Table of Contents
Total Page:16
File Type:pdf, Size:1020Kb
Contents Part I. Introduction Prologue ................................................... 1 1. Mathematical Principles of Modern Natural Philosophy . 11 1.1 BasicPrinciples ................................. ....... 12 1.2 The Infinitesimal Strategy and Differential Equations . ..... 14 1.3 The Optimality Principle.......................... ...... 14 1.4 The Basic Notion of Action in Physics and the Idea of Quantization....................................... .... 15 1.5 The Method of the Green’s Function................... ... 17 1.6 Harmonic Analysis and the Fourier Method . ... 21 1.7 The Method of Averaging and the Theory of Distributions . .. 26 1.8 The SymbolicMethod ............................... ... 28 1.9 Gauge Theory – Local Symmetry and the Description of Interactions by Gauge Fields.......................... ... 34 1.10 The Challenge of Dark Matter ....................... .... 46 2. The Basic Strategy of Extracting Finite Information from Infinities – Ariadne’s Thread in Renormalization Theory . 47 2.1 Renormalization Theory in a Nutshell................ ..... 48 2.1.1 Effective Frequency and Running Coupling Constant of an Anharmonic Oscillator ....................... 48 2.1.2 The Zeta Function and Riemann’s Idea of Analytic Continuation .................................... 54 2.1.3 Meromorphic Functions and Mittag-Leffler’s Idea ofSubtractions................................... 56 2.1.4 The Square of the Dirac Delta Function . 58 2.2 Regularization of Divergent Integrals in Baby Renormalization Theory.............................. ... 60 2.2.1 Momentum Cut-off and the Method of Power-Counting 60 2.2.2 The Choice of the Normalization Momentum . 63 2.2.3 The Method of Differentiating Parameter Integrals . 63 2.2.4 The Method of Taylor Subtraction.................. 64 2.2.5 Overlapping Divergences ........................ .. 65 XXVI Contents 2.2.6 The Role of Counterterms ......................... 67 2.2.7 Euler’s Gamma Function .......................... 67 2.2.8 Integration Tricks ............................. ... 69 2.2.9 Dimensional Regularization via Analytic Continuation 73 2.2.10 Pauli–Villars Regularization .................. ..... 76 2.2.11 Analytic Regularization ....................... .... 77 2.2.12 Application to Algebraic Feynman Integrals in MinkowskiSpace................................. 80 2.2.13 Distribution-Valued Meromorphic Functions . ... 81 2.2.14 Application to Newton’s Equation of Motion . 87 2.2.15 Hints for Further Reading....................... ... 92 2.3 Further Regularization Methods in Mathematics. ..... 93 2.3.1 Euler’s Philosophy............................. ... 93 2.3.2 Adiabatic Regularization of Divergent Series . ... 94 2.3.3 Adiabatic Regularization of Oscillating Integrals. ..... 95 2.3.4 Regularization by Averaging ..................... .. 96 2.3.5 Borel Regularization........................... ... 98 2.3.6 Hadamard’s Finite Part of Divergent Integrals . 100 2.3.7 Infinite-Dimensional Gaussian Integrals and the Zeta Function Regularization........................... 101 2.4 Trouble in Mathematics ............................ ..... 102 2.4.1 Interchanging Limits........................... ... 102 2.4.2 The Ambiguity of Regularization Methods . 104 2.4.3 Pseudo-Convergence ............................ .. 104 2.4.4 Ill-PosedProblems ............................. .. 105 2.5 Mathemagics ..................................... ..... 109 3. The Power of Combinatorics .............................. 115 3.1 Algebras ........................................ ...... 115 3.2 The Algebra of Multilinear Functionals . ...... 117 3.3 Fusion, Splitting, and Hopf Algebras . ...... 122 3.3.1 The Bialgebra of Linear Differential Operators .. .. 123 3.3.2 The Definition of Hopf Algebras.................... 128 3.4 Power Series Expansion and Hopf Algebras ............. ... 131 3.4.1 The Importance of Cancellations .................. 131 3.4.2 The Kepler Equation and the Lagrange InversionFormula ................................ 132 3.4.3 The Composition Formula for Power Series . 134 3.4.4 The Fa`adi Bruno Hopf Algebra for the Formal Diffeomorphism Group of the Complex Plane . 136 3.4.5 The Generalized Zimmermann Forest Formula . 138 3.4.6 The Logarithmic Function and Schur Polynomials . 140 3.4.7 Correlation Functions in Quantum Field Theory . 141 3.4.8 Random Variables, Moments, and Cumulants . 143 3.5 Symmetry and Hopf Algebras......................... ... 146 Contents XXVII 3.5.1 The Strategy of Coordinatization in Mathematics and Physics ......................................... 146 3.5.2 The Coordinate Hopf Algebra of a Finite Group . 148 3.5.3 The Coordinate Hopf Algebra of an Operator Group.. 150 3.5.4 The Tannaka–Krein Duality for Compact Lie Groups . 152 3.6 Regularization and Rota–Baxter Algebras ............ ..... 154 3.6.1 Regularization of the Laurent Series .............. .. 157 3.6.2 Projection Operators ........................... .. 158 3.6.3 The q-Integral ................................... 158 3.6.4 The Volterra–Spitzer Exponential Formula . 160 3.6.5 The Importance of the Exponential Function in Mathematics and Physics.......................... 161 3.7 Partially Ordered Sets and Combinatorics ............ ..... 162 3.7.1 Incidence Algebras and the Zeta Function . 162 3.7.2 The M¨obius Function as an Inverse Function . 163 3.7.3 The Inclusion–Exclusion Principle in Combinatorics .. 164 3.7.4 Applications to Number Theory.................... 166 3.8 Hints for Further Reading .......................... ..... 167 4. The Strategy of Equivalence Classes in Mathematics ...... 175 4.1 Equivalence Classes in Algebra ..................... ...... 178 4.1.1 The Gaussian Quotient Ring and the Quadratic Reciprocity Law in Number Theory................. 178 4.1.2 Application of the Fermat–Euler Theorem in Coding Theory.......................................... 182 4.1.3 Quotient Rings, Quotient Groups, and Quotient Fields 184 4.1.4 Linear Quotient Spaces .......................... 188 4.1.5 Ideals and Quotient Algebras ..................... 190 4.2 Superfunctions and the Heaviside Calculus in Electrical Engineering........................................ .... 191 4.3 Equivalence Classes in Geometry .................... ..... 194 4.3.1 The Basic Idea of Geometry Epitomized by Klein’s ErlangenProgram................................ 194 4.3.2 Symmetry Spaces, Orbit Spaces, and Homogeneous Spaces .......................................... 194 4.3.3 The Space of Quantum States...................... 199 4.3.4 Real ProjectiveSpaces .......................... .. 200 4.3.5 Complex Projective Spaces ....................... 203 4.3.6 The Shape of the Universe......................... 204 4.4 Equivalence Classes in Topology.................... ...... 205 4.4.1 Topological Quotient Spaces ..................... .. 205 4.4.2 Physical Fields, Observers, Bundles, and Cocycles . .. 208 4.4.3 Generalized Physical Fields and Sheaves . .. 216 4.4.4 Deformations, Mapping Classes, and Topological Charges......................................... 219 XXVIII Contents 4.4.5 Poincar´e’s Fundamental Group . .. 223 4.4.6 Loop Spaces and Higher Homotopy Groups .......... 225 4.4.7 Homology, Cohomology, and Electrodynamics . 227 4.4.8 Bott’s Periodicity Theorem ...................... .. 227 4.4.9 K-Theory ....................................... 228 4.4.10 Application to Fredholm Operators ............... .. 233 4.4.11 Hints for Further Reading ....................... .. 235 4.5 The Strategy of Partial Ordering .................... ..... 237 4.5.1 Feynman Diagrams............................... 238 4.5.2 The Abstract Entropy Principle in Thermodynamics . 239 4.5.3 Convergence of Generalized Sequences ............. 240 4.5.4 Inductive and Projective Topologies .............. .. 241 4.5.5 Inductive and Projective Limits . .. 243 4.5.6 Classes, Sets, and Non-Sets ...................... .. 245 4.5.7 The Fixed-Point Theorem of Bourbaki–Kneser ....... 247 4.5.8 Zorn’sLemma ................................... 248 4.6 Leibniz’s Infinitesimals and Non-Standard Analysis . ...... 248 4.6.1 Filters and Ultrafilters ......................... ... 250 4.6.2 The Full-Rigged Real Line........................ 251 Part II. Basic Ideas in Classical Mechanics 5. Geometrical Optics ....................................... 263 5.1 Ariadne’s Thread in Geometrical Optics .............. ..... 264 5.2 Fermat’s Principle of Least Time .................... ..... 268 5.3 Huygens’ Principle on Wave Fronts ................... .... 270 5.4 Carath´eodory’s Royal Road to Geometrical Optics . ..... 271 5.5 The Duality between Light Rays and Wave Fronts . 274 5.5.1 From Wave Fronts to Light Rays ................... 275 5.5.2 From Light Rays to Wave Fronts ................... 276 5.6 The Jacobi Approach to Focal Points .................. ... 276 5.7 Lie’s ContactGeometry ............................ ..... 279 5.7.1 BasicIdeas .................................... .. 279 5.7.2 Contact Manifolds and Contact Transformations . 283 5.7.3 Applications to Geometrical Optics . .. 284 5.7.4 Equilibrium Thermodynamics and Legendre Submanifolds .................................... 285 5.8 Light Rays and Non-Euclidean Geometry............... ... 289 5.8.1 Linear Symplectic Spaces........................ .. 291 5.8.2 The K¨ahler Form of a Complex Hilbert Space........ 295 5.8.3 The Refraction Index and Geodesics ................ 297 5.8.4 The Trick of Gauge Fixing......................... 299 5.8.5 GeodesicFlow .................................. 299 5.8.6 Hamilton’s Duality Trick and