(A) Reaction Rates (I) Following the Course of a Reaction Reactions Can Be Followed by Measuring Changes in Concentration, Mass and Volume of Reactants Or Products

Total Page:16

File Type:pdf, Size:1020Kb

(A) Reaction Rates (I) Following the Course of a Reaction Reactions Can Be Followed by Measuring Changes in Concentration, Mass and Volume of Reactants Or Products (a) Reaction rates (i) Following the course of a reaction Reactions can be followed by measuring changes in concentration, mass and volume of reactants or products. g Measuring a change in mass Measuring a change in volume Volume of gas produced of gas Volume Mass of beaker and contents of beaker Mass Time Time The rate is highest at the start of the reaction because the concentration of reactants is highest at this point. The steepness (gradient) of the plotted line indicates the rate of the reaction. We can also measure changes in product concentration using a pH meter for reactions involving acids or alkalis, or by taking small samples and analysing them by titration or spectrophotometry. Concentration reactant Time Calculating the average rate The average rate of a reaction, or stage in a reaction, can be calculated from initial and final quantities and the time interval. change in measured factor Average rate = change in time Units of rate The unit of rate is simply the unit in which the quantity of substance is measured divided by the unit of time used. Using the accepted notation, ‘divided by’ is represented by unit-1. For example, a change in volume measured in cm3 over a time measured in minutes would give a rate with the units cm3min-1. 0.05-0.00 Rate = 50-0 1 - 0.05 = 50 = 0.001moll-1s-1 Concentration moll Concentration 0.075-0.05 Rate = 100-50 0.025 = 50 = 0.0005moll-1s-1 The rate of a reaction, or stage in a reaction, is proportional to the reciprocal of the time taken. 1 Rate Rate is inversely proportional to time. time i.e. 1 and 1 Rate = Time = time rate Units: s-1, min-1 etc. Units: s, min etc. See Unit 1 PPA 1 and Unit 1 PPA 2 for examples of ‘clock reactions’ that use the relationship described above. (ii) Factors affecting rate The rates of reactions are affected by changes in concentration, particle size and temperature. The rate of reaction can be increased by - decreasing the particle size of a solid reactant - increasing the concentration of a reactant in solution - increasing the temperature at which the reaction occurs. The factors which affect reaction rate can be understood more fully by examining the conditions needed for a reaction to take place. For a chemical reaction to occur, reactant particles must collide – this is the basis for the Collision theory. The collision theory can be used to explain the effects of concentration and surface area on reaction rates. Collision Theory For a chemical reaction to occur reactants must come into contact (collide). Not all collisions are successful. There are two conditions that are required for a successful collision; (i) The correct collision geometry i.e. reactants must collide with a particular orientation. (ii) Enough energy to break existing bonds within the reactant molecules. The first condition above can be used to help explain the affect of changing the concentration or the particle size. Any factor which increases the number of collisions per second between particles of reactants is likely to increase the rate of reaction. For many reactions a graph of rate against concentration is a straight line showing Rate that the rate is directly proportional to concentration. Concentration The Effect of Temperature on the Rate of Reaction We discovered that the rate of reaction is not directly proportional to the temperature, instead a 10°C rise in temperature roughly doubles the rate. Rate The increase in the number of collisions at a higher temperature is not enough on its own to account for this increase in the rate. Temperature Activation Energy and Energy Distribution The activation energy is the minimum kinetic energy required by colliding particles before reaction will occur. Unsuccessful collision: reactants collide not enough reactants energy to move apart break bonds Successful collision: reactants enough collide energy to products break bonds move apart ≥ Activation energy Temperature is a measure of the average kinetic energy of the particles of a substance. Energy distribution diagrams can be used to explain the effect of changing temperature on the kinetic energy of particles. T1 T2 The shaded areas represent the total number of molecules which have sufficient energy to react. The effect of temperature on reaction rate can be explained in terms of an increase in the number of particles with energy greater than the activation energy. T1 T2 T2>T1 A small rise in temperature causes a significant increase in the number of molecules which have energy greater than the activation energy. Enthalpy Potential energy diagrams Exothermic changes cause heat to be released to the surroundings. During an exothermic reaction potential energy possessed by the reactants is released to the surroundings. The products have less potential energy than the reactants. Endothermic changes cause absorption of heat from the surroundings. In an endothermic reaction the reactants absorb energy from the surroundings so that the products possess more energy than the reactants. The enthalpy change is the energy difference between the reactants and the products. The enthalpy change can be calculated from a potential energy diagram (if drawn to scale). The enthalpy change has a negative value for exothermic reactions. The enthalpy change has a positive value for endothermic reactions. Enthalpy changes are usually quoted in kJmol-1. A potential energy diagram can be used to show the energy pathway for a reaction. products The activated complex is an unstable arrangement of atoms formed at the maximum of the potential energy barrier, during a reaction. If the total energy change for the bond breaking step is less than for the bond making step, the overall reaction will be exothermic. If the reverse is true then the reaction will be endothermic. The activation energy is the energy required by colliding molecules to form an activated complex. In potential energy diagrams the activation energy appears as an ‘energy barrier’. The rate of a reaction will depend on the height of this barrier. The higher the barrier the slower the reaction. Note: the rate of reaction does not depend on the enthalpy change. The activation energy can be calculated from potential energy diagrams (if drawn to scale). (iv) Catalysts A catalyst is a substance which alters the rate of a reaction without being used up in the reaction. Catalysts can be classified as either heterogeneous or homogeneous. Heterogeneous – catalyst is in a different physical state from the reactants. Homogeneous – catalyst is in the same physical state as the reactants. Catalysts are used in many industrial processes. Catalyst Process Reaction Manufacture Revisited in Vanadium(V) oxide Contact 2SO2 + O2 2SO3 sulphuric acid Iron Haber N2 + 3H2 2NH3 ammonia Unit 3 Platinum Ostwald 4NH3 + 5O2 4NO + 6H2O nitric acid Nickel Hydrogenation Unsaturated oils + H2 margarine Unit 2 saturated fats Aluminium silicate Catalytic Breaking down long-chain fuels and Unit 2 cracking hydrocarbon molecules monomers for plastics industry Heterogeneous catalysts work by the adsorption of reactant molecules. The surface activity of a catalyst can be reduced by poisoning if certain substances are preferentially adsorbed or even permanently attached to the surface of the catalyst. Impurities in the reactants result in the industrial catalysts having to be regenerated or renewed. Catalytic convertors are fitted to cars to catalyse the conversion of poisonous carbon monoxide and oxides of nitrogen to carbon dioxide and nitrogen. The convertors contain honeycomb ceramic material covered with a metal catalyst such as platinum or rhodium. The honeycomb structure is used to increase the surface area of the catalytic convertor. Cars with catalytic converters only use ‘lead-free’ petrol to prevent poisoning of the catalyst. Enzymes Enzymes catalyse the chemical reactions which take place in the living cells of plants and animals. For example, amylase catalyses the hydrolysis of starch and catalase catalyses the decomposition of hydrogen peroxide in the blood. Enzymes are usually highly specific. The molecular shape of an enzyme usually plays a vital role in its function. substrate Products enzyme Enzymes operate most effectively at a certain optimum temperature and within a narrow pH range. Above this temperature or outwith this pH range the enzyme changes shape (the lock and key no longer fit together) and the enzyme is denatured. Enzymes are used in many industrial processes..
Recommended publications
  • Chapter 12 Lecture Notes
    Chemical Kinetics “The study of speeds of reactions and the nanoscale pathways or rearrangements by which atoms and molecules are transformed to products” Chapter 13: Chemical Kinetics: Rates of Reactions © 2008 Brooks/Cole 1 © 2008 Brooks/Cole 2 Reaction Rate Reaction Rate Combustion of Fe(s) powder: © 2008 Brooks/Cole 3 © 2008 Brooks/Cole 4 Reaction Rate Reaction Rate + Change in [reactant] or [product] per unit time. Average rate of the Cv reaction can be calculated: Time, t [Cv+] Average rate + Cresol violet (Cv ; a dye) decomposes in NaOH(aq): (s) (mol / L) (mol L-1 s-1) 0.0 5.000 x 10-5 13.2 x 10-7 10.0 3.680 x 10-5 9.70 x 10-7 20.0 2.710 x 10-5 7.20 x 10-7 30.0 1.990 x 10-5 5.30 x 10-7 40.0 1.460 x 10-5 3.82 x 10-7 + - 50.0 1.078 x 10-5 Cv (aq) + OH (aq) → CvOH(aq) 2.85 x 10-7 60.0 0.793 x 10-5 -7 + + -5 1.82 x 10 change in concentration of Cv Δ [Cv ] 80.0 0.429 x 10 rate = = 0.99 x 10-7 elapsed time Δt 100.0 0.232 x 10-5 © 2008 Brooks/Cole 5 © 2008 Brooks/Cole 6 1 Reaction Rates and Stoichiometry Reaction Rates and Stoichiometry Cv+(aq) + OH-(aq) → CvOH(aq) For any general reaction: a A + b B c C + d D Stoichiometry: The overall rate of reaction is: Loss of 1 Cv+ → Gain of 1 CvOH Rate of Cv+ loss = Rate of CvOH gain 1 Δ[A] 1 Δ[B] 1 Δ[C] 1 Δ[D] Rate = − = − = + = + Another example: a Δt b Δt c Δt d Δt 2 N2O5(g) 4 NO2(g) + O2(g) Reactants decrease with time.
    [Show full text]
  • Andrea Deoudes, Kinetics: a Clock Reaction
    A Kinetics Experiment The Rate of a Chemical Reaction: A Clock Reaction Andrea Deoudes February 2, 2010 Introduction: The rates of chemical reactions and the ability to control those rates are crucial aspects of life. Chemical kinetics is the study of the rates at which chemical reactions occur, the factors that affect the speed of reactions, and the mechanisms by which reactions proceed. The reaction rate depends on the reactants, the concentrations of the reactants, the temperature at which the reaction takes place, and any catalysts or inhibitors that affect the reaction. If a chemical reaction has a fast rate, a large portion of the molecules react to form products in a given time period. If a chemical reaction has a slow rate, a small portion of molecules react to form products in a given time period. This experiment studied the kinetics of a reaction between an iodide ion (I-1) and a -2 -1 -2 -2 peroxydisulfate ion (S2O8 ) in the first reaction: 2I + S2O8 I2 + 2SO4 . This is a relatively slow reaction. The reaction rate is dependent on the concentrations of the reactants, following -1 m -2 n the rate law: Rate = k[I ] [S2O8 ] . In order to study the kinetics of this reaction, or any reaction, there must be an experimental way to measure the concentration of at least one of the reactants or products as a function of time. -2 -2 -1 This was done in this experiment using a second reaction, 2S2O3 + I2 S4O6 + 2I , which occurred simultaneously with the reaction under investigation. Adding starch to the mixture -2 allowed the S2O3 of the second reaction to act as a built in “clock;” the mixture turned blue -2 -2 when all of the S2O3 had been consumed.
    [Show full text]
  • SF Chemical Kinetics. Microscopic Theories of Chemical Reaction Kinetics
    SF Chemical Kinetics. Lecture 5. Microscopic theory of chemical reaction kinetics. Microscopic theories of chemical reaction kinetics. • A basic aim is to calculate the rate constant for a chemical reaction from first principles using fundamental physics. • Any microscopic level theory of chemical reaction kinetics must result in the derivation of an expression for the rate constant that is consistent with the empirical Arrhenius equation. • A microscopic model should furthermore provide a reasonable interpretation of the pre-exponential factor A and the activation energy EA in the Arrhenius equation. • We will examine two microscopic models for chemical reactions : – The collision theory. – The activated complex theory. • The main emphasis will be on gas phase bimolecular reactions since reactions in the gas phase are the most simple reaction types. 1 References for Microscopic Theory of Reaction Rates. • Effect of temperature on reaction rate. – Burrows et al Chemistry3, Section 8. 7, pp. 383-389. • Collision Theory/ Activated Complex Theory. – Burrows et al Chemistry3, Section 8.8, pp.390-395. – Atkins, de Paula, Physical Chemistry 9th edition, Chapter 22, Reaction Dynamics. Section. 22.1, pp.832-838. – Atkins, de Paula, Physical Chemistry 9th edition, Chapter 22, Section.22.4-22.5, pp. 843-850. Collision theory of bimolecular gas phase reactions. • We focus attention on gas phase reactions and assume that chemical reactivity is due to collisions between molecules. • The theoretical approach is based on the kinetic theory of gases. • Molecules are assumed to be hard structureless spheres. Hence the model neglects the discrete chemical structure of an individual molecule. This assumption is unrealistic. • We also assume that no interaction between molecules until contact.
    [Show full text]
  • Department of Chemistry
    07 Sept 2020 2020–2021 Module Outlines MSc Chemistry MSc Chemistry with Medicinal Chemistry Please note: This handbook contains outlines for the modules comprise the lecture courses for all the MSc Chemistry and Chemistry with Medicinal Chemistry courses. The outline is also posted on Moodle for each lecture module. If there are any updates to these published outlines, this will be posted on the Level 4 Moodle, showing the date, to indicate that there has been an update. PGT CLASS HEAD: Dr Stephen Sproules, Room A5-14 Phone (direct):0141-330-3719 email: [email protected] LEVEL 4 CLASS HEAD: Dr Linnea Soler, Room A4-36 Phone (direct):0141-330-5345 email: [email protected] COURSE SECRETARY: Mrs Susan Lumgair, Room A4-30 (Teaching Office) Phone: 0141-330-3243 email: [email protected] TEACHING ADMINISTRATOR: Ms Angela Woolton, Room A4-27 (near Teaching Office) Phone: 0141-330-7704 email: [email protected] Module Topics for Lecture Courses The Course Information Table below shows, for each of the courses (e.g. Organic, Inorganic, etc), the lecture modules and associated lecturer. Chemistry with Medicinal Chemistry students take modules marked # in place of modules marked ¶. Organic Organic Course Modules Lecturer Chem (o) o1 Pericyclic Reactions Dr Sutherland o2 Heterocyclic Systems Dr Boyer o3 Advanced Organic Synthesis Dr Prunet o4 Polymer Chemistry Dr Schmidt o5m Asymmetric Synthesis Prof Clark o6m Organic Materials Dr Draper Inorganic Inorganic Course Modules Lecturer Chem (i) i1 Metals in Medicine
    [Show full text]
  • Reaction Kinetics in Organic Reactions
    Autumn 2004 Reaction Kinetics in Organic Reactions Why are kinetic analyses important? • Consider two classic examples in asymmetric catalysis: geraniol epoxidation 5-10% Ti(O-i-C3H7)4 O DET OH * * OH + TBHP CH2Cl2 3A mol sieve OH COOH5C2 L-(+)-DET = OH COOH5C2 * OH geraniol hydrogenation OH 0.1% Ru(II)-BINAP + H2 CH3OH P(C6H5)2 (S)-BINAP = P(C6 H5)2 • In both cases, high enantioselectivities may be achieved. However, there are fundamental differences between these two reactions which kinetics can inform us about. 1 Autumn 2004 Kinetics of Asymmetric Catalytic Reactions geraniol epoxidation: • enantioselectivity is controlled primarily by the preferred mode of initial binding of the prochiral substrate and, therefore, the relative stability of intermediate species. The transition state resembles the intermediate species. Finn and Sharpless in Asymmetric Synthesis, Morrison, J.D., ed., Academic Press: New York, 1986, v. 5, p. 247. geraniol hydrogenation: • enantioselectivity may be dictated by the relative reactivity rather than the stability of the intermediate species. The transition state may not resemble the intermediate species. for example, hydrogenation of enamides using Rh+(dipamp) studied by Landis and Halpern (JACS, 1987, 109,1746) 2 Autumn 2004 Kinetics of Asymmetric Catalytic Reactions “Asymmetric catalysis is four-dimensional chemistry. Simple stereochemical scrutiny of the substrate or reagent is not enough. The high efficiency that these reactions provide can only be achieved through a combination of both an ideal three-dimensional structure (x,y,z) and suitable kinetics (t).” R. Noyori, Asymmetric Catalysis in Organic Synthesis,Wiley-Interscience: New York, 1994, p.3. “Studying the photograph of a racehorse cannot tell you how fast it can run.” J.
    [Show full text]
  • 5.3 Controlling Chemical Reactions Vocabulary: Activation Energy
    5.3 Controlling Chemical Reactions Vocabulary: Activation energy – Concentration – Catalyst – Enzyme – Inhibitor - How do reactions get started? Chemical reactions won’t begin until the reactants have enough energy. The energy is used to break the chemical bonds of the reactants. Then the atoms form the new bonds of the products. Activation Energy is the minimum amount of energy needed to start a chemical reaction. All chemical reactions need a certain amount of activation energy to get started. Usually, once a few molecules react, the rest will quickly follow. The first few reactions provide the activation energy for more molecules to react. Hydrogen and oxygen can react to form water. However, if you just mix the two gases together, nothing happens. For the reaction to start, activation energy must be added. An electric spark or adding heat can provide that energy. A few of the hydrogen and oxygen molecules will react, producing energy for even more molecules to react. Graphing Changes in Energy Every chemical reaction needs activation energy to start. Whether or not a reaction still needs more energy from the environment to keep going depends on whether it is exothermic or endothermic. The peaks on the graphs show the activation energy. Notice that at the end of the exothermic reaction, the products have less energy than the reactants. This type of reaction results in a release of energy. The burning of fuels, such as wood, natural gas, or oil, is an example of an exothermic reaction. Endothermic reactions also need activation energy to get started. In addition, they need energy to continue.
    [Show full text]
  • Kinetics 651
    Chapter 12 | Kinetics 651 Chapter 12 Kinetics Figure 12.1 An agama lizard basks in the sun. As its body warms, the chemical reactions of its metabolism speed up. Chapter Outline 12.1 Chemical Reaction Rates 12.2 Factors Affecting Reaction Rates 12.3 Rate Laws 12.4 Integrated Rate Laws 12.5 Collision Theory 12.6 Reaction Mechanisms 12.7 Catalysis Introduction The lizard in the photograph is not simply enjoying the sunshine or working on its tan. The heat from the sun’s rays is critical to the lizard’s survival. A warm lizard can move faster than a cold one because the chemical reactions that allow its muscles to move occur more rapidly at higher temperatures. In the absence of warmth, the lizard is an easy meal for predators. From baking a cake to determining the useful lifespan of a bridge, rates of chemical reactions play important roles in our understanding of processes that involve chemical changes. When planning to run a chemical reaction, we should ask at least two questions. The first is: “Will the reaction produce the desired products in useful quantities?” The second question is: “How rapidly will the reaction occur?” A reaction that takes 50 years to produce a product is about as useful as one that never gives a product at all. A third question is often asked when investigating reactions in greater detail: “What specific molecular-level processes take place as the reaction occurs?” Knowing the answer to this question is of practical importance when the yield or rate of a reaction needs to be controlled.
    [Show full text]
  • Determination of Kinetics in Gas-Liquid Reaction Systems
    DOI: 10.2478/v10216-011-0014-y ECOL CHEM ENG S. 2012; 19(2):175-196 Hanna KIERZKOWSKA-PAWLAK 1* DETERMINATION OF KINETICS IN GAS-LIQUID REACTION SYSTEMS. AN OVERVIEW PRZEGL ĄD METOD WYZNACZANIA KINETYKI REAKCJI GAZ-CIECZ Abstract: The aim of this paper is to present a brief review of the determination methods of reaction kinetics in gas-liquid systems with a special emphasis on CO 2 absorption in aqueous alkanolamine solutions. Both homogenous and heterogeneous experimental techniques are described with the corresponding theoretical background needed for the interpretation of the results. The case of CO 2 reaction in aqueous solutions of methyldiethanolamine is discussed as an illustrative example. It was demonstrated that various measurement techniques and methods of analyzing the experimental data can result in different expressions for the kinetic rate constants. Keywords: gas-liquid reaction kinetics, stirred cell, stopped-flow technique, enhancement factor, CO 2 absorption, methyldiethanolamine Introduction Multiphase reaction systems are frequently encountered in chemical reaction engineering practice. Typical examples of industrially important processes where these systems are found include gas purification, oxidation, chlorination, hydrogenation and hydroformylation processes. Among them, the CO 2 removal by aqueous solutions of amines received considerable attention. Since CO 2 is regarded as a major greenhouse gas, potentially contributing to global warming, there has been substantial interest in developing amine-based technologies for capturing large quantities of CO 2 produced from fossil fuel power plants. Absorption of CO 2 by chemical solvents is the most popular and effective method which can be implemented in this sector. Industrially important alkanolamines for CO 2 removal are the primary amine monoethanolamine (MEA), the secondary amine diethanolamine (DEA) and diisopropanolamine (DIPA) and the tertiary amine methyldiethanolamine (MDEA) and triethanolamine (TEA) [1].
    [Show full text]
  • Differential and Integrated Rate Laws
    Differential and Integrated Rate Laws Rate laws describe the progress of the reaction; they are mathematical expressions which describe the relationship between reactant rates and reactant concentrations. In general, if the reaction is: 푎퐴 + 푏퐵 → 푐퐶 + 푑퐷 We can write the following expression: 푟푎푡푒 = 푘[퐴]푚[퐵]푛 Where: 푘 is a proportionality constant called rate constant (its value is fixed for a fixed set of conditions, specially temperature). 푚 and 푛 are known as orders of reaction. As it can be seen from the above expression, these orders of reaction indicate the degree or extent to which the reaction rate depends on the concentration of each reactant. We can say the following about these orders of reaction: 1. In general, they are not equal to the coefficients from the balanced equation. Remember: they are determined experimentally (unless a reaction is what we call an elementary reaction, but they are the exception). 2. Each reactant has its own (independent) order of reaction. 3. Orders of reaction are often times a positive number, but they can also be zero, a fraction and in some instances a negative number. 4. The overall reaction order is calculated by simply adding the individual orders (푚 + 푛). As it turns out, rate laws can actually be written using two different, but related, perspectives. Which are these two perspectives? What information does each provide? Read along and you will find out. On more thing – I must insist: it is not possible to predict the rate law from the overall balanced chemical reaction; rate laws must be determined experimentally.
    [Show full text]
  • Predictive Models for Kinetic Parameters of Cycloaddition
    Predictive Models for Kinetic Parameters of Cycloaddition Reactions Marta Glavatskikh, Timur Madzhidov, Dragos Horvath, Ramil Nugmanov, Timur Gimadiev, Daria Malakhova, Gilles Marcou, Alexandre Varnek To cite this version: Marta Glavatskikh, Timur Madzhidov, Dragos Horvath, Ramil Nugmanov, Timur Gimadiev, et al.. Predictive Models for Kinetic Parameters of Cycloaddition Reactions. Molecular Informatics, Wiley- VCH, 2018, 38 (1-2), pp.1800077. 10.1002/minf.201800077. hal-02346844 HAL Id: hal-02346844 https://hal.archives-ouvertes.fr/hal-02346844 Submitted on 5 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 0DQXVFULSW &OLFNKHUHWRGRZQORDG0DQXVFULSW&$UHYLVLRQGRF[ Predictive models for kinetic parameters of cycloaddition reactions Marta Glavatskikh[a,b], Timur Madzhidov[b], Dragos Horvath[a], Ramil Nugmanov[b], Timur Gimadiev[a,b], Daria Malakhova[b], Gilles Marcou[a] and Alexandre Varnek*[a] [a] Laboratoire de Chémoinformatique, UMR 7140 CNRS, Université de Strasbourg, 1, rue Blaise Pascal, 67000 Strasbourg, France; [b] Laboratory of Chemoinformatics and Molecular Modeling, Butlerov Institute of Chemistry, Kazan Federal University, Kremlyovskaya str. 18, Kazan, Russia Abstract This paper reports SVR (Support Vector Regression) and GTM (Generative Topographic Mapping) modeling of three kinetic properties of cycloaddition reactions: rate constant (logk), activation energy (Ea) and pre-exponential factor (logA).
    [Show full text]
  • Reaction Rates: Chemical Kinetics
    Chemical Kinetics Reaction Rates: Reaction Rate: The change in the concentration of a reactant or a product with time (M/s). Reactant → Products A → B change in number of moles of B Average rate = change in time ∆()moles of B ∆[B] = = ∆t ∆t ∆[A] Since reactants go away with time: Rate=− ∆t 1 Consider the decomposition of N2O5 to give NO2 and O2: 2N2O5(g)→ 4NO2(g) + O2(g) reactants products decrease with increase with time time 2 From the graph looking at t = 300 to 400 s 0.0009M −61− Rate O2 ==× 9 10 Ms Why do they differ? 100s 0.0037M Rate NO ==× 3.7 10−51 Ms− Recall: 2 100s 0.0019M −51− 2N O (g)→ 4NO (g) + O (g) Rate N O ==× 1.9 10 Ms 2 5 2 2 25 100s To compare the rates one must account for the stoichiometry. 1 Rate O =×× 9 10−−61 Ms =× 9 10 −− 61 Ms 2 1 1 −51−−− 61 Rate NO2 =×× 3.7 10 Ms =× 9.2 10 Ms Now they 4 1 agree! Rate N O =×× 1.9 10−51 Ms−−− = 9.5 × 10 61Ms 25 2 Reaction Rate and Stoichiometry In general for the reaction: aA + bB → cC + dD 11∆∆∆∆[AB] [ ] 11[CD] [ ] Rate ====− − ab∆∆∆ttcdtt∆ 3 Rate Law & Reaction Order The reaction rate law expression relates the rate of a reaction to the concentrations of the reactants. Each concentration is expressed with an order (exponent). The rate constant converts the concentration expression into the correct units of rate (Ms−1). (It also has deeper significance, which will be discussed later) For the general reaction: aA+ bB → cC+ dD x and y are the reactant orders determined from experiment.
    [Show full text]
  • CHEMICAL KINETICS Pt 2 Reaction Mechanisms Reaction Mechanism
    Reaction Mechanism (continued) CHEMICAL The reaction KINETICS 2 C H O +→5O + 6CO 4H O Pt 2 3 4 3 2 2 2 • has many steps in the reaction mechanism. Objectives ! Be able to describe the collision and Reaction Mechanisms transition-state theories • Even though a balanced chemical equation ! Be able to use the Arrhenius theory to may give the ultimate result of a reaction, determine the activation energy for a reaction and to predict rate constants what actually happens in the reaction may take place in several steps. ! Be able to relate the molecularity of the reaction and the reaction rate and • This “pathway” the reaction takes is referred to describle the concept of the “rate- as the reaction mechanism. determining” step • The individual steps in the larger overall reaction are referred to as elementary ! Be able to describe the role of a catalyst and homogeneous, heterogeneous and reactions. enzyme catalysis Reaction Mechanisms Often Used Terms •Intermediate: formed in one step and used up in a subsequent step and so is never seen as a product. The series of steps by which a chemical reaction occurs. •Molecularity: the number of species that must collide to produce the reaction indicated by that A chemical equation does not tell us how step. reactants become products - it is a summary of the overall process. •Elementary Step: A reaction whose rate law can be written from its molecularity. •uni, bi and termolecular 1 Elementary Reactions Elementary Reactions • Consider the reaction of nitrogen dioxide with • Each step is a singular molecular event carbon monoxide.
    [Show full text]