Projective Determinacy (Set Theory/Descriptive Set Theory/Large Crdinals) DONALD A

Total Page:16

File Type:pdf, Size:1020Kb

Projective Determinacy (Set Theory/Descriptive Set Theory/Large Crdinals) DONALD A Proc. NatI. Acad. Sci. USA Vol. 85, pp. 6582-6586, September 1988 Mathematics Projective determinacy (set theory/descriptive set theory/large crdinals) DONALD A. MARTIN AND JOHN R. STEEL Department of Mathematics, University of California at Los Angeles, Los Angeles, CA 90024 Communicated by Robert M. Solovay, May 9, 1988 (receivedfor review October 22, 1987) ABSTRACT It is shown that projective determinacy fol- set theory. Instead success came by way of a different class lows from large cardinal axioms weaker than the assertion that of axioms: determinacy axioms. Let cl be the set of all natu- supercompact cardinals exist. ral numbers. Z1w is thus the set of all infinite sequences of natural numbers. With the natural topology, E'n is homeo- The ZFC (Zermelo-Fraenkel, with the axiom of choice) axi- morphic to the irrationals. Let A C Zw. We associate with A oms for set theory are quite successful: they provide a foun- a game of infinite length, as follows. Players I and II take dation for mathematics, they are apparently free from con- turns choosing natural numbers, thus producing an x E Z'o. I tradiction and paradox, and they seem intuitively to be true wins if and only if x E A. The notions of strategies and win- of the informal iterative concept of set. Nevertheless the ning strategies are defined in the obvious way. The game ZFC axioms have serious limitations. From the work of Go- associated with A is determined (or, briefly, A is deter- del, Cohen, and-after Cohen-many others, it is known mined) if one of the players has a winning strategy. Here are that a large number of fundamental questions of set theory some examples of determinacy axioms: projective determi- itself cannot be answered either positively or negatively on nacy (PD), every projective subset of Z'o is determined; the basis of the ZFC axioms. The most prominent of these DL(R), every subset of Z'o belonging to L(R), the collection questions is that of the continuum hypothesis (CH) of Can- of sets constructible from the reals, is determined. Even the tor, but others are in some ways more concrete: e.g., ques- full axiom of determinacy (AD), asserting that every subset tions of descriptive set theory, which concern not arbitrary of A'os is determined, was introduced by Mycielski and Stein- sets of real numbers as does the CH but only simply defin- haus (see chapter 7 of ref. 2) and has been extensively stud- able sets of real numbers. ied, despite the fact that it contradicts the axiom of choice. Since the standard axioms are not adequate, it seems rea- Unlike large cardinal axioms, determinacy axioms do not sonable to look for additional axioms. Indeed, a whole class seem to enjoy any direct a priori evidence. Their appeal lies of candidates for axiomhood has been found; the so-called in the fact that, beginning in 1962, it has been shown that large cardinal axioms. Though a great number and variety of determinacy axioms are sufficient to settle virtually every such axioms have been formulated, they are nevertheless ar- important question of descriptive set theory: PD yields an- ranged in a linear hierarchy of increasing strength. As the swers to all the classical questions about projective sets and name suggests, these axioms assert the existence of cardinal ADL(R) yields answers to all the questions about the impor- numbers with properties implying great size. Such axioms tant larger structure L(R). (See chapter 6 of ref. 2.) seem a fairly natural way ofextending the ZFC axioms. (One The success of determinacy axioms led to a revised pro- might regard the standard axioms of infinity and replace- gram for doing descriptive set theory based on large cardinal ment as the beginning of the hierarchy of large cardinal axi- axioms: Show that large cardinal axioms imply determinacy oms.) axioms. Martin (3) achieved the first step in this revised pro- Do the large cardinal axioms help with the otherwise unan- gram by proving that the determinacy of IV sets follows swerable questions of set theory? On the negative side, they from the existence of a measurable cardinal. Nine years lat- do not settle the continuum hypothesis. Nevertheless, they er, Martin (4) proved the determinacy of II2 sets from a very do imply certain special cases of the generalized continuum strong large cardinal axiom (much stronger than the exis- hypothesis, and they do provide answers to certain ques- tence of supercompact cardinals). In 1984, W. H. Woodin tions ofdescriptive set theory. (See sections 33 and 37 ofref. proved PD and indeed ADL(R) from an even stronger large 1.) For example, Solovay proved (see page 548 of ref. 1) that cardinal axiom, and the program seemed complete. all ZI sets are Lebesgue measurable, assuming the existence This was, however, not quite the case. Though the theo- of a measurable cardinal. (A set is Z1 if it is the continuous rem on IV determinacy was fully satisfactory, there were image of a Borel set; H1 if it is the complement of a I' set; serious questions about the hypotheses of the proofs of II2 Zn+1 if it is the continuous image of a Hn set; An if it is both determinacy and ADL(R). These hypotheses were not well- Zn and Hn1; projective if it is In for some n. For definitions understood; set theorists had until then found no use for any- pertaining to large cardinals, see ref. 1.) Other descriptive thing so strong. To some they seemed not sufficiently re- set-theoretic questions were answered using measurable car- moved from a large cardinal hypothesis proved inconsistent dinals. The hope arose in the late 1960s that large cardinal by K. Kunen. And even without doubting their consistency, axioms might suffice for solving all important problems of one might doubt their necessity. Perhaps substantially weak- descriptive set theory. It was known that measurable cardi- er axioms would suffice to prove HI determinacy and nals were insufficient for this, but Solovay introduced the ADL(R) larger supercompact cardinals and suggested that they might Godel's second incompleteness theorem implies that one suffice. cannot prove the consistency of a large cardinal axiom; one There was little additional immediate success in this pro- can, however, give evidence. Perhaps the strongest evidence gram ofusing large cardinal axioms to investigate descriptive comes from the inner model program. The goal of this pro- gram is to associate to each large cardinal axiom A a canoni- The publication costs ofthis article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" Abbreviations: ZFC, Zermelo-Fraenkel, with the axiom of choice; in accordance with 18 U.S.C. §1734 solely to indicate this fact. PD, projective determinacy; AD, axiom of determinacy. 6582 Downloaded by guest on September 27, 2021 Mathematics: Martin and Steel Proc. NatL Acad Sci USA 85 (1988) 6583 cal inner model MA that is in some sense minimal and whose faith that such a theorem could be proved and with exactly structure can be analyzed in detail. This is not a consistency the correct large cardinal hypothesis. The proof itself is to- proof for A, as one must assume A in order to show that MA tally unrelated to the work of Foreman et al. or of Woodin. satisfies A; still, the full and detailed description of such a (Of course, Woodin's theorem-and so indirectly the work model gives some evidence of consistency. (A hidden incon- of the other authors-is needed to get ADL(R) from our theo- sistency in A should emerge quickly in the theory of MA.) rem.) The technical ideas in our proof have their origin rath- Inner model theory is also useful for showing the necessity er in Mitchell's and later Steel's work on the inner model of large cardinal hypotheses. Usually one of the first theo- program. rems about MA is that in it the reals admit a well-ordering Recently we have carried out the inner model program far definable in a certain form, so that the determinacy of games enough to show that our results on PD are essentially opti- definable in a corresponding form TA fails in MA. Thus A mal. More recently, Woodin has by a different method does not imply rA determinacy. (With more work, one can proved for HIl determinacy and for ADL(R) what are essen- sometimes go on to show TA determinacy equivalent to the tially equivalences of the kind mentioned earlier. existence of a "sharp" of MA-i.e., of a real coding a blue- print for building MA. Such equivalences, which may exist Homogeneous Trees throughout the large cardinal and determinacy hierarchies, expose more fully the connection between the two.) A tree T on a set X is a subset of `0X (i.e., a set of finite The existence of a A3 well-ordering of the reals implies the sequences of elements of X) such that whenever s extends t failure of H1 determinacy; the existence of a Ai well-order- and s E T then t E T. When we study trees Ton products X ing does not. Thus to show the hypothesis of Martin's H2 x Y, we shall think of elements of T as pairs of finite se- proof optimal, one wanted, for each large cardinal axiom A quences (of the same length) rather than as finite sequences weaker than the hypothesis of the proof, an inner model MA of pairs. with a A3 well-ordering of its reals.
Recommended publications
  • Set Theory, by Thomas Jech, Academic Press, New York, 1978, Xii + 621 Pp., '$53.00
    BOOK REVIEWS 775 BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 3, Number 1, July 1980 © 1980 American Mathematical Society 0002-9904/80/0000-0 319/$01.75 Set theory, by Thomas Jech, Academic Press, New York, 1978, xii + 621 pp., '$53.00. "General set theory is pretty trivial stuff really" (Halmos; see [H, p. vi]). At least, with the hindsight afforded by Cantor, Zermelo, and others, it is pretty trivial to do the following. First, write down a list of axioms about sets and membership, enunciating some "obviously true" set-theoretic principles; the most popular Hst today is called ZFC (the Zermelo-Fraenkel axioms with the axiom of Choice). Next, explain how, from ZFC, one may derive all of conventional mathematics, including the general theory of transfinite cardi­ nals and ordinals. This "trivial" part of set theory is well covered in standard texts, such as [E] or [H]. Jech's book is an introduction to the "nontrivial" part. Now, nontrivial set theory may be roughly divided into two general areas. The first area, classical set theory, is a direct outgrowth of Cantor's work. Cantor set down the basic properties of cardinal numbers. In particular, he showed that if K is a cardinal number, then 2", or exp(/c), is a cardinal strictly larger than K (if A is a set of size K, 2* is the cardinality of the family of all subsets of A). Now starting with a cardinal K, we may form larger cardinals exp(ic), exp2(ic) = exp(exp(fc)), exp3(ic) = exp(exp2(ic)), and in fact this may be continued through the transfinite to form expa(»c) for every ordinal number a.
    [Show full text]
  • Mathematics 144 Set Theory Fall 2012 Version
    MATHEMATICS 144 SET THEORY FALL 2012 VERSION Table of Contents I. General considerations.……………………………………………………………………………………………………….1 1. Overview of the course…………………………………………………………………………………………………1 2. Historical background and motivation………………………………………………………….………………4 3. Selected problems………………………………………………………………………………………………………13 I I. Basic concepts. ………………………………………………………………………………………………………………….15 1. Topics from logic…………………………………………………………………………………………………………16 2. Notation and first steps………………………………………………………………………………………………26 3. Simple examples…………………………………………………………………………………………………………30 I I I. Constructions in set theory.………………………………………………………………………………..……….34 1. Boolean algebra operations.……………………………………………………………………………………….34 2. Ordered pairs and Cartesian products……………………………………………………………………… ….40 3. Larger constructions………………………………………………………………………………………………..….42 4. A convenient assumption………………………………………………………………………………………… ….45 I V. Relations and functions ……………………………………………………………………………………………….49 1.Binary relations………………………………………………………………………………………………………… ….49 2. Partial and linear orderings……………………………..………………………………………………… ………… 56 3. Functions…………………………………………………………………………………………………………… ….…….. 61 4. Composite and inverse function.…………………………………………………………………………… …….. 70 5. Constructions involving functions ………………………………………………………………………… ……… 77 6. Order types……………………………………………………………………………………………………… …………… 80 i V. Number systems and set theory …………………………………………………………………………………. 84 1. The Natural Numbers and Integers…………………………………………………………………………….83 2. Finite induction
    [Show full text]
  • Biography Paper – Georg Cantor
    Mike Garkie Math 4010 – History of Math UCD Denver 4/1/08 Biography Paper – Georg Cantor Few mathematicians are house-hold names; perhaps only Newton and Euclid would qualify. But there is a second tier of mathematicians, those whose names might not be familiar, but whose discoveries are part of everyday math. Examples here are Napier with logarithms, Cauchy with limits and Georg Cantor (1845 – 1918) with sets. In fact, those who superficially familier with Georg Cantor probably have two impressions of the man: First, as a consequence of thinking about sets, Cantor developed a theory of the actual infinite. And second, that Cantor was a troubled genius, crippled by Freudian conflict and mental illness. The first impression is fundamentally true. Cantor almost single-handedly overturned the Aristotle’s concept of the potential infinite by developing the concept of transfinite numbers. And, even though Bolzano and Frege made significant contributions, “Set theory … is the creation of one person, Georg Cantor.” [4] The second impression is mostly false. Cantor certainly did suffer from mental illness later in his life, but the other emotional baggage assigned to him is mostly due his early biographers, particularly the infamous E.T. Bell in Men Of Mathematics [7]. In the racially charged atmosphere of 1930’s Europe, the sensational story mathematician who turned the idea of infinity on its head and went crazy in the process, probably make for good reading. The drama of the controversy over Cantor’s ideas only added spice. 1 Fortunately, modern scholars have corrected the errors and biases in older biographies.
    [Show full text]
  • 641 1. P. Erdös and A. H. Stone, Some Remarks on Almost Periodic
    1946] DENSITY CHARACTERS 641 BIBLIOGRAPHY 1. P. Erdös and A. H. Stone, Some remarks on almost periodic transformations, Bull. Amer. Math. Soc. vol. 51 (1945) pp. 126-130. 2. W. H. Gottschalk, Powers of homeomorphisms with almost periodic propertiesf Bull. Amer. Math. Soc. vol. 50 (1944) pp. 222-227. UNIVERSITY OF PENNSYLVANIA AND UNIVERSITY OF VIRGINIA A REMARK ON DENSITY CHARACTERS EDWIN HEWITT1 Let X be an arbitrary topological space satisfying the TVseparation axiom [l, Chap. 1, §4, p. 58].2 We recall the following definition [3, p. 329]. DEFINITION 1. The least cardinal number of a dense subset of the space X is said to be the density character of X. It is denoted by the symbol %{X). We denote the cardinal number of a set A by | A |. Pospisil has pointed out [4] that if X is a Hausdorff space, then (1) |X| g 22SW. This inequality is easily established. Let D be a dense subset of the Hausdorff space X such that \D\ =S(-X'). For an arbitrary point pÇ^X and an arbitrary complete neighborhood system Vp at p, let Vp be the family of all sets UC\D, where U^VP. Thus to every point of X, a certain family of subsets of D is assigned. Since X is a Haus­ dorff space, VpT^Vq whenever p j*£q, and the correspondence assigning each point p to the family <DP is one-to-one. Since X is in one-to-one correspondence with a sub-hierarchy of the hierarchy of all families of subsets of D, the inequality (1) follows.
    [Show full text]
  • Topology and Descriptive Set Theory
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector TOPOLOGY AND ITS APPLICATIONS ELSEVIER Topology and its Applications 58 (1994) 195-222 Topology and descriptive set theory Alexander S. Kechris ’ Department of Mathematics, California Institute of Technology, Pasadena, CA 91125, USA Received 28 March 1994 Abstract This paper consists essentially of the text of a series of four lectures given by the author in the Summer Conference on General Topology and Applications, Amsterdam, August 1994. Instead of attempting to give a general survey of the interrelationships between the two subjects mentioned in the title, which would be an enormous and hopeless task, we chose to illustrate them in a specific context, that of the study of Bore1 actions of Polish groups and Bore1 equivalence relations. This is a rapidly growing area of research of much current interest, which has interesting connections not only with topology and set theory (which are emphasized here), but also to ergodic theory, group representations, operator algebras and logic (particularly model theory and recursion theory). There are four parts, corresponding roughly to each one of the lectures. The first contains a brief review of some fundamental facts from descriptive set theory. In the second we discuss Polish groups, and in the third the basic theory of their Bore1 actions. The last part concentrates on Bore1 equivalence relations. The exposition is essentially self-contained, but proofs, when included at all, are often given in the barest outline. Keywords: Polish spaces; Bore1 sets; Analytic sets; Polish groups; Bore1 actions; Bore1 equivalence relations 1.
    [Show full text]
  • Abstract Determinacy in the Low Levels of The
    ABSTRACT DETERMINACY IN THE LOW LEVELS OF THE PROJECTIVE HIERARCHY by Michael R. Cotton We give an expository introduction to determinacy for sets of reals. If we are to assume the Axiom of Choice, then not all sets of reals can be determined. So we instead establish determinacy for sets according to their levels in the usual hierarchies of complexity. At a certain point ZFC is no longer strong enough, and we must begin to assume large cardinals. The primary results of this paper are Martin's theorems that Borel sets are determined, homogeneously Suslin sets are determined, and if a measurable cardinal κ exists then the complements of analytic sets are κ-homogeneously Suslin. We provide the necessary preliminaries, prove Borel determinacy, introduce measurable cardinals and ultrapowers, and then prove analytic determinacy from the existence of a measurable cardinal. Finally, we give a very brief overview of some further results which provide higher levels of determinacy relative to larger cardinals. DETERMINACY IN THE LOW LEVELS OF THE PROJECTIVE HIERARCHY A Thesis Submitted to the Faculty of Miami University in partial fulfillment of the requirements for the degree of Master of Arts Department of Mathematics by Michael R. Cotton Miami University Oxford, Ohio 2012 Advisor: Dr. Paul Larson Reader: Dr. Dennis K. Burke Reader: Dr. Tetsuya Ishiu Contents Introduction 1 0.1 Some notation and conventions . 2 1 Reals, trees, and determinacy 3 1.1 The reals as !! .............................. 3 1.2 Determinacy . 5 1.3 Borel sets . 8 1.4 Projective sets . 10 1.5 Tree representations . 12 2 Borel determinacy 14 2.1 Games with a tree of legal positions .
    [Show full text]
  • Set-Theoretic Geology, the Ultimate Inner Model, and New Axioms
    Set-theoretic Geology, the Ultimate Inner Model, and New Axioms Justin William Henry Cavitt (860) 949-5686 [email protected] Advisor: W. Hugh Woodin Harvard University March 20, 2017 Submitted in partial fulfillment of the requirements for the degree of Bachelor of Arts in Mathematics and Philosophy Contents 1 Introduction 2 1.1 Author’s Note . .4 1.2 Acknowledgements . .4 2 The Independence Problem 5 2.1 Gödelian Independence and Consistency Strength . .5 2.2 Forcing and Natural Independence . .7 2.2.1 Basics of Forcing . .8 2.2.2 Forcing Facts . 11 2.2.3 The Space of All Forcing Extensions: The Generic Multiverse 15 2.3 Recap . 16 3 Approaches to New Axioms 17 3.1 Large Cardinals . 17 3.2 Inner Model Theory . 25 3.2.1 Basic Facts . 26 3.2.2 The Constructible Universe . 30 3.2.3 Other Inner Models . 35 3.2.4 Relative Constructibility . 38 3.3 Recap . 39 4 Ultimate L 40 4.1 The Axiom V = Ultimate L ..................... 41 4.2 Central Features of Ultimate L .................... 42 4.3 Further Philosophical Considerations . 47 4.4 Recap . 51 1 5 Set-theoretic Geology 52 5.1 Preliminaries . 52 5.2 The Downward Directed Grounds Hypothesis . 54 5.2.1 Bukovský’s Theorem . 54 5.2.2 The Main Argument . 61 5.3 Main Results . 65 5.4 Recap . 74 6 Conclusion 74 7 Appendix 75 7.1 Notation . 75 7.2 The ZFC Axioms . 76 7.3 The Ordinals . 77 7.4 The Universe of Sets . 77 7.5 Transitive Models and Absoluteness .
    [Show full text]
  • Arxiv:1901.02074V1 [Math.LO] 4 Jan 2019 a Xoskona Lrecrias Ih Eal Ogv Entv a Definitive a Give T to of Able Basis Be the Might Cardinals” [17]
    GENERIC LARGE CARDINALS AS AXIOMS MONROE ESKEW Abstract. We argue against Foreman’s proposal to settle the continuum hy- pothesis and other classical independent questions via the adoption of generic large cardinal axioms. Shortly after proving that the set of all real numbers has a strictly larger car- dinality than the set of integers, Cantor conjectured his Continuum Hypothesis (CH): that there is no set of a size strictly in between that of the integers and the real numbers [1]. A resolution of CH was the first problem on Hilbert’s famous list presented in 1900 [19]. G¨odel made a major advance by constructing a model of the Zermelo-Frankel (ZF) axioms for set theory in which the Axiom of Choice and CH both hold, starting from a model of ZF. This showed that the axiom system ZF, if consistent on its own, could not disprove Choice, and that ZF with Choice (ZFC), a system which suffices to formalize the methods of ordinary mathematics, could not disprove CH [16]. It remained unknown at the time whether models of ZFC could be found in which CH was false, but G¨odel began to suspect that this was possible, and hence that CH could not be settled on the basis of the normal methods of mathematics. G¨odel remained hopeful, however, that new mathemati- cal axioms known as “large cardinals” might be able to give a definitive answer on CH [17]. The independence of CH from ZFC was finally solved by Cohen’s invention of the method of forcing [2]. Cohen’s method showed that ZFC could not prove CH either, and in fact could not put any kind of bound on the possible number of cardinals between the sizes of the integers and the reals.
    [Show full text]
  • O&ONSTRUCTIBLE UNIVERSE and MEASURABLE CARDINALS 0
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Annals of Pure and Applied Logic 30 (1986) 293-320 293 North-Holland o&ONSTRUCTIBLE UNIVERSE AND MEASURABLE CARDINALS Claude SURESON Dkpartement de Mathkmatiques, Universitk de Caen, 1403.2 Caen, France Communicated by A. Nerode Received 23 September 1984 In analogy with K. Godel’s model L, C. Chang [l] formulated the wr- constructible universe C”‘, using the infinitary language L,,,, instead of the language of Set Theory L,,. The cumulative hierarchy of sets obtained in this way has many similarities with the hierarchy of the constructible universe (except for a major point: the axiom of choice [l], [9]). C”’ can also be characterized as the least inner model closed under arbitrary countable sequences. This paper is inspired by results of R. Jensen and J. Silver concerning the existence of O# and the covering property for L. We consider here a stronger notion of indiscernibles for the model C”’ and we say that C”’ satisfies the ‘covering property’ if any set of ordinals X in the universe can be covered by a set in C”’ of cardinality ]X]‘O. The existence of ‘indiscernibles’ for C”’ is also linked to large cardinal assumptions, and our main result (in ZFC) can be summarized as shown in Diagram 1: Diagram 1. The first part is devoted to the study of indiscernibles for PI. We prove the implications (1) and (2). In the second section, we deal with the covering property and show (3).
    [Show full text]
  • Are Large Cardinal Axioms Restrictive?
    Are Large Cardinal Axioms Restrictive? Neil Barton∗ 24 June 2020y Abstract The independence phenomenon in set theory, while perva- sive, can be partially addressed through the use of large cardinal axioms. A commonly assumed idea is that large cardinal axioms are species of maximality principles. In this paper, I argue that whether or not large cardinal axioms count as maximality prin- ciples depends on prior commitments concerning the richness of the subset forming operation. In particular I argue that there is a conception of maximality through absoluteness, on which large cardinal axioms are restrictive. I argue, however, that large cardi- nals are still important axioms of set theory and can play many of their usual foundational roles. Introduction Large cardinal axioms are widely viewed as some of the best candi- dates for new axioms of set theory. They are (apparently) linearly ordered by consistency strength, have substantial mathematical con- sequences for questions independent from ZFC (such as consistency statements and Projective Determinacy1), and appear natural to the ∗Fachbereich Philosophie, University of Konstanz. E-mail: neil.barton@uni- konstanz.de. yI would like to thank David Aspero,´ David Fernandez-Bret´ on,´ Monroe Eskew, Sy-David Friedman, Victoria Gitman, Luca Incurvati, Michael Potter, Chris Scam- bler, Giorgio Venturi, Matteo Viale, Kameryn Williams and audiences in Cambridge, New York, Konstanz, and Sao˜ Paulo for helpful discussion. Two anonymous ref- erees also provided helpful comments, and I am grateful for their input. I am also very grateful for the generous support of the FWF (Austrian Science Fund) through Project P 28420 (The Hyperuniverse Programme) and the VolkswagenStiftung through the project Forcing: Conceptual Change in the Foundations of Mathematics.
    [Show full text]
  • The Axiom of Choice and Its Implications
    THE AXIOM OF CHOICE AND ITS IMPLICATIONS KEVIN BARNUM Abstract. In this paper we will look at the Axiom of Choice and some of the various implications it has. These implications include a number of equivalent statements, and also some less accepted ideas. The proofs discussed will give us an idea of why the Axiom of Choice is so powerful, but also so controversial. Contents 1. Introduction 1 2. The Axiom of Choice and Its Equivalents 1 2.1. The Axiom of Choice and its Well-known Equivalents 1 2.2. Some Other Less Well-known Equivalents of the Axiom of Choice 3 3. Applications of the Axiom of Choice 5 3.1. Equivalence Between The Axiom of Choice and the Claim that Every Vector Space has a Basis 5 3.2. Some More Applications of the Axiom of Choice 6 4. Controversial Results 10 Acknowledgments 11 References 11 1. Introduction The Axiom of Choice states that for any family of nonempty disjoint sets, there exists a set that consists of exactly one element from each element of the family. It seems strange at first that such an innocuous sounding idea can be so powerful and controversial, but it certainly is both. To understand why, we will start by looking at some statements that are equivalent to the axiom of choice. Many of these equivalences are very useful, and we devote much time to one, namely, that every vector space has a basis. We go on from there to see a few more applications of the Axiom of Choice and its equivalents, and finish by looking at some of the reasons why the Axiom of Choice is so controversial.
    [Show full text]
  • Cardinal Invariants Concerning Functions Whose Sum Is Almost Continuous Krzysztof Ciesielski West Virginia University, [email protected]
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by The Research Repository @ WVU (West Virginia University) Faculty Scholarship 1995 Cardinal Invariants Concerning Functions Whose Sum Is Almost Continuous Krzysztof Ciesielski West Virginia University, [email protected] Follow this and additional works at: https://researchrepository.wvu.edu/faculty_publications Part of the Mathematics Commons Digital Commons Citation Ciesielski, Krzysztof, "Cardinal Invariants Concerning Functions Whose Sum Is Almost Continuous" (1995). Faculty Scholarship. 822. https://researchrepository.wvu.edu/faculty_publications/822 This Article is brought to you for free and open access by The Research Repository @ WVU. It has been accepted for inclusion in Faculty Scholarship by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Cardinal invariants concerning functions whose sum is almost continuous. Krzysztof Ciesielski1, Department of Mathematics, West Virginia University, Mor- gantown, WV 26506-6310 ([email protected]) Arnold W. Miller1, York University, Department of Mathematics, North York, Ontario M3J 1P3, Canada, Permanent address: University of Wisconsin-Madison, Department of Mathematics, Van Vleck Hall, 480 Lincoln Drive, Madison, Wis- consin 53706-1388, USA ([email protected]) Abstract Let A stand for the class of all almost continuous functions from R to R and let A(A) be the smallest cardinality of a family F ⊆ RR for which there is no g: R → R with the property that f + g ∈ A for all f ∈ F . We define cardinal number A(D) for the class D of all real functions with the Darboux property similarly.
    [Show full text]