Diffusion and Reaction

Total Page:16

File Type:pdf, Size:1020Kb

Diffusion and Reaction Fogler_ECRE_CDROM.book Page 813 Wednesday, September 17, 2008 5:01 PM Diffusion 12 and Reaction Research is to see what everybody else sees, and to think what nobody else has thought. Albert Szent-Gyorgyi Overview This chapter presents the principles of diffusion and reaction. While the focus is primarily on catalyst pellets, examples illustrating these principles are also drawn from biomaterials engineering and microelectronics. In our discussion of catalytic reactions in Chapter 10, we assumed each point on the interior of catalyst surface was accessible to the same concen- tration. However, we know there are many, many situations where this equal The concentration in accessibility will not be true. For example, when the reactants must diffuse the internal surface inside the catalyst pellet in order to react, we know the concentration at the of the pellet is less pore mouth must be higher than that inside the pore. Consequently, the entire than that of the catalytic surface is not accessible to the same concentration; therefore, the external surface rate of reaction throughout the pellet will vary. To account for variations in reaction rate throughout the pellet, we introduce a parameter known as the effectiveness factor, which is the ratio of the overall reaction rate in the pel- let to the reaction rate at the external surface of the pellet. In this chapter we will develop models for diffusion and reaction in two-phase systems, which include catalyst pellets, tissue generation, and chemical vapor deposition (CVD). The types of reactors discussed in this chapter will include packed beds, bubbling fluidized beds, slurry reactors, trickle bed reactors, and CVD boat reactors. After studying this chapter, you will be able to describe diffu- sion and reaction in two- and three-phase systems, determine when internal diffusion limits the overall rate of reaction, describe how to go about elimi- nating this limitation, and develop models for systems in which both diffu- sion and reaction play a role (e.g., tissue growth, CVD). 813 Fogler_ECRE_CDROM.book Page 814 Wednesday, September 17, 2008 5:01 PM 814 Diffusion and Reaction Chap. 12 In a heterogeneous reaction sequence, mass transfer of reactants first takes place from the bulk fluid to the external surface of the pellet. The reactants then diffuse from the external surface into and through the pores within the pellet, with reaction taking place only on the catalytic surface of the pores. A schematic representation of this two-step diffusion process is shown in Figures 10-6 and 12-1. Figure 12-1 Mass transfer and reaction steps for a catalyst pellet. 12.1 Diffusion and Reaction in Spherical Catalyst Pellets In this section we will develop the internal effectiveness factor for spherical catalyst pellets. The development of models that treat individual pores and pel- lets of different shapes is undertaken in the problems at the end of this chapter. We will first look at the internal mass transfer resistance to either the products or reactants that occurs between the external pellet surface and the interior of the pellet. To illustrate the salient principles of this model, we consider the irreversible isomerization AB ⎯⎯→ that occurs on the surface of the pore walls within the spherical pellet of radius R. 12.1.1 Effective Diffusivity The pores in the pellet are not straight and cylindrical; rather, they are a series of tortuous, interconnecting paths of pore bodies and pore throats with varying cross-sectional areas. It would not be fruitful to describe diffusion within each and every one of the tortuous pathways individually; consequently, we shall define an effective diffusion coefficient so as to describe the average diffusion taking place at any position r in the pellet. We shall consider only radial vari- ations in the concentration; the radial flux WAr will be based on the total area (voids and solid) normal to diffusion transport (i.e., 4␲r2) rather than void area alone. This basis for WAr is made possible by proper definition of the effective diffusivity De. The effective diffusivity accounts for the fact that: 1. Not all of the area normal to the direction of the flux is available (i.e., the area occupied by solids) for the molecules to diffuse. Fogler_ECRE_CDROM.book Page 815 Wednesday, September 17, 2008 5:01 PM Sec. 12.1 Diffusion and Reaction in Spherical Catalyst Pellets 815 2. The paths are tortuous. 3. The pores are of varying cross-sectional areas. An equation that relates De to either the bulk or the Knudsen diffusivity is D φ σ The effective D = --------------------AB p -c (12-1) diffusivity e τ˜ where Actual distance a molecule travels between two points t˜ ϭ tortuosity1 = ---------------------------------------------------------------------------------------------------------------------------------- Shortest distance between those two points Volume of void space φ ϭ pellet porosity = ----------------------------------------------------------------------------- p Total volume ()voids and solids ␴ ϭ c Constriction factor ␴ The constriction factor, c, accounts for the variation in the cross-sectional area that is normal to diffusion.2 It is a function of the ratio of maximum to minimum pore areas (Figure 12-2(a)). When the two areas, A1 ␤ ϭ and A2, are equal, the constriction factor is unity, and when 10, the con- striction factor is approximately 0.5. A B A2 A1 L L area A1 (a) (b) Figure 12-2 (a) Pore constriction; (b) pore tortuosity. Example 12–1 Finding the Tortuosity Calculate the tortuosity for the hypothetical pore of length, L (Figure 12-2(b)), from the definition of t˜ . 1 Some investigators lump constriction and tortuosity into one factor, called the tortuos- ⁄σ ity factor, and set it equal to t˜ c . C. N. Satterfield, Mass Transfer in Heterogeneous Catalysis (Cambridge, Mass.: MIT Press, 1970), pp. 33–47, has an excellent discus- sion on this point. 2 See E. E. Petersen, Chemical Reaction Analysis (Upper Saddle River, N.J.: Prentice Hall, 1965), Chap. 3; C. N. Satterfield and T. K. Sherwood, The Role of Diffusion in Catalysis (Reading, Mass.: Addison-Wesley, 1963), Chap. 1. Fogler_ECRE_CDROM.book Page 816 Wednesday, September 17, 2008 5:01 PM 816 Diffusion and Reaction Chap. 12 Solution Actual distance molecule travels from A to B t˜ = ------------------------------------------------------------------------------------------------------------ Shortest distance between A and B The shortest distance between points A and B is 2 L . The actual distance the mol- ecule travels from A to B is 2L. 2L t˜ ===---------- 2 1.414 2 L Although this value is reasonable for t˜ , values for t˜ ϭ 6 to 10 are not unknown. Typical values of the constriction factor, the tortuosity, and the pellet porosity are, ␴ ϭ φ respectively, c 0.8, t˜ 3.0, and p 0.40. 12.1.2 Derivation of the Differential Equation Describing Diffusion and Reaction We now perform a steady-state mole balance on species A as it enters, leaves, and reacts in a spherical shell of inner radius r and outer radius r r of the pellet (Figure 12-3). Note that even though A is diffusing inward toward the center of the pellet, the convention of our shell balance dictates that the flux be in the direction of increasing r. We choose the flux of A to be positive in the First we will derive direction of increasing r (i.e., the outward direction). Because A is actually the concentration profile of reactant diffusing inward, the flux of A will have some negative value, such as A in the pellet. Ϫ10 mol/m2иs, indicating that the flux is actually in the direction of decreas- ing r. R CAs r + Δr r Figure 12-3 Shell balance on a catalyst pellet. We now proceed to perform our shell balance on A. The area that appears in the balance equation is the total area (voids and solids) normal to the direc- tion of the molar flux: и ␲ 2 Η Rate of A in at r WAr Area WAr 4 r r (12-2) ϭ и ϭ ␲ 2 Η Rate of A out at (r r) WAr Area WAr 4 r rϩ⌬r (12-3) Fogler_ECRE_CDROM.book Page 817 Wednesday, September 17, 2008 5:01 PM Sec. 12.1 Diffusion and Reaction in Spherical Catalyst Pellets 817 Rate of generation Rate of reaction Mass catalyst of A within a ϭ -------------------------------------- - × -------------------------------- × Volume of shell Mass of catalyst Volume shell of thickness Δr ′ 2 ϭ rA × ρ × π Δ c 4 rm r (12-4) Mole balance for where rm is some mean radius between r and r r that is used to approxi- diffusion and mate the volume ⌬V of the shell and ρ is the density of the pellet. reaction inside the c catalyst pellet The mole balance over the shell thickness ⌬r is (In at r) Ϫ (Out at r+Δr) ϩ (Generation within Δr) ϭ 0 Mole balance (12-5) ()× π 2 Ϫ () × π 2 ϩ ()′ ρ ×Δπ 2 ϭ WAr 4 r r W A r 4 r rϩΔr r A c 4 rm r 0 After dividing by (Ϫ4␲⌬r) and taking the limit as ⌬r → 0, we obtain the following differential equation: dW()r2 ---------------------Ar –r′ ρ r2 = 0 (12-6) dr A c Because 1 mol of A reacts under conditions of constant temperature and pressure to form 1 mol of B, we have Equal Molar Counter Diffusion (EMCD) at constant total concentration (Section 11.2.1A), and, therefore, dyA dCA The flux equation W ==–cD -------- –D --------- - (12-7) Ar e dr e dr 3 where CA is the number of moles of A per dm of open pore volume (i.e., vol- ume of gas) as opposed to (mol/vol of gas and solids). In systems where we do not have EMCD in catalyst pores, it may still be possible to use Equation (12-7) if the reactant gases are present in dilute concentrations.
Recommended publications
  • Chemistry Grade Level 10 Units 1-15
    COPPELL ISD SUBJECT YEAR AT A GLANCE ​ ​ ​ ​​ ​ ​​ ​ ​ ​ ​ ​ ​ GRADE HEMISTRY UNITS C LEVEL 1-15 10 Program Transfer Goals ​ ​ ​ ​ ● Ask questions, recognize and define problems, and propose solutions. ​ ​​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ● Safely and ethically collect, analyze, and evaluate appropriate data. ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ● Utilize, create, and analyze models to understand the world. ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ● Make valid claims and informed decisions based on scientific evidence. ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ● Effectively communicate scientific reasoning to a target audience. ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ PACING 1st 9 Weeks 2nd 9 Weeks 3rd 9 Weeks 4th 9 Weeks ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit Unit Unit Unit Unit Unit Unit Unit Unit ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 7 8 9 10 11 12 13 14 15 1.5 wks 2 wks 1.5 wks 2 wks 3 wks 5.5 wks ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 1.5 2 2.5 2 wks 2 2 2 wks 1.5 1.5 ​ ​ ​ ​ wks wks wks wks wks wks wks Assurances for a Guaranteed and Viable Curriculum ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Adherence to this scope and sequence affords every member of the learning community clarity on the knowledge and skills ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ on which each learner should demonstrate proficiency. In order to deliver a guaranteed and viable curriculum, our team ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ commits to and ensures the following understandings: ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Shared Accountability: Responding
    [Show full text]
  • The Practice of Chemistry Education (Paper)
    CHEMISTRY EDUCATION: THE PRACTICE OF CHEMISTRY EDUCATION RESEARCH AND PRACTICE (PAPER) 2004, Vol. 5, No. 1, pp. 69-87 Concept teaching and learning/ History and philosophy of science (HPS) Juan QUÍLEZ IES José Ballester, Departamento de Física y Química, Valencia (Spain) A HISTORICAL APPROACH TO THE DEVELOPMENT OF CHEMICAL EQUILIBRIUM THROUGH THE EVOLUTION OF THE AFFINITY CONCEPT: SOME EDUCATIONAL SUGGESTIONS Received 20 September 2003; revised 11 February 2004; in final form/accepted 20 February 2004 ABSTRACT: Three basic ideas should be considered when teaching and learning chemical equilibrium: incomplete reaction, reversibility and dynamics. In this study, we concentrate on how these three ideas have eventually defined the chemical equilibrium concept. To this end, we analyse the contexts of scientific inquiry that have allowed the growth of chemical equilibrium from the first ideas of chemical affinity. At the beginning of the 18th century, chemists began the construction of different affinity tables, based on the concept of elective affinities. Berthollet reworked this idea, considering that the amount of the substances involved in a reaction was a key factor accounting for the chemical forces. Guldberg and Waage attempted to measure those forces, formulating the first affinity mathematical equations. Finally, the first ideas providing a molecular interpretation of the macroscopic properties of equilibrium reactions were presented. The historical approach of the first key ideas may serve as a basis for an appropriate sequencing of
    [Show full text]
  • Chapter 12 Lecture Notes
    Chemical Kinetics “The study of speeds of reactions and the nanoscale pathways or rearrangements by which atoms and molecules are transformed to products” Chapter 13: Chemical Kinetics: Rates of Reactions © 2008 Brooks/Cole 1 © 2008 Brooks/Cole 2 Reaction Rate Reaction Rate Combustion of Fe(s) powder: © 2008 Brooks/Cole 3 © 2008 Brooks/Cole 4 Reaction Rate Reaction Rate + Change in [reactant] or [product] per unit time. Average rate of the Cv reaction can be calculated: Time, t [Cv+] Average rate + Cresol violet (Cv ; a dye) decomposes in NaOH(aq): (s) (mol / L) (mol L-1 s-1) 0.0 5.000 x 10-5 13.2 x 10-7 10.0 3.680 x 10-5 9.70 x 10-7 20.0 2.710 x 10-5 7.20 x 10-7 30.0 1.990 x 10-5 5.30 x 10-7 40.0 1.460 x 10-5 3.82 x 10-7 + - 50.0 1.078 x 10-5 Cv (aq) + OH (aq) → CvOH(aq) 2.85 x 10-7 60.0 0.793 x 10-5 -7 + + -5 1.82 x 10 change in concentration of Cv Δ [Cv ] 80.0 0.429 x 10 rate = = 0.99 x 10-7 elapsed time Δt 100.0 0.232 x 10-5 © 2008 Brooks/Cole 5 © 2008 Brooks/Cole 6 1 Reaction Rates and Stoichiometry Reaction Rates and Stoichiometry Cv+(aq) + OH-(aq) → CvOH(aq) For any general reaction: a A + b B c C + d D Stoichiometry: The overall rate of reaction is: Loss of 1 Cv+ → Gain of 1 CvOH Rate of Cv+ loss = Rate of CvOH gain 1 Δ[A] 1 Δ[B] 1 Δ[C] 1 Δ[D] Rate = − = − = + = + Another example: a Δt b Δt c Δt d Δt 2 N2O5(g) 4 NO2(g) + O2(g) Reactants decrease with time.
    [Show full text]
  • Rate Constants and Kinetic Isotope Effects for Methoxy Radical Reacting with NO2 and O2 Jiajue Chai, Hongyi Hu, Theodore
    Rate Constants and Kinetic Isotope Effects for Methoxy Radical Reacting with NO2 and O2 Jiajue Chai, Hongyi Hu, Theodore. S. Dibble* Department of Chemistry, College of Environmental Science and Forestry, State University of New York, Syracuse, New York 13210, United States Geoffrey. S. Tyndall,* and John. J. Orlando Atmospheric Chemistry Division, National Center for Atmospheric Research, Boulder, Colorado 80307, United States Abstract Relative rate studies were carried out to determine the temperature dependent rate constant ratio k1/k2a: CH3O• + O2 → HCHO + HO2• (R1) CH3O• + NO2 (+M) → CH3ONO2 (+ M) (R2a) over the temperature range 250-333 K in an environmental chamber at 700 Torr using FTIR detection. Absolute rate constants k2 were determined using laser flash photolysis/laser induced fluorescence under the same conditions. The analogous experiments were carried out for the reactions of perdeuterated methoxy radical (CD3O•). Absolute rate constants k2 were in excellent agreement with the recommendations of the JPL Data Evaluation panel. The combined data (i.e., 3 -1 k1/k2 and k2) allow determination of k1 as cm s , corresponding to 1.4 × 10-15 cm3 s-1 at 298 K. The rate constant at 298 K is in excellent agreement with previous work, but the observed temperature dependence is less than previously reported. The deuterium isotope effect, kH/kD, can be expressed in Arrhenius form as The deuterium isotope effect does not appear to be greatly influenced by tunneling, which is consistent with previous theoretical work by Hu and Dibble (Hu, H.; Dibble, T. S., J. Phys. Chem. A 2013, 117, 14230–14242). Keywords: methylnitrite, formaldehyde, methylnitrate, alkoxy radicals, kinetic isotope effect * [email protected], [email protected] 1 I.
    [Show full text]
  • Andrea Deoudes, Kinetics: a Clock Reaction
    A Kinetics Experiment The Rate of a Chemical Reaction: A Clock Reaction Andrea Deoudes February 2, 2010 Introduction: The rates of chemical reactions and the ability to control those rates are crucial aspects of life. Chemical kinetics is the study of the rates at which chemical reactions occur, the factors that affect the speed of reactions, and the mechanisms by which reactions proceed. The reaction rate depends on the reactants, the concentrations of the reactants, the temperature at which the reaction takes place, and any catalysts or inhibitors that affect the reaction. If a chemical reaction has a fast rate, a large portion of the molecules react to form products in a given time period. If a chemical reaction has a slow rate, a small portion of molecules react to form products in a given time period. This experiment studied the kinetics of a reaction between an iodide ion (I-1) and a -2 -1 -2 -2 peroxydisulfate ion (S2O8 ) in the first reaction: 2I + S2O8 I2 + 2SO4 . This is a relatively slow reaction. The reaction rate is dependent on the concentrations of the reactants, following -1 m -2 n the rate law: Rate = k[I ] [S2O8 ] . In order to study the kinetics of this reaction, or any reaction, there must be an experimental way to measure the concentration of at least one of the reactants or products as a function of time. -2 -2 -1 This was done in this experiment using a second reaction, 2S2O3 + I2 S4O6 + 2I , which occurred simultaneously with the reaction under investigation. Adding starch to the mixture -2 allowed the S2O3 of the second reaction to act as a built in “clock;” the mixture turned blue -2 -2 when all of the S2O3 had been consumed.
    [Show full text]
  • Chapter 10 – Chemical Reactions Notes
    Chapter 8 – Chemical Reactions Notes Chemical Reactions: Chemical reactions are processes in which the atoms of one or more substances are rearranged to form different chemical compounds. How to tell if a chemical reaction has occurred (recap): Temperature changes that can’t be accounted for. o Exothermic reactions give off energy (as in fire). o Endothermic reactions absorb energy (as in a cold pack). Spontaneous color change. o This happens when things rust, when they rot, and when they burn. Appearance of a solid when two liquids are mixed. o This solid is called a precipitate. Formation of a gas / bubbling, as when vinegar and baking soda are mixed. Overall, the most important thing to remember is that a chemical reaction produces a whole new chemical compound. Just changing the way that something looks (breaking, melting, dissolving, etc) isn’t enough to qualify something as a chemical reaction! Balancing Equations Notes: Things to keep in mind when looking at the recipes for chemical reactions: 1) The stuff before the arrow is referred to as the “reactants” or “reagents”, and the stuff after the arrow is called the “products.” 2) The number of atoms of each element is the same on both sides of the arrow. Even though there may be different numbers of molecules, the number of atoms of each element needs to remain the same to obey the law of conservation of mass. 3) The numbers in front of the formulas tell you how many molecules or moles of each chemical are involved in the reaction. 4) Equations are nothing more than chemical recipes.
    [Show full text]
  • Ochem ACS Review 23 Aryl Halides
    ACS Review Aryl Halides 1. Which one of the following has the weakest carbon-chlorine bond? A. I B. II C. III D. IV 2. Which compound in each of the following pairs is the most reactive to the conditions indicated? A. I and III B. I and IV C. II and III D. II and IV 3. Which of the following reacts at the fastest rate with potassium methoxide (KOCH 3) in methanol? A. fluorobenzene B. 4-nitrofluorobenzene C. 2,4-dinitrofluorobenzene D. 2,4,6-trinitrofluorobenzene 4. Which of the following reacts at the fastest rate with potassium methoxide (KOCH 3) in methanol? A. fluorobenzene B. p-nitrofluorobenzene C. p-fluorotoluene D. p-bromofluorobenzene 5. Which of the following is the kinetic rate equation for the addition-elimination mechanism of nucleophilic aromatic substitution? A. rate = k[aryl halide] B. rate = k[nucleophile] C. rate = k[aryl halide][nucleophile] D. rate = k[aryl halide][nucleophile] 2 6. Which of the following is not a resonance form of the intermediate in the nucleophilic addition of hydroxide ion to para -fluoronitrobenzene? A. I B. II C. III D. IV 7. Which chlorine is most susceptible to nucleophilic substitution with NaOCH 3 in methanol? A. #1 B. #2 C. #1 and #2 are equally susceptible D. no substitution is possible 8. What is the product of the following reaction? A. N,N-dimethylaniline B. para -chloro-N,N-dimethylaniline C. phenyllithium (C 6H5Li) D. meta -chloro-N,N-dimethylaniline 9. Which one of the reagents readily reacts with bromobenzene without heating? A.
    [Show full text]
  • Tables of Rate Constants for Gas Phase Chemical Reactions of Sulfur Compounds (1971-1979)
    NBSIR 80-2118 Tables of Rate Constants for Gas Phase Chemical Reactions of Sulfur Compounds (1971-1979) Francis Westley Chemical Kinetics Division Center for Thermodynamics and Molecular Science National Measurement Laboratory National Bureau of Standards U.S. Department of Commerce Washington. D.C. 20234 July 1980 Interim Report Prepared for Morgantown Energy Technology Center Department of Energy Morgantown, West Virginia 26505 Fice of Standard Reference Data itional Bureau of Standards ashington, D.C. 20234 c, 2 Jl 1 m * rational bureau 07 STANDARDS LIBRARY NBSIR 80-2118 wov 2 4 1980 TABLES OF RATE CONSTANTS FOR GAS f)Oi Clcc -Ore PHASE CHEMICAL REACTIONS OF SULFUR COMPOUNDS (1971-1979) 1 5 (o lo-z im Francis Westley Chemical Kinetics Division Center for Thermodynamics and Molecular Science National Measurement Laboratory National Bureau of Standards U.S. Department of Commerce Washington, D.C. 20234 July 1980 Interim Report Prepared for Morgantown Energy Technology Center Department of Energy Morgantown, West Virginia 26505 and Office of Standard Reference Data National Bureau of Standards Washington, D.C. 20234 U.S. DEPARTMENT OF COMMERCE, Philip M. Klutznick, Secretary Luther H. Hodges, Jr., Deputy Secretary Jordan J. Baruch, Assistant Secretary for Productivity, Technology, and Innovation NATIONAL BUREAU OF STANDARDS. Ernest Ambler, Director . i:i : a 1* V'.OTf in. te- ?') t aa.‘ .1 J Table of Contents Abstract 1 Introduction 2 Guidelines for the User 4 Table of Arrhenius Parameters for Chemical Reactions of Sulfur Compounds 12 Reactions of: S(Sulfur atom) 12 $2(Sulfur dimer) 20 S0(Sulfur monoxide) 21 S02(Sulfur dioxide 23 S0 (Sulfur trioxide) 28 3 S20(Sul fur oxide^O) ) 29 SH (Mercapto free radical) 29 H2S (Hydroqen sulfide 31 CS (Carbon monosulfide free radical) 32 CS2 (Carbon disulfide) 33 COS (Carbon oxide sulfide) 35 CH^S* ( Methyl thio free radical) 36 CH^SH (Methanethiol ) 36 cy-CF^CF^S (Thiirane) 37 CH^SCF^* (Methyl, (methyl thio)-, free radical) ...
    [Show full text]
  • Transport Phenomena: Mass Transfer
    Transport Phenomena Mass Transfer (1 Credit Hour) μ α k ν DAB Ui Uo UD h h Pr f Gr Re Le i o Nu Sh Pe Sc kc Kc d Δ ρ Σ Π ∂ ∫ Dr. Muhammad Rashid Usman Associate professor Institute of Chemical Engineering and Technology University of the Punjab, Lahore. Jul-2016 The Text Book Please read through. Bird, R.B. Stewart, W.E. and Lightfoot, E.N. (2002). Transport Phenomena. 2nd ed. John Wiley & Sons, Inc. Singapore. 2 Transfer processes For a transfer or rate process Rate of a quantity driving force Rate of a quantity area for the flow of the quantity 1 Rate of a quantity Area driving force resistance Rate of a quantity conductance Area driving force Flux of a quantity conductance driving force Conductance is a transport property. Compare the above equations with Ohm’s law of electrical 3 conductance Transfer processes change in the quanity Rate of a quantity change in time rate of the quantity Flux of a quantity area for flow of the quantity change in the quanity Gradient of a quantity change in distance 4 Transfer processes In chemical engineering, we study three transfer processes (rate processes), namely •Momentum transfer or Fluid flow •Heat transfer •Mass transfer The study of these three processes is called as transport phenomena. 5 Transfer processes Transfer processes are either: • Molecular (rate of transfer is only a function of molecular activity), or • Convective (rate of transfer is mainly due to fluid motion or convective currents) Unlike momentum and mass transfer processes, heat transfer has an added mode of transfer called as radiation heat transfer.
    [Show full text]
  • Modes of Mass Transfer Chapter Objectives
    MODES OF MASS TRANSFER CHAPTER OBJECTIVES - After you have studied this chapter, you should be able to: 1. Explain the process of molecular diffusion and its dependence on molecular mobility. 2. Explain the process of capillary diffusion 3. Explain the process of dispersion in a fluid or in a porous solid. 4. Understand the process of convective mass transfer as due to bulk flow added to diffusion or dispersion. 5. Explain saturated flow and unsaturated capillary flow in a porous solid 6. Have an idea of the relative rates of the different modes of mass transfer. 7. Explain osmotic flow. KEY TERMS diffusion, diffusivity, and. diffusion coefficient dispersion and dispersion coefficient hydraulic conductivity capillarity osmotic flow mass and molar flux Fick's law Darcy's law 1. A Primer on Porous Media Flow Physical Interpretation of Hydraulic Conductivity K and Permeability k Figure 1. Idealization of a porous media as bundle of tubes of varying diameter and tortuosity. Capillarity and Unsaturated Flow in a Porous Media Figure 2.Capillary attraction between the tube walls and the fluid causes the fluid to rise. Osmotic Flow in a Porous Media Figure 3.Osmotic flow from a dilute to a concentrated solution through a semi-permeable membrane. 2. Molecular Diffusion • In a material with two or more mass species whose concentrations vary within the material, there is tendency for mass to move. Diffusive mass transfer is the transport of one mass component from a region of higher concentration to a region of lower concentration. Physical interpretation of diffusivity Figure 4. Concentration profiles at different times from an instantaneous source placed at zero distance.
    [Show full text]
  • Reaction Kinetics in Organic Reactions
    Autumn 2004 Reaction Kinetics in Organic Reactions Why are kinetic analyses important? • Consider two classic examples in asymmetric catalysis: geraniol epoxidation 5-10% Ti(O-i-C3H7)4 O DET OH * * OH + TBHP CH2Cl2 3A mol sieve OH COOH5C2 L-(+)-DET = OH COOH5C2 * OH geraniol hydrogenation OH 0.1% Ru(II)-BINAP + H2 CH3OH P(C6H5)2 (S)-BINAP = P(C6 H5)2 • In both cases, high enantioselectivities may be achieved. However, there are fundamental differences between these two reactions which kinetics can inform us about. 1 Autumn 2004 Kinetics of Asymmetric Catalytic Reactions geraniol epoxidation: • enantioselectivity is controlled primarily by the preferred mode of initial binding of the prochiral substrate and, therefore, the relative stability of intermediate species. The transition state resembles the intermediate species. Finn and Sharpless in Asymmetric Synthesis, Morrison, J.D., ed., Academic Press: New York, 1986, v. 5, p. 247. geraniol hydrogenation: • enantioselectivity may be dictated by the relative reactivity rather than the stability of the intermediate species. The transition state may not resemble the intermediate species. for example, hydrogenation of enamides using Rh+(dipamp) studied by Landis and Halpern (JACS, 1987, 109,1746) 2 Autumn 2004 Kinetics of Asymmetric Catalytic Reactions “Asymmetric catalysis is four-dimensional chemistry. Simple stereochemical scrutiny of the substrate or reagent is not enough. The high efficiency that these reactions provide can only be achieved through a combination of both an ideal three-dimensional structure (x,y,z) and suitable kinetics (t).” R. Noyori, Asymmetric Catalysis in Organic Synthesis,Wiley-Interscience: New York, 1994, p.3. “Studying the photograph of a racehorse cannot tell you how fast it can run.” J.
    [Show full text]
  • Classical and Modern Methods in Reaction Rate Theory
    J. Phys. Chem. 1988, 92, 3711-3725 3711 loss associated with the transition between states is offset by a For the Re( MQ+)-based complexes an additional complication gain in energy in the intramolecular vibrations (eq 3). to intramolecular electron transfer exists arising from a "flattening" On the other hand, if (AGe,,2 + A0,2) > (AG,,l + A,,,) (Figure of the relative orientations of the two rings of the MQ+ ligand 4B) and nuclear tunneling effects in the librational modes are when it accepts an However, the analysis presented unimportant, intramolecular electron transfer can not occur in here does provide a general explanation for the role of free energy a frozen environment. The situation is the same as in Figure 3A. change in environments where dipole motions are restricted. For Even direct Re(1) - MQ' excitation (process a in Figure 4B) a directed, intramolecular electron transfer such as reaction 1, must either lead to the ground state by emission or to the Re- the change in electronic distribution between states will, in general, (11)-bpy'--based MLCT state by reverse electron transfer: lead to a difference between Ao,l and A0,2. This difference creates a solvent dipole barrier to intramolecular electron transfer. It [ (bpy)Re"(CO) 3( MQ')] 2+* -+ (bpy'-)Re"( CO) 3(MQ')] 2'* follows from eq 4 that if light-induced electron transfer is to occur (5) in a frozen environment, the difference in solvent reorganizational The inversion in the sense of the electron transfer in the frozen energy, A& = bS2- A,,, must be compensated for by a favorable environment is induced energetically by the greater solvent re- free energy change, A(AG) = - AGes,l,as organizational energy for the lower excited state, A0,2 > Ao,l - Aces,~- AGes.2 > Ao-2 - &,I (AGes,2 - AGes,l)* or In a macroscopic sample, a distribution of solvent dipole en- vironments exists around the assembly of ground states.
    [Show full text]