Carideorum Catalogus: the Recent Species of the Dendrobranchiate, Stenopodidean, Procarididean and Caridean Shrimps (Crustacea: Decapoda)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Classification of Living and Fossil Genera of Decapod Crustaceans
RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave. -
Establishment of a New Genus for Arete Borradailei
Zoological Studies 46(4): 454-472 (2007) Establishment of a New Genus for Arete borradailei Coutière, 1903 and Athanas verrucosus Banner and Banner, 1960, with Redefinitions of Arete Stimpson, 1860 and Athanas Leach, 1814 (Crustacea: Decapoda: Alpheidae) Arthur Anker1,* and Ming-Shiou Jeng2 1Smithsonian Tropical Research Institute, Naos Unit 0948, APO AA 34002-0948, USA. E-mail:[email protected] 2Research Center for Biodiversity, Academia Sinica, Taipei 115, Taiwan. E-mail:[email protected] (Accepted October 5, 2006) Arthur Anker and Ming-Shiou Jeng (2007) Establishment of a new genus for Arete borradailei Coutière, 1903 and Athanas verrucosus Banner and Banner, 1960, with redefinitions of Arete Stimpson, 1860 and Athanas Leach, 1814 (Crustacea: Decapoda: Alpheidae). Zoological Studies 46(4): 454-472. Arete borradailei Coutière, 1903 and Athanas verrucosus Banner and Banner, 1960 are transferred to Rugathanas gen. nov., based on several unique features on the chelipeds, 3rd pereiopods, antennules, and mouthparts. The estab- lishment of Rugathanas enables the redefinition of Athanas Leach, 1814 and Arete Stimpson, 1860, and a for- mal revalidation of Arete, formerly a synonym of Athanas. Two important features, the number of pereiopodal epipods and the number of carpal segments of the 2nd pereiopod, are variable within Rugathanas gen. nov., but may be used to distinguish Athanas from Arete. The distribution ranges of R. borradailei (Coutière, 1903) comb. nov. and R. verrucosus (Banner and Banner, 1960) comb. nov. are considerably extended based on recently collected material from the Ryukyu Is., Japan; Kenting, southern Taiwan; and Norfolk I., off eastern Australia. http://zoolstud.sinica.edu.tw/Journals/46.4/454.pdf Key words: Alpheidae, New genus, Athanas, Arete, Indo-Pacific. -
Prawn Fauna (Crustacea: Decapoda) of India - an Annotated Checklist of the Penaeoid, Sergestoid, Stenopodid and Caridean Prawns
Available online at: www.mbai.org.in doi: 10.6024/jmbai.2012.54.1.01697-08 Prawn fauna (Crustacea: Decapoda) of India - An annotated checklist of the Penaeoid, Sergestoid, Stenopodid and Caridean prawns E. V. Radhakrishnan*1, V. D. Deshmukh2, G. Maheswarudu3, Jose Josileen 1, A. P. Dineshbabu4, K. K. Philipose5, P. T. Sarada6, S. Lakshmi Pillai1, K. N. Saleela7, Rekhadevi Chakraborty1, Gyanaranjan Dash8, C.K. Sajeev1, P. Thirumilu9, B. Sridhara4, Y Muniyappa4, A.D.Sawant2, Narayan G Vaidya5, R. Dias Johny2, J. B. Verma3, P.K.Baby1, C. Unnikrishnan7, 10 11 11 1 7 N. P. Ramachandran , A. Vairamani , A. Palanichamy , M. Radhakrishnan and B. Raju 1CMFRI HQ, Cochin, 2Mumbai RC of CMFRI, 3Visakhapatnam RC of CMFRI, 4Mangalore RC of CMFRI, 5Karwar RC of CMFRI, 6Tuticorin RC of CMFRI, 7Vizhinjam RC of CMFRI, 8Veraval RC of CMFRI, 9Madras RC of CMFRI, 10Calicut RC of CMFRI, 11Mandapam RC of CMFRI *Correspondence e-mail: [email protected] Received: 07 Sep 2011, Accepted: 15 Mar 2012, Published: 30 Apr 2012 Original Article Abstract Many penaeoid prawns are of considerable value for the fishing Introduction industry and aquaculture operations. The annual estimated average landing of prawns from the fishery in India was 3.98 The prawn fauna inhabiting the marine, estuarine and lakh tonnes (2008-10) of which 60% were contributed by freshwater ecosystems of India are diverse and fairly well penaeid prawns. An additional 1.5 lakh tonnes is produced from known. Significant contributions to systematics of marine aquaculture. During 2010-11, India exported US $ 2.8 billion worth marine products, of which shrimp contributed 3.09% in prawns of Indian region were that of Milne Edwards (1837), volume and 69.5% in value of the total export. -
Journal of the Marine Biological Association of the United Kingdom
Journal of the Marine Biological Association of the United Kingdom http://journals.cambridge.org/MBI Additional services for Journal of the Marine Biological Association of the United Kingdom: Email alerts: Click here Subscriptions: Click here Commercial reprints: Click here Terms of use : Click here Patterns of cleaning behaviour on coral reef fish by the anemoneshrimp Ancylomenes pedersoni Lindsay K. Huebner and Nanette E. Chadwick Journal of the Marine Biological Association of the United Kingdom / Volume 92 / Issue 07 / November 2012, pp 1557 1562 DOI: 10.1017/S0025315411001822, Published online: 06 December 2011 Link to this article: http://journals.cambridge.org/abstract_S0025315411001822 How to cite this article: Lindsay K. Huebner and Nanette E. Chadwick (2012). Patterns of cleaning behaviour on coral reef fish by the anemoneshrimp Ancylomenes pedersoni. Journal of the Marine Biological Association of the United Kingdom, 92, pp 15571562 doi:10.1017/S0025315411001822 Request Permissions : Click here Downloaded from http://journals.cambridge.org/MBI, IP address: 128.232.233.62 on 09 Nov 2012 Journal of the Marine Biological Association of the United Kingdom, 2012, 92(7), 1557–1562. # Marine Biological Association of the United Kingdom, 2011 doi:10.1017/S0025315411001822 Patterns of cleaning behaviour on coral reef fish by the anemoneshrimp Ancylomenes pedersoni lindsay k. huebner and nanette e. chadwick Department of Biological Sciences, 101 Rouse Life Sciences Building, Auburn University, Auburn, Alabama 36849 Little is known about the cleaning behaviour of shrimps in comparison to that of cleaner fish, and only recently have cleaner shrimps been shown to remove parasites effectively from coral reef fish. Here we describe patterns of cleaning interactions between Pederson shrimp Ancylomenes pedersoni and fish clients in St Thomas, US Virgin Islands. -
Larval Morphology of the Spider Crab Leurocyclus Tuberculosus (Decapoda: Majoidea: Inachoididae)
Nauplius 17(1): 49-58, 2009 49 Larval morphology of the spider crab Leurocyclus tuberculosus (Decapoda: Majoidea: Inachoididae) William Santana and Fernando Marques (WS) Museu de Zoologia, Universidade de São Paulo, Avenida Nazaré, 481, Ipiranga, 04263-000, São Paulo, SP, Brasil. E-mail: [email protected] (FM) Universidade de São Paulo, Departamento de Zoologia, Instituto de Biociências, Caixa Postal 11461, 05588-090, São Paulo, SP, Brasil. E-mail: [email protected] Abstract Within the recently resurrected family Inachoididae is Leurocyclus tuberculosus, an inachoidid spider crab distributed throughout the Western Atlantic of South America from Brazil to Argentina (including Patagonia), and along the Eastern Pacific coast of Chile. The larval development of L. tuberculosus consists of two zoeal stages and one megalopa. We observed that the larval morphology of L. tuberculosus conforms to the general pattern found in Majoidea by having two zoeal stages, in which the first stage has nine or more seta on the scaphognatite of the maxilla, and the second zoeal stage present well developed pleopods. Here, we describe the larval morphology of L. tuberculosus and compare with other inachoidid members for which we have larval information. Key words: Larval development, Majidae, Zoeal stages, Megalopa, Crustacea, Leurocyclus. Introduction described. Larval stages of Anasimus latus Rath- bun, 1894 was the first one to be described by Few decades ago, the family Inachoididae Sandifer and Van Engel (1972). Following, Web- Dana, 1851 was resurrected by Drach and Gui- ber and Wear (1981) and Terada (1983) described not (1983; see also Drach and Guinot, 1982), the first zoeal stage of Pyromaia tuberculata (Lock- who considered that the morphological modifica- ington, 1877), which was completely described tions on the carapace and endophragmal skeleton by Fransozo and Negreiros-Fransozo (1997) and among some majoid genera granted to a set of re-described by Luppi and Spivak (2003). -
<I>Bartholomea Annulata</I>
BULLETIN OF MARINE SCIENCE, 37(3): 893-904,1985 CORAL REEF PAPER TWO MORE SIBLING SPECIES OF ALPHEID SHRIMPS ASSOCIATED WITH THE CARIBBEAN SEA ANEMONES BARTHOLOMEA ANNULATA AND HETERACTIS LUCIDA Nancy Knowlton and Brian D. Keller ABSTRACT We have described two new species of snapping shrimp, Alpheus polystictus and A. ro- quensis. The new species form part of a complex of four sibling species associated with Caribbean sea anemones, the others being the well-known A. armatus Rathbun, 1900 and the recently describedA. immaculatus Knowlton and Keller, 1983. Alpheus roquensis is found with the anemone Heteractis lucida. while the other three shrimps live with Bartholomea annulata. In laboratory choice experiments, each shrimp species prefers the species of an em- one with which it is typically found in the field, although each can shelter under the other species of anemone. All four species are extremely similar morphologically, being distin- guished largely on the basis of color pattern. The validity of the species is confirmed by the total absence of interbreeding; heterospecific male-female pairs are never found in the field, and it is impossible to force pairings between species in the laboratory. Alpheus polystictus is rare in Jamaica and Haiti, while in Venezuela it is sometimes the dominant species to depths of 10 m. In the areas examined, it has always occurred with at least one of the other two Bartholomea associates. The geographic distribution of A. roquensis is more limited, as there are no reports of alpheids associated with Heteractis lucida, and none has been found with this anemone in Jamaica. -
Epibenthic Mobile Invertebrates Along the Florida Reef Tract: Diversity and Community Structure Kristin Netchy University of South Florida, [email protected]
University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 3-21-2014 Epibenthic Mobile Invertebrates along the Florida Reef Tract: Diversity and Community Structure Kristin Netchy University of South Florida, [email protected] Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the Ecology and Evolutionary Biology Commons, Other Education Commons, and the Other Oceanography and Atmospheric Sciences and Meteorology Commons Scholar Commons Citation Netchy, Kristin, "Epibenthic Mobile Invertebrates along the Florida Reef Tract: Diversity and Community Structure" (2014). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/5085 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Epibenthic Mobile Invertebrates along the Florida Reef Tract: Diversity and Community Structure by Kristin H. Netchy A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Marine Science College of Marine Science University of South Florida Major Professor: Pamela Hallock Muller, Ph.D. Kendra L. Daly, Ph.D. Kathleen S. Lunz, Ph.D. Date of Approval: March 21, 2014 Keywords: Echinodermata, Mollusca, Arthropoda, guilds, coral, survey Copyright © 2014, Kristin H. Netchy DEDICATION This thesis is dedicated to Dr. Gustav Paulay, whom I was fortunate enough to meet as an undergraduate. He has not only been an inspiration to me for over ten years, but he was the first to believe in me, trust me, and encourage me. -
Alpheid Shrimps (Crustacea: Decapoda: Alpheidae) of Vietnam
Alpheid shrimps (Crustacea: Decapoda: Alpheidae) of Vietnam Item Type article Authors Tiwari, Krishna Kant Download date 02/10/2021 11:01:07 Link to Item http://hdl.handle.net/1834/35742 316 KRISHNA KANT TIWARI Fingers fringed with hair along the prehensile edges, tips curved and acute ; a tooth on cutting edge of near base in the males, but absent in the female, this tooth being rather large in the Cua-Be male and slight others and in the latter fingers are ahm less hairy ; in the Cua-Be male fingers gape when closed, in others they shut. Ratio of carpal segments of second pereiopod (Text-fig. 30k) as follows: -- 13 : 10 : 4 : 4 : 6. Chela by the same measure being (palm 5, finger Merus of third pereiopod (Text-fig. 30l) a spine at the distal end of lower border, about four times as long as Carpus slightly more than half as long as merus, its distal extremities not produced. Propodus about two-thirds as long as merus, with 8-9 movable spines on its inferior margin. Dactylus about one-third as long as propodus, apex simple and acute. Telson twice as long as breadth of its anterior border ; posterior mar gin slightly arcuate, half as wide as anterior margin. Dorsal spines moder ately large, about 0.3 and 0.6 distance away from the distal end. Remarks : These specimens agree well with published descriptions of A. pacificus Banner (1953) has extensively described and figured the ex amples of this species from Hawaii. In having a tooth on the cutting edge of dactylus in males, the present material differs from the Hawaiian speci mens! Distribtttion : This "'""'~"'~'~"' has a distribution in the Indo-Paci:fic. -
Volume 19 Winter 2002 the Coral Hind, Lapu Lapu, Or Miniata
FREE ISSN 1045-3520 Volume 19 Winter 2002 Introducing a Zonal Based Natural Photo by Robert Fenner Filtration System for Reef Aquariums by Steve Tyree Quite a few natural based filtration systems have been devised by reef aquarists and scientists in the past twenty years. Some systems utilized algae to remove organic and inorganic pollutants from the reef aquarium; others utilized sediment beds. The natural filtration system that I have been researching and designing is drastically different from both of these types. No external algae are used. I believe that all the algae a functional reef requires are already growing in the reef, even if they are not apparent. They include micro-algae, turf algae, coralline algae, single-cell algae within photosynthetic corals, and cyanobacteria with photosynthetic capabilities. Most of the systems that I have set up to research this concept have not included sediment beds. All organic matter and pollutants are recycled and processed within the system by macro-organisms. Sediment beds have not been utilized to process excess Miniata Grouper, Cephalopholis miniata organic debris, but that does not prevent other aquarists from adding them. The main concept behind my system is the use of living sponges, sea squirts, and filter feeders for filtration. Sponges consume bacteria, can reach about twenty inches in length in the wild, and dissolved and colloidal organic material, micro-plankton, The Coral Hind, Lapu about half that in captivity. It is undoubtedly the most and fine particulate matter. Sea squirts consume large Lapu, or Miniata prized member of the genus for the aquarium trade. -
Real Damage to the Shrimp. It Is Best to Keep Bongo Shrimp Singly Or in Established Pairs
real damage to the shrimp. It is best to keep Bongo Shrimp singly or in established pairs. PISTOL SHRIMP Pistol shrimp are very different from most other species of shrimp in that they burrow and have the ability to stun and kill their various prey without ever touching them. Most pistol shrimp are in the Alpheidae family and Alpheus genus and are found all over the world. Pistol shrimp get their name from their particular ability to snap their modified larger claw in order to injure prey or predators. The snap is so powerful that it creates a microscopic bubble which shoots out of the claw towards its target. The bubble moves so fast that scientists have recorded the sound to be about 218 Tiger Pistol Shrimp (Alpheus bellulus). Image by Sabine Penisson. decibels, comparable to the sound of a gun-shot. The temperature inside the micro-bubble has been reported to reach approximately 4,700ºC, which is nearly the temperature of the surface of the sun Bongo Shrimp is both a much rarer and more cryptic starfish- (approximately 5,500ºC). The most common species in the trade eating species encountered infrequently in the trade. They are also are Randall’s Pistol Shrimp (Alpheus randalli), Tiger Pistol Shrimp intensely captivating. Bongo Shrimp are orange, black, and white (Alpheus bellulus), Anemone Pistol Shrimp (Alpheus armatus), and and sometimes have tiny blue spots. They grow to about ¾ of an Bull’s Eye Pistol Shrimp (Alpheus soror). A more rarely encountered inch in length and are best kept in nano or pico aquariums. -
Systématique Et Ecologie Des Crustacés Décapodes Et Stomatopodes De Polynésie Française Joseph Poupin
Systématique et Ecologie des Crustacés Décapodes et Stomatopodes de Polynésie Française Joseph Poupin To cite this version: Joseph Poupin. Systématique et Ecologie des Crustacés Décapodes et Stomatopodes de Polynésie Française. Ecologie, Environnement. Université de Perpignan, 2005. tel-00085049 HAL Id: tel-00085049 https://tel.archives-ouvertes.fr/tel-00085049 Submitted on 11 Jul 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université de Perpignan - Faculté des Sciences Mémoire présenté par Joseph Poupin à L’Université de Perpignan Pour l’obtention d’une Habilitation à Diriger les Recherches Titre Systématique et Ecologie des Crustacés Décapodes et Stomatopodes de Polynésie Française. Soutenance effectuée le mercredi 25 mai 2005 à l’Institut de Recherche de l’Ecole Navale Composition du jury : • Claramunt Christophe, examinateur • Galzin René, rapporteur • Hily Christian, rapporteur • Lemaitre Rafael, examinateur • Van Wormoudth Alain, rapporteur Mémoire accompagné d’un fascicule séparé sur les Travaux et Perspectives de Recherche de Mr. POUPIN (56 pp, 17 figs). A l’issue de la soutenance, le 25 mai 2005, l’Habilitation à Diriger les Recherches a été attribuée au candidat. Version du mémoire corrigée suivant les recommandations du jury. -
Alpheus Agrogon, a New Species of Alpheid Shrimp (Decapoda: Alpheidae) from Gorgona Island, Pacific Coast of Colombia 11
Rev. 8;01. Trop .. 44(3Y45(1): 395-400.1996-1997 Alpheus agrogon, a new species of alpheid shrimp (Decapoda: Alpheidae) from Gorgona Island, Pacific coast of Colombia 11 Gabriel E. Ramos' Contribución No. 63 del CIME. Centro de Investigaciones Marinas y Estuarinas de la Universidad del Valle. 1 Apartado A�reo 24262. Cali. Colombia. (Re<. 13-IX-I995. Rev. 20-VI-1995. Accep. 28-IX-I995) Abstraet: A ocw species of alpheid shrimp.AlpMus agrogon, is described (rom Gorgona Island. Pacific coa"'! of Colombia, whc:re il wa...; collected in a tide pool.1ñe new spec:ies resembles mosl c10sely A. hy�youflga� Kim &. Abele. and A. "cOpUIU.f Kim &. Abele. bul can be differentiated by the: absence of a rostral carioa belwecn the base of roslrum and Ihe posterior margin of eyes, of leelh or spines aJong lhe inner inferior margin of merus of tirsl pair of pereopods, and of movable spine on lhe ischium of third and fourth pereopods. Key words: Alph�u.f uxro/(on, ocw species. Alpheidae.Gorgona Island.Colombia Several papers describing new species of descriplion. During an aulhor visil lo Ihe alpheid shrimps from Ihe Pacific coasl of National Museum of Natural History. Colombia and ilS islands have been published Smithsonian Institution, Washinglon. D.C., (Abele 1975, Chrisloffersen & Ramos 1988a, lype malerial of selecled species of lhis genus, 1988b, Wickslen 1988, 1989, Ramos & Prahl known from the area, were also exarnined and 1989). Recenlly, Lemailre & Alvarez (1992) compared lo lhe collecled specimen. The laxo compiled Ihe published lileralure on decapod nornic analysis lead to the conclusion that it crustaceans from this coast, and recorded in a belongs lo an undescribed species.