.; water, methanol, dichloromethane, and ethyl acetate—and the extracts were assayed using different Mahomoodally, M.F.; Lobine, D.; in vitro tests.
    [Show full text]