Bubble Nucleation in Superheated Liquid-Liquid Emulsions

Total Page:16

File Type:pdf, Size:1020Kb

Bubble Nucleation in Superheated Liquid-Liquid Emulsions Bubble Nucleation in Superheated Liquid-Liquid Emulsions C. T. AVEDISIAN 1 AND R. P. ANDRES 2 School of Engineering and Applied Science, Princeton University, Princeton, New Jersey 08540 Received April 11, 1977; accepted October 7, 1977 An investigation of the process by which bubbles form in superheated liquid-liquid emulsions is reported. A theoretical model for the rate of bubble nucleation is developed that is valid for any binary liquid system. Because of the interesting "microexplosion" phenomenon postulated to occur during combustion of fuel/water emulsions, special attention is focused on hydrocarbon/ water/surfactant mixtures. The model predicts that in these systems nucleation takes place at the interface between the two liquids but that the vapor bubbles rest entirely within the hydrocarbon phase. The maximum superheat limits of emulsions containing 83% by volume hydrocarbon (benzene, n-decane, n-dodecane, n-tetradecane, and n-hexadecane), 15% water and 2% surfactant were measured experimentally at 1 atm and found to be in good agreement with the predictions of the theoretical model. The superheat limits of these emulsions are lower than those of either pure liquid. How- ever, for microexplosion of an emulsified fuel droplet, the superheat limit of the fuel/water emulsion must be less than the boiling point of the fuel. Only the n-hexadecane/water emulsion satisfies this criterion at atmospheric pressure. 1. INTRODUCTION evaporation from the surface of an emulsi- It is almost axiomatic that improvements fied fuel drop is primarily from the con- in atomization and vaporization of high- tinuous fuel phase. Thus, when such a drop boiling-point fuels result in cleaner, more ef- is heated, its temperature approaches the ficient combustion. A promising approach in boiling point of the pure fuel. With a high- this regard is to emulsify the fuel with water boiling point fuel this means that the water prior to burning (1). The effect of adding becomes superheated. This metastable con- water is twofold. First, the water serves as a dition is maintained only as long as no vapor diluent. It reduces both liquid-droplet and bubbles form within the drop. Each emul- gas-phase temperatures in the flame, sion exhibits a critical maximum tempera- thereby moderating undesirable reactions ture, termed its limit of superheat, at which that lead to production of soot and NOx. the probability of bubble nucleation be- Secondly, as first observed by Ivanov and comes appreciable. If the drop temperature Nefedov (2), emulsified fuel droplets tend to reaches this superheat limit, it disintegrates explode when heated, thereby solving the spontaneously, shattered by the internal problem of fuel atomization. formation of vapor bubbles and the conse- This latter "microexplosion" phenome- quent rapid vaporization of superheated non has its origin in the volatility difference water. between the water and the fuel. Since the A necessary condition for microexplosion water is dispersed and isolated in the emul- of an emulsified fuel droplet is that the limit sion as relatively immobile microdroplets, of superheat of the emulsion be less than the boiling point of the fuel. In order to make 1 Department of Aerospace and Mechanical Sciences. practical use of this condition one must have 2 Department of Chemical Engineering. a theoretical expression for the limit of 438 0021-9797/78/0643 -0438502.00/0 Copyright © 1978 by Academic Press, Inc. All rights of reproduction in any form reserved. Journal of Colloid and Interface Science, Vol. 64, No. 3, May 1978 BUBBLE NUCLEATION IN EMULSIONS 439 superheat. Thus, it is necessary to under- volatile liquid are in agreement with the ex- stand the process by which vapor bubbles perimental facts. What remains is to extend nucleate in superheated emulsions. these theoretical treatments to include In what follows we will not consider cases in which both components of an emul- heterogeneous nucleation on solid motes or sion are of comparable volatility. In the impurities. We focus instead on the process present paper we formulate such a general by which vapor bubbles form homogeneously theoretical model and compare its predic- either within one of the immiscible liquids tions with experiment. or at the surface between the two liquids. Since critical size bubbles or nuclei are 2. THERMODYNAMICS OF BUBBLE generally much smaller than the dispersed FORMATION droplets present in practical emulsions, the The minimum work required to form a interface can be treated as a flat surface. vapor bubble at a flat liquid-liquid inter- The problem reduces to that of homogene- face is (11) ous bubble nucleation in a system of two immiscible liquids separated by a flat W = V"(p' - p") + ~ n~"(ix~" - txi') interface. i There have been several studies of bubble + o'aSa + o'bSb -- O'abSab. [1] nucleation in which a drop of a volatile test liquid is immersed in an immiscible In this equation V" is the volume of the bub- host fluid and is heated until it vaporizes ble; p' is the ambient pressure in the liquid; (3-10). Except in the case of water (4), p" is the vapor pressure in the bubble; n~" the superheat limits measured in these ex- is the number of molecules of component i periments do not seem to be dependent on in the bubble;/x~" and/x~' are the chemical the nonvolatile host fluid and are in excellent potentials of component i in the vapor and agreement with a kinetic model for nuclea- in the liquid, respectively; o-a, ob, and oab tion that assumes bubbles form homogene- are the surface tensions associated with the ously within the test drop. respective interfaces; and S~, Sb, and Sab Moore (3) was the first to consider the are the respective interfacial areas (see Fig. effect of the host fluid. He postulated that 1). The first term in Eq. [1] accounts for discrepancies between theory and experi- the pV work required to form the bubble. ment in the water case were due to nuclea- The second term represents the chemical tion at the surface of the water drop. Moore work required to introduce n/' molecules of developed a thermodynamic model for such species i into the bubble (the summation ex- interfacial nucleation which takes into tends over all species present in the bubble). account the surface tensions of both liquids The last three terms are the work required to and the interfacial tension between them. create or destroy the respective interfacial Apfel (9) and Jarvis et al. (10) have also surfaces. We implicitly assume in Eq. [1] studied this problem and have derived and in all that follows that the bubble is in kinetic expressions for the rate of bubble thermal and mechanical equilibrium with nucleation at the interface between a vola- the surrounding liquid. tile and a nonvolatile liquid: These treat- The detailed lenticular shape of such a ments are in agreement with the few exist- bubble is shown in Fig. 1. A force balance ing experiments but neglect the contribution yields of the less volatile liquid to bubble growth. o-~b = o-~ cos 0 + o-~ cos tO, [2] Thus, existing kinetic models for the rate of bubble nucleation in pure liquids and at and the interface between a volatile and a non- o-a sin 0 = crb sin 0. [3] Journal of Colloid and Interface Science, gol. 64, No. 3, May 1978 440 AVEDISIAN AND ANDRES I I LIQUID b ~b S\ INTERFACE Dab 2 rb LIQUID a Fro. 1. Geometry of lenticular bubble at a liquid-liquid interface. Solving these equations one obtains 16 W = -- 1ro-a(p " - p')-~ 3 O'a 2 -- Orb 2 -F O-ab 2 M. = cos0 = , [4] 20"aO'ab + E n;'(m" - t~,'), [8] i and O'b 2 -- O'a 2 Jr" Grab 2 where or is a generalized surface tension Mb = cos q~ = [5] which depends on the relative magnitudes of 20"bO'ab o-a, o'b, and Gab. In addition The lenticular shape that has been as- sumed in the derivation of Eq. [8] can exist r. = 2cra/(p" - p') [6] in mechanical equilibrium only when and > Io'o- o'.1. rb = 2o-J(p" - p'). [7] If Eq. [9] is not satisfied, the bubble is Equation [1] can be transformed through spherical in shape and rests entirely within the use of Eqs. [4]-[7] and straightforward the liquid with the lower surface tension. geometrical considerations to yield Thus, there are three distinct possibilities: LIQUID b (FUEL) Ga ~O'b +O'ab o-ob>lol)-o-o I o-b >Io'o +O"ab (A) (B) (C) LIQUID o (WATER) FIG. 2. Possible locations of bubble formation at liquid-liquid interface. Journal of Colloid and Interface Science, Vol. 64, No. 3, May 1978 BUBBLE NUCLEATION IN EMULSIONS 441 1. (Tab > I(Ta - (Tb[, the bubble is lenticular is characterized completely by its composi- (Fig. 2B), and the minimum work of forma- tion, (na",nf, . • . no"). Equation [8] repre- tion is given by Eq. [8] with sents the reversible work required to form such a bubble. However, this equation can cr = [o-aa(V2 - 3AMa + ¼Ma 3) be simplified. In many cases of practical + o-ba(1A - 3AMb + ¼M~a)]l;a; [10] interest or, and o-~ are insensitive to vapor composition, and the vapor can be treated 2. o'b -- (Ta + o'a~, the bubble is spherical as an ideal gas mixture. In this approxima- resting entirely within liquid a (Fig. 2A), tion and the minimum work of formation is given by Eq. [8] with 16 W(ni",nf , . n/') = -- ~rcr~(p '' - p,)-2 o- = o-a; and [11] 3 P i" 3. o'a >- (Tb + (Tab, the bubble is spherical + ~, n('kTln- [13] resting entirely within liquid b (Fig.
Recommended publications
  • Colloidal Crystallization: Nucleation and Growth
    Colloidal Crystallization: Nucleation and Growth Dave Weitz Harvard Urs Gasser Konstanz Andy Schofield Edinburgh Rebecca Christianson Harvard Peter Pusey Edinburgh Peter Schall Harvard Frans Spaepen Harvard Eric Weeks Emory John Crocker UPenn •Colloids as model systems – soft materials •Nucleation and growth of colloidal crystals •Defect growth in crystals •Binary Alloy Colloidal Crystals NSF, NASA http://www.deas.harvard.edu/projects/weitzlab EMU 6/7//04 Colloidal Crystals Colloids 1 nm - 10 µm solid particles in a solvent Ubiquitous ink, paint, milk, butter, mayonnaise, toothpaste, blood Suspensions can act like both liquid and solid Modify flow properties Control: Size, uniformity, interactions Colloidal Particles •Solid particles in fluid •Hard Spheres •Volume exclusion •Stability: •Short range repulsion •Sometimes a slight charge Colloid Particles are: •Big Slow •~ a ~ 1 micron • τ ~ a2/D ~ ms to sec •Can “see” them •Follow individual particle dynamics Model: Colloid Æ Atom Phase Behavior Colloids Atomic Liquids U U s s Hard Spheres Leonard-Jones Osmotic Pressure Attraction Centro-symmetric Centro-symmetric Thermalized: kBT Thermalized: kBT Gas Gas Liquid Density Liquid Solid Solid Phase behavior is similar Hard Sphere Phase Diagram Volume Fraction Controls Phase Behavior liquid - crystal liquid coexistence crystal 49% 54% 63% 74% φ maximum packing maximum packing φRCP≈0.63 φHCP=0.74 0 Increase φ => Decrease Temperature F = U - TS Entropy Drives Crystallization 0 Entropy => Free Volume F = U - TS Disordered: Ordered: •Higher configurational
    [Show full text]
  • Entropy and the Tolman Parameter in Nucleation Theory
    entropy Article Entropy and the Tolman Parameter in Nucleation Theory Jürn W. P. Schmelzer 1 , Alexander S. Abyzov 2 and Vladimir G. Baidakov 3,* 1 Institute of Physics, University of Rostock, Albert-Einstein-Strasse 23-25, 18059 Rostock, Germany 2 National Science Center Kharkov Institute of Physics and Technology, 61108 Kharkov, Ukraine 3 Institute of Thermal Physics, Ural Branch of the Russian Academy of Sciences, Amundsen Street 107a, 620016 Yekaterinburg, Russia * Correspondence: [email protected]; Tel.: +49-381-498-6889; Fax: +49-381-498-6882 Received: 23 May 2019; Accepted: 5 July 2019; Published: 9 July 2019 Abstract: Thermodynamic aspects of the theory of nucleation are commonly considered employing Gibbs’ theory of interfacial phenomena and its generalizations. Utilizing Gibbs’ theory, the bulk parameters of the critical clusters governing nucleation can be uniquely determined for any metastable state of the ambient phase. As a rule, they turn out in such treatment to be widely similar to the properties of the newly-evolving macroscopic phases. Consequently, the major tool to resolve problems concerning the accuracy of theoretical predictions of nucleation rates and related characteristics of the nucleation process consists of an approach with the introduction of the size or curvature dependence of the surface tension. In the description of crystallization, this quantity has been expressed frequently via changes of entropy (or enthalpy) in crystallization, i.e., via the latent heat of melting or crystallization. Such a correlation between the capillarity phenomena and entropy changes was originally advanced by Stefan considering condensation and evaporation. It is known in the application to crystal nucleation as the Skapski–Turnbull relation.
    [Show full text]
  • Heterogeneous Nucleation of Water Vapor on Different Types of Black Carbon Particles
    https://doi.org/10.5194/acp-2020-202 Preprint. Discussion started: 21 April 2020 c Author(s) 2020. CC BY 4.0 License. Heterogeneous nucleation of water vapor on different types of black carbon particles Ari Laaksonen1,2, Jussi Malila3, Athanasios Nenes4,5 5 1Finnish Meteorological Institute, 00101 Helsinki, Finland. 2Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland. 3Nano and Molecular Systems Research Unit, 90014 University of Oulu, Finland. 4Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil & Environmental Engineering, École 10 Polytechnique Federale de Lausanne, 1015, Lausanne, Switzerland 5 Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), 26504, Patras, Greece Correspondence to: Ari Laaksonen ([email protected]) 15 Abstract: Heterogeneous nucleation of water vapor on insoluble particles affects cloud formation, precipitation, the hydrological cycle and climate. Despite its importance, heterogeneous nucleation remains a poorly understood phenomenon that relies heavily on empirical information for its quantitative description. Here, we examine heterogeneous nucleation of water vapor on and cloud drop activation of different types of soots, both pure black carbon particles, and black carbon particles mixed with secondary organic matter. We show that the recently developed adsorption nucleation theory 20 quantitatively predicts the nucleation of water and droplet formation upon particles of the various soot types. A surprising consequence of this new understanding is that, with sufficient adsorption site density, soot particles can activate into cloud droplets – even when completely lacking any soluble material. 1 https://doi.org/10.5194/acp-2020-202 Preprint. Discussion started: 21 April 2020 c Author(s) 2020.
    [Show full text]
  • Structural Transformation in Supercooled Water Controls the Crystallization Rate of Ice
    Structural transformation in supercooled water controls the crystallization rate of ice. Emily B. Moore and Valeria Molinero* Department of Chemistry, University of Utah, Salt Lake City, UT 84112-0580, USA. Contact Information for the Corresponding Author: VALERIA MOLINERO Department of Chemistry, University of Utah 315 South 1400 East, Rm 2020 Salt Lake City, UT 84112-0850 Phone: (801) 585-9618; fax (801)-581-4353 Email: [email protected] 1 One of water’s unsolved puzzles is the question of what determines the lowest temperature to which it can be cooled before freezing to ice. The supercooled liquid has been probed experimentally to near the homogeneous nucleation temperature T H≈232 K, yet the mechanism of ice crystallization—including the size and structure of critical nuclei—has not yet been resolved. The heat capacity and compressibility of liquid water anomalously increase upon moving into the supercooled region according to a power law that would diverge at T s≈225 K,1,2 so there may be a link between water’s thermodynamic anomalies and the crystallization rate of ice. But probing this link is challenging because fast crystallization prevents experimental studies of the liquid below T H. And while atomistic studies have captured water crystallization3, the computational costs involved have so far prevented an assessment of the rates and mechanism involved. Here we report coarse-grained molecular simulations with the mW water model4 in the supercooled regime around T H, which reveal that a sharp increase in the fraction of four-coordinated molecules in supercooled liquid water explains its anomalous thermodynamics and also controls the rate and mechanism of ice formation.
    [Show full text]
  • The Role of Latent Heat in Heterogeneous Ice Nucleation
    EGU21-16164, updated on 02 Oct 2021 https://doi.org/10.5194/egusphere-egu21-16164 EGU General Assembly 2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. The role of latent heat in heterogeneous ice nucleation Olli Pakarinen, Cintia Pulido Lamas, Golnaz Roudsari, Bernhard Reischl, and Hanna Vehkamäki University of Helsinki, INAR/Physics, University of Helsinki, Finland ([email protected]) Understanding the way in which ice forms is of great importance to many fields of science. Pure water droplets in the atmosphere can remain in the liquid phase to nearly -40º C. Crystallization of ice in the atmosphere therefore typically occurs in the presence of ice nucleating particles (INPs), such as mineral dust or organic particles, which trigger heterogeneous ice nucleation at clearly higher temperatures. The growth of ice is accompanied by a significant release of latent heat of fusion, which causes supercooled liquid droplets to freeze in two stages [Pruppacher and Klett, 1997]. We are studying these topics by utilizing the monatomic water model [Molinero and Moore, 2009] for unbiased molecular dynamics (MD) simulations, where different surfaces immersed in water are cooled below the melting point over tens of nanoseconds of simulation time and crystallization is followed. With a combination of finite difference calculations and novel moving-thermostat molecular dynamics simulations we show that the release of latent heat from ice growth has a noticeable effect on both the ice growth rate and the initial structure of the forming ice. However, latent heat is found not to be as critically important in controlling immersion nucleation as it is in vapor-to- liquid nucleation [Tanaka et al.2017].
    [Show full text]
  • Using Supercritical Fluid Technology As a Green Alternative During the Preparation of Drug Delivery Systems
    pharmaceutics Review Using Supercritical Fluid Technology as a Green Alternative During the Preparation of Drug Delivery Systems Paroma Chakravarty 1, Amin Famili 2, Karthik Nagapudi 1 and Mohammad A. Al-Sayah 2,* 1 Small Molecule Pharmaceutics, Genentech, Inc. So. San Francisco, CA 94080, USA; [email protected] (P.C.); [email protected] (K.N.) 2 Small Molecule Analytical Chemistry, Genentech, Inc. So. San Francisco, CA 94080, USA; [email protected] * Correspondence: [email protected]; Tel.: +650-467-3810 Received: 3 October 2019; Accepted: 18 November 2019; Published: 25 November 2019 Abstract: Micro- and nano-carrier formulations have been developed as drug delivery systems for active pharmaceutical ingredients (APIs) that suffer from poor physico-chemical, pharmacokinetic, and pharmacodynamic properties. Encapsulating the APIs in such systems can help improve their stability by protecting them from harsh conditions such as light, oxygen, temperature, pH, enzymes, and others. Consequently, the API’s dissolution rate and bioavailability are tremendously improved. Conventional techniques used in the production of these drug carrier formulations have several drawbacks, including thermal and chemical stability of the APIs, excessive use of organic solvents, high residual solvent levels, difficult particle size control and distributions, drug loading-related challenges, and time and energy consumption. This review illustrates how supercritical fluid (SCF) technologies can be superior in controlling the morphology of API particles and in the production of drug carriers due to SCF’s non-toxic, inert, economical, and environmentally friendly properties. The SCF’s advantages, benefits, and various preparation methods are discussed. Drug carrier formulations discussed in this review include microparticles, nanoparticles, polymeric membranes, aerogels, microporous foams, solid lipid nanoparticles, and liposomes.
    [Show full text]
  • Thermodynamics and Kinetics of Binary Nucleation in Ideal-Gas Mixtures
    1 Thermodynamics and kinetics of binary nucleation in ideal-gas mixtures Nikolay V. Alekseechkin Akhiezer Institute for Theoretical Physics, National Science Centre “Kharkov Institute of Physics and Technology”, Akademicheskaya Street 1, Kharkov 61108, Ukraine Email: [email protected] Abstract . The nonisothermal single-component theory of droplet nucleation (Alekseechkin, 2014) is extended to binary case; the droplet volume V , composition x , and temperature T are the variables of the theory. An approach based on macroscopic kinetics (in contrast to the standard microscopic model of nucleation operating with the probabilities of monomer attachment and detachment) is developed for the droplet evolution and results in the derived droplet motion equations in the space (V , x,T) - equations for V& ≡ dV / dt , x& , and T& . The work W (V , x,T) of the droplet formation is calculated; it is obtained in the vicinity of the saddle point as a quadratic form with diagonal matrix. Also the problem of generalizing the single-component Kelvin equation for the equilibrium vapor pressure to binary case is solved; it is presented here as a problem of integrability of a Pfaffian equation. The equation for T& is shown to be the first law of thermodynamics for the droplet, which is a consequence of Onsager’s reciprocal relations and the linked-fluxes concept. As an example of ideal solution for demonstrative numerical calculations, the o-xylene-m-xylene system is employed. Both nonisothermal and enrichment effects are shown to exist; the mean steady-state overheat of droplets and their mean steady-state enrichment are calculated with the help of the 3D distribution function.
    [Show full text]
  • TABLE A-2 Properties of Saturated Water (Liquid–Vapor): Temperature Table Specific Volume Internal Energy Enthalpy Entropy # M3/Kg Kj/Kg Kj/Kg Kj/Kg K Sat
    720 Tables in SI Units TABLE A-2 Properties of Saturated Water (Liquid–Vapor): Temperature Table Specific Volume Internal Energy Enthalpy Entropy # m3/kg kJ/kg kJ/kg kJ/kg K Sat. Sat. Sat. Sat. Sat. Sat. Sat. Sat. Temp. Press. Liquid Vapor Liquid Vapor Liquid Evap. Vapor Liquid Vapor Temp. Њ v ϫ 3 v Њ C bar f 10 g uf ug hf hfg hg sf sg C O 2 .01 0.00611 1.0002 206.136 0.00 2375.3 0.01 2501.3 2501.4 0.0000 9.1562 .01 H 4 0.00813 1.0001 157.232 16.77 2380.9 16.78 2491.9 2508.7 0.0610 9.0514 4 5 0.00872 1.0001 147.120 20.97 2382.3 20.98 2489.6 2510.6 0.0761 9.0257 5 6 0.00935 1.0001 137.734 25.19 2383.6 25.20 2487.2 2512.4 0.0912 9.0003 6 8 0.01072 1.0002 120.917 33.59 2386.4 33.60 2482.5 2516.1 0.1212 8.9501 8 10 0.01228 1.0004 106.379 42.00 2389.2 42.01 2477.7 2519.8 0.1510 8.9008 10 11 0.01312 1.0004 99.857 46.20 2390.5 46.20 2475.4 2521.6 0.1658 8.8765 11 12 0.01402 1.0005 93.784 50.41 2391.9 50.41 2473.0 2523.4 0.1806 8.8524 12 13 0.01497 1.0007 88.124 54.60 2393.3 54.60 2470.7 2525.3 0.1953 8.8285 13 14 0.01598 1.0008 82.848 58.79 2394.7 58.80 2468.3 2527.1 0.2099 8.8048 14 15 0.01705 1.0009 77.926 62.99 2396.1 62.99 2465.9 2528.9 0.2245 8.7814 15 16 0.01818 1.0011 73.333 67.18 2397.4 67.19 2463.6 2530.8 0.2390 8.7582 16 17 0.01938 1.0012 69.044 71.38 2398.8 71.38 2461.2 2532.6 0.2535 8.7351 17 18 0.02064 1.0014 65.038 75.57 2400.2 75.58 2458.8 2534.4 0.2679 8.7123 18 19 0.02198 1.0016 61.293 79.76 2401.6 79.77 2456.5 2536.2 0.2823 8.6897 19 20 0.02339 1.0018 57.791 83.95 2402.9 83.96 2454.1 2538.1 0.2966 8.6672 20 21 0.02487 1.0020
    [Show full text]
  • Spinodal Lines and Equations of State: a Review
    10 l Nuclear Engineering and Design 95 (1986) 297-314 297 North-Holland, Amsterdam SPINODAL LINES AND EQUATIONS OF STATE: A REVIEW John H. LIENHARD, N, SHAMSUNDAR and PaulO, BINEY * Heat Transfer/ Phase-Change Laboratory, Mechanical Engineering Department, University of Houston, Houston, TX 77004, USA The importance of knowing superheated liquid properties, and of locating the liquid spinodal line, is discussed, The measurement and prediction of the spinodal line, and the limits of isentropic pressure undershoot, are reviewed, Means are presented for formulating equations of state and fundamental equations to predict superheated liquid properties and spinodal limits, It is shown how the temperature dependence of surface tension can be used to verify p - v - T equations of state, or how this dependence can be predicted if the equation of state is known. 1. Scope methods for making simplified predictions of property information, which can be applied to the full range of Today's technology, with its emphasis on miniaturiz­ fluids - water, mercury, nitrogen, etc. [3-5]; and predic­ ing and intensifying thennal processes, steadily de­ tions of the depressurizations that might occur in ther­ mands higher heat fluxes and poses greater dangers of mohydraulic accidents. (See e.g. refs. [6,7].) sending liquids beyond their boiling points into the metastable, or superheated, state. This state poses the threat of serious thermohydraulic explosions. Yet we 2. The spinodal limit of liquid superheat know little about its thermal properties, and cannot predict process behavior after a liquid becomes super­ heated. Some of the practical situations that require a 2.1. The role of the equation of state in defining the spinodal line knowledge the limits of liquid superheat, and the physi­ cal properties of superheated liquids, include: - Thennohydraulic explosions as might occur in nuclear Fig.
    [Show full text]
  • Subcritical Water Extraction
    Chapter 17 Subcritical Water Extraction A. Haghighi Asl and M. Khajenoori Additional information is available at the end of the chapter http://dx.doi.org/10.5772/54993 1. Introduction Extraction always involves a chemical mass transfer from one phase to another. The principles of extraction are used to advantage in everyday life, for example in making juices, coffee and others. To reduce the use of organic solvent and improve the extraction methods of constituents of plant materials, new methods such as microwave assisted extraction (MAE), supercritical fluid extraction (SFE), accelerated solvent extraction (ASE) or pressurized liquid extraction (PLE) and subcritical water extraction (SWE), also called superheated water extraction or pressurized hot water extraction (PHWE), have been introduced [1-3]. SWE is a new and powerful technique at temperatures between 100 and 374oC and pressure high enough to maintain the liquid state (Fig.1) [4]. Unique properties of water are namely its disproportionately high boiling point for its mass, a high dielectric constant and high polarity [4]. As the temperature rises, there is a marked and systematic decrease in permittivity, an increase in the diffusion rate and a decrease in the viscosity and surface tension. In conse‐ quence, more polar target materials with high solubility in water at ambient conditions are extracted most efficiently at lower temperatures, whereas moderately polar and non-polar targets require a less polar medium induced by elevated temperature [5]. Based on the research works published in the recent years, it has been shown that the SWE is cleaner, faster and cheaper than the conventional extraction methods.
    [Show full text]
  • About Nucleation
    Nucleation • Nucleation: localized formation of a distinct thermodynamic phase. • Nucleation an occur in a gas, liquid or solid phase. Some examples of phases that may form via nucleation include: 1) in gas: Creation of liquid droplets in saturated vapor; 2) in liquid: formation of gaseous bubbles, crystals (e.g., ice formation from water), or glassy regions; 3) in solid: Nucleation of crystalline, amorphous, and even vacancy clusters in solid materials. Such solid state nucleation is important, for example, to the semiconductor industry. • Most nucleation processes are physical, rather than chemical. • Nucleation normally occurs at nucleation sites on surfaces contacting the liquid or vapor. Suspended particles or minute bubbles also provide nucleation sites. This is called heterogeneous nucleation (Lecture 12). • Nucleation without preferential nucleation sites is homogeneous nucleation (Lecture 10-11). Homogeneous nucleation occurs spontaneously and randomly, but it requires superheating or supercooling of the medium. Ref. wikipedia website Homogeneous Nucleation • Compared to the heterogeneous nucleation (which starts at nucleation sites on surfaces), Homogeneous nucleation occurs with much more difficulty in the interior of a uniform substance. The creation of a nucleus implies the formation of an interface at the boundaries of a new phase. • Liquids cooled below the maximum heterogeneous nucleation temperature (melting temperature), but which are above the homogeneous nucleation temperature (pure substance freezing temperature) are said to be supercooled. This is useful for making amorphous solids and other metastable structures, but can delay the progress of industrial chemical processes or produce undesirable effects in the context of casting. • Supercooling brings about supersaturation, the driving force for nucleation. Supersaturation occurs when the pressure in the newly formed solid is less than the vapor pressure, and brings about a change in free energy per unit volume, Gv, between the liquid and newly created solid phase.
    [Show full text]
  • Source Term Models for Superheated Releases of Hazardous Materials
    Source Term Models for Superheated Releases of Hazardous Materials Thesis submitted for the Degree of Doctor of Philosophy of the University of Wales Cardiff by Vincent Martin Cleary BEng (Hons) September 2008 UMI Number: U585126 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U585126 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Chapter 1 Introduction Abstract Source terms models for superheated releases of hazardous liquefied chemicals such as LPG have been developed, governing both upstream and downstream conditions. Water was utilised as the model fluid, not least for reasons of safety, but also for its ability to be stored at conditions that ensure it is superheated on release to atmosphere. Several studies have found that at low superheat jet break-up is analogous to mechanical break-up under sub-cooled conditions. Hence, a non-dimensionalised SMD correlation for sub-cooled liquid jets in the atomisation regime has been developed, based on data measured using a Phase Doppler Anemometry (PDA) system, for a broad range of initial conditions. Droplet SMD has been found to correlate with the nozzle aspect ratio and two non- dimensionalised groups i.e.
    [Show full text]