Marine Biotoxins and Seafood Poisoning

Total Page:16

File Type:pdf, Size:1020Kb

Marine Biotoxins and Seafood Poisoning Marine Biotoxins and Seafood Poisoning Edited by Pedro Reis Costa, Jorge Diogène and Antonio Marques Printed Edition of the Special Issue Published in Toxins www.mdpi.com/journal/toxins Marine Biotoxins and Seafood Poisoning Marine Biotoxins and Seafood Poisoning Special Issue Editors Pedro Reis Costa Jorge Diog`ene Antonio Marques MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editors Pedro Reis Costa Jorge Diogene` IPMA IRTA Portugal Spain Antonio Marques IPMA Portugal Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Toxins (ISSN 2072-6651) from 2018 to 2019 (available at: https://www.mdpi.com/journal/toxins/special issues/Biotoxin Seafood) For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03921-818-9 (Pbk) ISBN 978-3-03921-819-6 (PDF) c 2019 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Special Issue Editors ..................................... vii Pedro Reis Costa, Ant´onio Marques and Jorge Diog`ene Marine Biotoxins and Seafood Poisoning Reprinted from: Toxins 2019, 11, 558, doi:10.3390/toxins11100558 .................. 1 John Kristoffer Andres, Aletta T. Yniguez, ˜ Jennifer Mary Maister, Andrew D. Turner, Dave Eldon B. Olano, Jenelyn Mendoza, Lilibeth Salvador-Reyes and Rhodora V. Azanza Paralytic Shellfish Toxin Uptake, Assimilation, Depuration, and Transformation in the Southeast Asian Green-Lipped Mussel (Perna viridis) Reprinted from: Toxins 2019, 11, 468, doi:10.3390/toxins11080468 .................. 3 Vera Barbosa, Marta Santos, Patr´ıcia Anacleto, Ana Lu´ısa Maulvault, Pedro Pous˜ao-Ferreira, Pedro Reis Costa and Ant´onio Marques Paralytic Shellfish Toxins and Ocean Warming: Bioaccumulation and Ecotoxicological Responses in Juvenile Gilthead Seabream (Sparus aurata) Reprinted from: Toxins 2019, 11, 408, doi:10.3390/toxins11070408 .................. 16 Kathi A. Lefebvre, Betsy Jean Yakes, Elizabeth Frame, Preston Kendrick, Sara Shum, Nina Isoherranen, Bridget E. Ferriss, Alison Robertson, Alicia Hendrix, David J. Marcinek and Lynn Grattan Discovery of a Potential Human Serum Biomarker for Chronic Seafood Toxin Exposure Using an SPR Biosensor Reprinted from: Toxins 2019, 11, 293, doi:10.3390/toxins11050293 .................. 32 Manabu Asakawa, Takuya Matsumoto, Kohei Umezaki, Kyoichiro Kaneko, Ximiao Yu, Gloria Gomez-Delan, Satoshi Tomano, Tamao Noguchi and Susumu Ohtsuka Toxicity and Toxin Composition of the Greater Blue-Ringed Octopus Hapalochlaena lunulata from Ishigaki Island, Okinawa Prefecture, Japan Reprinted from: Toxins 2019, 11, 245, doi:10.3390/toxins11050245 .................. 47 Gonzalo Alvarez,´ Patricio A. D´ıaz, Marcos Godoy, Michael Araya, Iranzu Ganuza, Roberto Pino, Francisco Alvarez,´ Jos´e Rengel, Cristina Hern´andez, Eduardo Uribe and Juan Blanco Paralytic Shellfish Toxins in Surf Clams Mesodesma donacium during a Large Bloom of Alexandrium catenella Dinoflagellates Associated to an Intense Shellfish Mass Mortality Reprinted from: Toxins 2019, 11, 188, doi:10.3390/toxins11040188 .................. 56 Si Chen, Xiaojun Zhang, Zhongyong Yan, Yangyang Hu and Yibo Lu Development and Application of Immunoaffinity Column Purification and Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectrometry for Determination of Domoic Acid in Shellfish Reprinted from: Toxins 2019, 11, 83, doi:10.3390/toxins11020083 ................... 74 Aiko Hayashi, Juan Jos´e Dorantes-Aranda, John P. Bowman and Gustaaf Hallegraeff Combined Cytotoxicity of the Phycotoxin Okadaic Acid and Mycotoxins on Intestinal and Neuroblastoma Human Cell Models Reprinted from: Toxins 2018, 10, 526, doi:10.3390/toxins10120526 .................. 90 v About the Special Issue Editors Pedro Reis Costa received his PhD degree in Marine Biology and Ecology from the University of Lisbon (Portugal, 2006), and continued as a Postdoctoral Fellow in NOAA Fisheries Science Center (Seattle, USA) in 2007–2009. He has been a Researcher at the Portuguese Institute of the Sea and Atmosphere (IPMA) since his appointment in 2009. He is mainly interested in the study of harmful algal blooms (HAB) and the transfer of marine toxins in the food web, including their fate and toxicological potential in marine/estuarine environments. Jorge Diog`ene graduated in Biology at the Universitat de Barcelona (Spain, 1985) and holds an MSc in Marine Biology (University of South Alabama, USA, 1988) and PhD in Toxicology from the Universite´ Paris 7 (France, 1993). He is Head of both the Unitat de Seguiment del Medi and the Marine and Continental Waters program at IRTA-Sant Carles de la Rapita.` His research interests are oriented towards the evaluation of toxin production of microalgae, toxin determination in shellfish, and the development of cell-based assays used to identify and quantify the toxicological potential of toxins. His responsibilities focus on the monitoring program for the quality of water in shellfish harvesting areas, as well as in the field of seafood quality analysis and food safety evaluation. Antonio Marques received his PhD degree in Applied Biological Sciences from the University of Ghent (Belgium, 2005) and continued as a Researcher at the Portuguese Institute of the Sea and Atmosphere (IPMA) in 2006–2015. He has been a Senior Researcher at IPMA since his appointment in 2015. His main interests are in seafood quality and safety (chemical contaminants), innovative solutions for the seafood production and processing industries, seafood preservation methodologies, and climate change. vii toxins Editorial Marine Biotoxins and Seafood Poisoning Pedro Reis Costa 1, António Marques 1 and Jorge Diogène 2,* 1 IPMA-Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165 Lisbon, Portugal; [email protected] (P.R.C.); [email protected] (A.M.) 2 IRTA Institute of Agrifood Research and Technology, IRTA, Ctra. Villafranco, 5, 43540 Sant Carles de la Ràpita, Spain * Correspondence: [email protected] Received: 9 September 2019; Accepted: 17 September 2019; Published: 24 September 2019 Prevalence of marine biotoxins in seafood has been associated with increasing frequency, intensity, and duration of harmful algal blooms, and an increase of the geographical and temporal distribution of harmful algae. New and emerging biotoxins have been recurrently detected in regions where they were previously absent, raising challenges to the economic sustainability of seafood production in coastal areas and to consumer health safety. The economic burden to seafood producers caused by the closure of production areas and a possible feeling of insecurity from consumers urges researchers to improve available knowledge on toxin dynamics in marine organisms and the environment. Epidemiological studies are scarce and risk characterization is needed, particularly for emerging toxins. It is critical to enhance collaborative multi- and trans-disciplinary actions to introduce eco-innovative sustainable strategies to improve shellfish and fish safety. Strengthening industrial competitiveness is achievable by developing fast and reliable methods for marine biotoxin detection, and by implementing mitigation strategies. Innovative toxicological approaches for seafood safety evaluation are also required. The seven articles of this special issue address such research needs and are organized into three groups: (i) toxin dynamics and effects in marine organisms, (ii) development of detection methods for marine toxins, and (iii) toxin exposure and risks associated with the consumption of contaminated seafood. Within the first group of articles, Alvarez et al. [1] reported an extreme event in southern Chile of a bloom of Alexandrium catenella that caused mass mortality of several marine invertebrate species, and resulted in accumulation of high levels (exceeding 100 times the regulatory limit for human consumption) of paralytic shellfish poisoning (PSP) toxins in clams. This study highlights the need for assessing toxin dynamics in shellfish under controlled conditions to better understand and foresee the impacts of harmful algal blooms. Andres et al. [2] fed green-lipped mussel (Perna viridis) with the toxic dinoflagellate Alexandrium minutum under controlled laboratory conditions to assess the dynamics of PSP toxin levels during accumulation and elimination phases. Barbosa et al. [3] investigated the interaction of ocean warming with fish (Sparus aurata) exposure to PSP toxins through contaminated mussels to assess physiological responses and changes in toxin accumulation. Tetrodotoxin (TTX), which has a mode of action comparable to PSP toxins, was characterized in the greater blue-ringed octopus Hapalochlaena lunulata from Okinawa, Japan [4]. Regarding the development and optimization of methods for toxin detection, Chen and colleagues [5] optimized clean-up procedures based on immunoaffinity column purification before mass spectrometry
Recommended publications
  • Gomphina Veneriformis and Tegillaca Granosa)
    Dev. Reprod. Vol. 14, No. 1, 7-11 (2010) 7 Germ Cell Aspiration (GCA) Method as a Non-fatal Technique for Sex Identification in Two Bivalves (Gomphina veneriformis and Tegillaca granosa) † Jung Sick Lee1, Sun Mi Ju1, Ji Seon Park1, Young Guk Jin2, Yun Kyung Shin3 and Jung Jun Park4 1Dept. of Aqualife Medicine, Chonnam National University, Yeosu 550-749, Korea 2South Sea Fisheries Research Institute, National Fisheries Research and Development Institute, Yeosu 556-823, Korea 3Aquaculture Management Division, National Fisheries Research and Development Institute, Busan 619-705, Korea 4Pathology Division, National Fisheries Research and Development Institute, Busan 619-705, Korea ABSTRACT : This study attempted to verify the possibility of using germ cell aspiration (GCA) method as a non-fatal technique in studying the life-history of equilateral venus, Gomphina veneriformis (Veneridae) and granular ark, Tegillarca granosa (Arcidae). Using twenty-six gauge 1/2" (12.7㎜) needle, GCA was carried out in equilateral venus through external ligament. In granular ark, GCA was performed by preventing closure of the shells by inserting a tongue depressor between the shells while still open. The success rate of sex identification using the GCA method was 95.6% for the equilateral venus (n=650/680) and 94.3% for the granular ark (n=707/750). Mortality of equilateral venus, which spent 33 days under wild conditions, was 13.8% (n=90/650) while the mortality of granular ark, which spent 390 days under wild conditions, was 2.4% (n=17/707). Although we believe that GCA does not appear to cause death in equilateral venus or granular ark, the success rate in employing of this methodology may differ depending on the level of proficiency of the researcher and reproductive stage of the bivalve.
    [Show full text]
  • Patulin – a Contaminant of Food and Feed: a Review
    Acta fytotechn zootechn, 19, 2016(2): 64–67 http://www.acta.fapz.uniag.sk Review Patulin – a contaminant of food and feed: A review Katarína Zbyňovská*, Peter Petruška, Anna Kalafová, Marcela Capcarová Slovak University of Agriculture in Nitra, Slovak Republic Article Details: Received: 2016-07-28 | Accepted: 2016-02-18 | Available online: 2016-05-31 dx.doi.org/10.15414/afz.2016.19.02.64–67 Contamination of food and agricultural commodities by various types of toxigenic molds (microscopic filamentous fungi) is a serious and widely neglected problem. Poor harvesting practices, improper drying, handling, packaging, storage and transport conditions contribute to fungal growth and increase the risk of mycotoxin production. Patulin is a toxic chemical contaminant produced by several species of microscopic filamentous fungi. It is the most common mycotoxin found in apples, apricots, grapes, grape fruit, peaches, pears, olives and cereals. Patulin has been reported to be a genotoxic, reprotoxic, embryotoxic, and immunosuppressive compound. Further research needs to be focused on the generation of data dealing with epidemiological and toxicity effects, especially in humans. Keywords: mycotoxin, patulin, toxicity 1 Mycotoxin patulin and as an ointment for treating fungal skin infections Mycotoxins are low-molecular-weight toxic chemical (Chalmers et al., 2004; Ciegler, 1977). However, during the compounds with low volatility, representing secondary 1950s and 1960s, it became apparent that, in addition metabolites produced by certain filamentous fungi to its antibacterial, antiviral, and antiprotozoal activity, that colonize crops, in the field or post-harvest, capable patulin was toxic to both plants and animals, precluding of causing disease and death in humans and animals its clinical use as an antibiotic.
    [Show full text]
  • Sandbridge Beach FONSI
    FINDING OF NO SIGNIFICANT IMPACT Issuance of a Negotiated Agreement for Use of Outer Continental Shelf Sand from Sandbridge Shoal in the Sandbridge Beach Erosion Control and Hurricane Protection Project Virginia Beach, Virginia Pursuant to the National Environmental Policy Act (NEPA), Council on Environmental Quality regulations implementing NEPA (40 CFR 1500-1508) and Department of the Interior (DOI) regulations implementing NEPA (43 CFR 46), the Bureau of Ocean Energy Management (BOEM) prepared an environmental assessment (EA) to determine whether the issuance of a negotiated agreement for the use of Outer Continental Shelf (OCS) sand from Sandbridge Shoal Borrow Areas A and B for the Sandbridge Beach Erosion Control and Hurricane Protection Project near Virginia Beach, VA would have a significant effect on the human environment and whether an environmental impact statement (EIS) should be prepared. Several NEPA documents evaluating impacts of the project have been previously prepared by both the US Army Corps of Engineers (USACE) and BOEM. The USACE described the affected environment, evaluated potential environmental impacts (initial construction and nourishment events), and considered alternatives to the proposed action in a 2009 EA. This EA was subsequently updated and adopted by BOEM in 2012 in association with the most recent 2013 Sandbridge nourishment effort (BOEM 2012). Prior to this, BOEM (previously Minerals Management Service [MMS]) was a cooperating agency on several EAs for previous projects (MMS 1997; MMS 2001; MMS 2006). This current EA, prepared by BOEM, supplements and summarizes the aforementioned 2012 analysis. BOEM has reviewed all prior analyses, supplemented additional information as needed, and determined that the potential impacts of the current proposed action have been adequately addressed.
    [Show full text]
  • Enhanced Representation of Natural Product Metabolism in Uniprotkb
    H OH metabolites OH Article Diverse Taxonomies for Diverse Chemistries: Enhanced Representation of Natural Product Metabolism in UniProtKB Marc Feuermann 1,* , Emmanuel Boutet 1,* , Anne Morgat 1 , Kristian B. Axelsen 1, Parit Bansal 1, Jerven Bolleman 1 , Edouard de Castro 1, Elisabeth Coudert 1, Elisabeth Gasteiger 1,Sébastien Géhant 1, Damien Lieberherr 1, Thierry Lombardot 1,†, Teresa B. Neto 1, Ivo Pedruzzi 1, Sylvain Poux 1, Monica Pozzato 1, Nicole Redaschi 1 , Alan Bridge 1 and on behalf of the UniProt Consortium 1,2,3,4,‡ 1 Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 Michel-Servet, CH-1211 Geneva 4, Switzerland; [email protected] (A.M.); [email protected] (K.B.A.); [email protected] (P.B.); [email protected] (J.B.); [email protected] (E.d.C.); [email protected] (E.C.); [email protected] (E.G.); [email protected] (S.G.); [email protected] (D.L.); [email protected] (T.L.); [email protected] (T.B.N.); [email protected] (I.P.); [email protected] (S.P.); [email protected] (M.P.); [email protected] (N.R.); [email protected] (A.B.); [email protected] (U.C.) 2 European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK 3 Protein Information Resource, University of Delaware, 15 Innovation Way, Suite 205, Newark, DE 19711, USA 4 Protein Information Resource, Georgetown University Medical Center, 3300 Whitehaven Street NorthWest, Suite 1200, Washington, DC 20007, USA * Correspondence: [email protected] (M.F.); [email protected] (E.B.); Tel.: +41-22-379-58-75 (M.F.); +41-22-379-49-10 (E.B.) † Current address: Centre Informatique, Division Calcul et Soutien à la Recherche, University of Lausanne, CH-1015 Lausanne, Switzerland.
    [Show full text]
  • The Sense of Hearing in the Pacific Oyster, Magallana Gigas
    RESEARCH ARTICLE The sense of hearing in the Pacific oyster, Magallana gigas Mohcine Charifi1,2,3, Mohamedou Sow1,2, Pierre Ciret1,2, Soumaya Benomar3, Jean- Charles Massabuau1,2* 1 University of Bordeaux, EPOC, UMR 5805, Arcachon, France, 2 CNRS, EPOC, UMR 5805, Talence, France, 3 Unit of Research on Biological Rhythms, Neuroscience and Environment, Faculty of Science, Mohammed V-Agdal University, Rabat, Morocco * [email protected] a1111111111 a1111111111 a1111111111 a1111111111 Abstract a1111111111 There is an increasing concern that anthropogenic noise could have a significant impact on the marine environment, but there is still insufficient data for most invertebrates. What do they perceive? We investigated this question in oysters Magallana gigas (Crassostrea gigas) using pure tone exposures, accelerometer fixed on the oyster shell and hydrophone in the OPEN ACCESS water column. Groups of 16 oysters were exposed to quantifiable waterborne sinusoidal Citation: Charifi M, Sow M, Ciret P, Benomar S, sounds in the range of 10 Hz to 20 kHz at various acoustic energies. The experiment was con- Massabuau J-C (2017) The sense of hearing in the ducted in running seawater using an experimental flume equipped with suspended loud- Pacific oyster, Magallana gigas. PLoS ONE 12(10): e0185353. https://doi.org/10.1371/journal. speakers. The sensitivity of the oysters was measured by recording their valve movements pone.0185353 by high-frequency noninvasive valvometry. The tests were 3 min tone exposures including a Editor: Jose A. FernaÂndez Robledo, Bigelow 70 sec fade-in period. Three endpoints were analysed: the ratio of responding individuals in Laboratory for Ocean Sciences, UNITED STATES the group, the resulting changes of valve opening amplitude and the response latency.
    [Show full text]
  • New Markers in the Mycotox Profile
    New Markers in the MycoTOX Profile We are happy to announce the addition of four new mycotoxin markers to our MycoTOX Profile. The test now includes 11 mycotoxins from 40 species of mold, making it by far the most comprehensive and competitively priced mycotoxin test available. It also still more sensitive and accurate than other tests available, because we use LC/MS/MS technology. Here is an overview of the four new mycotoxin markers: Gliotoxin Gliotoxin (GTX) is produced by the mold genus Aspergillus. Aspergillus spreads in the environment by releasing conidia which are capable of infiltrating the small alveolar airways of individuals. In order to evade the body’s defenses Aspergillus releases Gliotoxin to inhibit the immune system. One of the targets of Gliotoxin is PtdIns (3,4,5) P3. This results in the downregulation of phagocytic immune defense, which can lead to the exacerbation of polymicrobial infections. Gliotoxin impairs the activation of T-cells and induces apoptosis in monocytes and in monocyte-derived dendritic cells. These impairments can lead to multiple neurological syndromes. Mycophenolic Acid Mycophenolic Acid (MPA) produced by the Penicillium fungus. MPA is an immunosuppressant which inhibits the proliferation of B and T lymphocytes. MPA exposure can increase the risk of opportunistic infections such as Clostridia and Candida. MPA is associated with miscarriage and congenital malformations when the woman is exposed in pregnancy. Dihydrocitrinone Dihydrocitrinone is a metabolite of Citrinin (CTN), which is a mycotoxin that is produced by the mold species Aspergillus, Penicillium, and Monascus. CTN exposure can lead to nephropathy, because of its ability to increase permeability of mitochondrial membranes in the kidneys.
    [Show full text]
  • Comprehensive Review of Patulin Control and Analysis in Foods
    COMPREHENSIVE REVIEW OF PATULIN CONTROL AND ANALYSIS IN FOODS A Project Paper Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Master of Professional Studies in Agriculture and Life Sciences Field of Food Science and Technology by Ana Cristina Barsallo Cochez May 2018 © 2018 Ana Cristina Barsallo Cochez ii ABSTRACT Patulin is a mycotoxin produced by a number of fungal species that include Penicillium, Aspergillus, and Byssochlamys genera. Several adverse health effects have been attributed to patulin—it is suspected of being clastogenic, mutagenic, teratogenic, and in higher concentrations cytotoxic, hence the importance of prevention, timely detection, and mitigation of contamination by this toxic fungal metabolite. The primary dietary origin of patulin is apples and its products, with the occasional contamination of other fruits, vegetables, and products thereof. The persistence and stability of the molecule allow it to survive processing, poses a major issue for the safety of susceptible foods. This challenge calls for techniques that will allow us to properly identify and eliminate the metabolite from food products. This paper reviews prior research on patulin focusing on detection, control, and level-reduction methods of patulin in several stages of production of these products. iii BIOGRAPHICAL SKETCH Ana Cristina Barsallo Cochez is pursuing a Master of Professional Studies in Food Science and Technology, immediately after the completion of her Doctorate of Veterinary Medicine from the University of Panama. Her interest in food safety grew while in vet school from bromatology courses, as well as an internship in the Food Safety Authority of Panama on her senior year.
    [Show full text]
  • Fungal Keratitis: Immune Recognition, Neutrophil-Hyphae Interactions, And
    FUNGAL KERATITIS: IMMUNE RECOGNITION, NEUTROPHIL-HYPHAE INTERACTIONS, AND FUNGAL ANTI-OXIDATIVE DEFENSES by SIXTO MANUEL LEAL JR. Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Thesis Advisor: Eric Pearlman, Ph.D. Department of Pathology CASE WESTERN RESERVE UNIVERSITY August, 2012 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of ______________________________________________________ candidate for the Ph.D. degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. Dedication I dedicate this cumulative work to the invisible hand that has blessed my personal and academic life with incredible people, guidance, talent, courage, perseverance, and productivity. 3 Table of Contents List of Figures 7 List of Tables 9 Acknowledgements 10 List of Abbreviations 12 Abstract 14 Chapter 1. Introduction Fungi in their natural environment 16 Fungi and human disease 18 Fungi that cause human corneal infection 21 Fungal keratitis- Clinical characteristics and outcome 22 Anti-microbial Defenses at the Ocular Surface 23 Immune Recognition of Fungi 27 β2 integrins
    [Show full text]
  • Allergic and Toxic Reactions to Seafood
    Allergic and toxic reactions to seafood ASCIA EDUCATION RESOURCES (AER) PATIENT INFORMATION Seafood allergy occurs most commonly where seafood is an important part of the diet, such as Asia and Scandinavia. It is more common in adults than children. Seafood allergy usually remains a life long problem. Some conditions caused by toxins or parasites in seafood can resemble allergic reactions to seafood. Seafood allergy is not rare While estimates vary from country to country, approximately 1% of the population is estimated to suffer from seafood allergy, which is more common in teenage and adult life than very early childhood. An estimated 20% will grow out of their allergy with time. Symptoms of seafood allergy are usually obvious Many allergic reactions to seafood are mild and cause hives (urticaria), swelling (angioedema) and/or gut reactions (vomiting, diarrhoea). The most dangerous symptoms are breathing difficulties or collapse [a drop in blood pressure (shock)], either of which can be life threatening. This is known as anaphylaxis, which is the most severe type of allergic reaction. Occasionally, breathing difficulties may occur from inhaling fumes when seafood is being cooked, and in seafood processing factories. Children with a history of asthma may be more likely to have severe allergic reactions to seafood. There are many varieties of seafood The major groups of seafood that can trigger allergic reactions are: • VERTEBRATES Fish including salmon, cod, mackerel, sardines, herring, anchovies, tuna, trout, haddock, John Dory, eels, rays. • INVERTEBTRATES (SHELLFISH) Crustaceans including prawns/shrimps, lobster, crab, crayfish, yabbies. Molluscs including oysters, mussels, clams, octopus, squid, calamari, abalone, sea slugs.
    [Show full text]
  • Physiological Effects and Biotransformation of Paralytic
    PHYSIOLOGICAL EFFECTS AND BIOTRANSFORMATION OF PARALYTIC SHELLFISH TOXINS IN NEW ZEALAND MARINE BIVALVES ______________________________________________________________ A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy in Environmental Sciences in the University of Canterbury by Andrea M. Contreras 2010 Abstract Although there are no authenticated records of human illness due to PSP in New Zealand, nationwide phytoplankton and shellfish toxicity monitoring programmes have revealed that the incidence of PSP contamination and the occurrence of the toxic Alexandrium species are more common than previously realised (Mackenzie et al., 2004). A full understanding of the mechanism of uptake, accumulation and toxin dynamics of bivalves feeding on toxic algae is fundamental for improving future regulations in the shellfish toxicity monitoring program across the country. This thesis examines the effects of toxic dinoflagellates and PSP toxins on the physiology and behaviour of bivalve molluscs. This focus arose because these aspects have not been widely studied before in New Zealand. The basic hypothesis tested was that bivalve molluscs differ in their ability to metabolise PSP toxins produced by Alexandrium tamarense and are able to transform toxins and may have special mechanisms to avoid toxin uptake. To test this hypothesis, different physiological/behavioural experiments and quantification of PSP toxins in bivalves tissues were carried out on mussels ( Perna canaliculus ), clams ( Paphies donacina and Dosinia anus ), scallops ( Pecten novaezelandiae ) and oysters ( Ostrea chilensis ) from the South Island of New Zealand. Measurements of clearance rate were used to test the sensitivity of the bivalves to PSP toxins. Other studies that involved intoxication and detoxification periods were carried out on three species of bivalves ( P.
    [Show full text]
  • Cyanobacterial Toxins: Saxitoxins
    WHO/SDE/WSH/xxxxx English only Cyanobacterial toxins: Saxitoxins Background document for development of WHO Guidelines for Drinking-water Quality and Guidelines for Safe Recreational Water Environments Version for Public Review Nov 2019 © World Health Organization 20XX Preface Information on cyanobacterial toxins, including saxitoxins, is comprehensively reviewed in a recent volume to be published by the World Health Organization, “Toxic Cyanobacteria in Water” (TCiW; Chorus & Welker, in press). This covers chemical properties of the toxins and information on the cyanobacteria producing them as well as guidance on assessing the risks of their occurrence, monitoring and management. In contrast, this background document focuses on reviewing the toxicological information available for guideline value derivation and the considerations for deriving the guideline values for saxitoxin in water. Sections 1-3 and 8 are largely summaries of respective chapters in TCiW and references to original studies can be found therein. To be written by WHO Secretariat Acknowledgements To be written by WHO Secretariat 5 Abbreviations used in text ARfD Acute Reference Dose bw body weight C Volume of drinking water assumed to be consumed daily by an adult GTX Gonyautoxin i.p. intraperitoneal i.v. intravenous LOAEL Lowest Observed Adverse Effect Level neoSTX Neosaxitoxin NOAEL No Observed Adverse Effect Level P Proportion of exposure assumed to be due to drinking water PSP Paralytic Shellfish Poisoning PST paralytic shellfish toxin STX saxitoxin STXOL saxitoxinol
    [Show full text]
  • Os Nomes Galegos Dos Moluscos
    A Chave Os nomes galegos dos moluscos 2017 Citación recomendada / Recommended citation: A Chave (2017): Nomes galegos dos moluscos recomendados pola Chave. http://www.achave.gal/wp-content/uploads/achave_osnomesgalegosdos_moluscos.pdf 1 Notas introdutorias O que contén este documento Neste documento fornécense denominacións para as especies de moluscos galegos (e) ou europeos, e tamén para algunhas das especies exóticas máis coñecidas (xeralmente no ámbito divulgativo, por causa do seu interese científico ou económico, ou por seren moi comúns noutras áreas xeográficas). En total, achéganse nomes galegos para 534 especies de moluscos. A estrutura En primeiro lugar preséntase unha clasificación taxonómica que considera as clases, ordes, superfamilias e familias de moluscos. Aquí apúntase, de maneira xeral, os nomes dos moluscos que hai en cada familia. A seguir vén o corpo do documento, onde se indica, especie por especie, alén do nome científico, os nomes galegos e ingleses de cada molusco (nalgún caso, tamén, o nome xenérico para un grupo deles). Ao final inclúese unha listaxe de referencias bibliográficas que foron utilizadas para a elaboración do presente documento. Nalgunhas desas referencias recolléronse ou propuxéronse nomes galegos para os moluscos, quer xenéricos quer específicos. Outras referencias achegan nomes para os moluscos noutras linguas, que tamén foron tidos en conta. Alén diso, inclúense algunhas fontes básicas a respecto da metodoloxía e dos criterios terminolóxicos empregados. 2 Tratamento terminolóxico De modo moi resumido, traballouse nas seguintes liñas e cos seguintes criterios: En primeiro lugar, aprofundouse no acervo lingüístico galego. A respecto dos nomes dos moluscos, a lingua galega é riquísima e dispomos dunha chea de nomes, tanto específicos (que designan un único animal) como xenéricos (que designan varios animais parecidos).
    [Show full text]