Front Matter
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Monadnock Vol. 45 | June 1971
THE MONADNOCK I - L. .RK UNIVERSITY Vol. XLV )GRAPHICAL SOCIETY June, 1971 THE MQNADNOCK Volume XIN Editor, Edwin T. Wei5e, Jr. Aaooite Editor5 James FOnSeOa Kirsten Haring David Seairøn Photoqzapher, Ernie Wight ypists Ronnie Mason Phyllis sczynski 323812 ii ‘7f THE MONADNOCK CONTENTs . 2 DIRECT0I MESSAGE THE JESUITS IN NORTH AMERICA: A STUDY . IN ENVIRONMENTAL COCEUALIZATI Eenry Aay 4 STRUCTURE IN TRANSACTION SYSTEMS. .Christopher Clayton 9 CULTURE AND AGRICULTURE ON THE ANEPJCAN NTIER Brad Baltensperger 22 THE PROBABILISTIC APPROACH TO SPATIAL THEORY Kang-tsung Chang 30 AROHITECTURE AND GEOGRAPHICAL STUDIES: A REVIEW Stephen Hobart 36 AN ESSAY ON GROWTH POLE THEORY B. David Miller 40 MIND, MEANING, AND MILIEU: PSYCHOLOGICAL NEED AND DESIGRED ENVIRONMENTS Ernest A. Wight Jr 43 SPATIAL DYNAMICS IN CLASSICAL LOCATION THEORY Alfred Hecht 52 THE GRADUATE SCHOOL OF GEOGRAPHY 56 ALUMNI NEWS 65 A N(YTE ON THE QUESTIONNAIRE 80 :1 DIRECTOR’S MESSAGE This academic year is very special for Geography at Clark, marking the fiftieth year of the founding of the Graduate School of Geography by Wallace W. Atwood. Dedication of the new Geography facilities — with special recognition to the memory of John K. Wright, Historical Geographer and Geosophist, an adopted son of Clark — is one appropriate mode of celebration. Another mark of the occasion is the honor accorded to two major figures in American Geography: Clark could not have chosen two more distinguished geographers than Richard Hartshorne and Samuel Van Valkenburg on whom were bestowed .1 . - Honorary Doctorates of Law at the anniversary ceremonies of April .17th. Very different in their contributions and their characters, Richard Hartshorne provided American geography with its philosophic and method ological rationale and Dr. -
Geoscience and a Lunar Base
" t N_iSA Conference Pubhcatmn 3070 " i J Geoscience and a Lunar Base A Comprehensive Plan for Lunar Explora, tion unclas HI/VI 02907_4 at ,unar | !' / | .... ._-.;} / [ | -- --_,,,_-_ |,, |, • • |,_nrrr|l , .l -- - -- - ....... = F _: .......... s_ dd]T_- ! JL --_ - - _ '- "_r: °-__.......... / _r NASA Conference Publication 3070 Geoscience and a Lunar Base A Comprehensive Plan for Lunar Exploration Edited by G. Jeffrey Taylor Institute of Meteoritics University of New Mexico Albuquerque, New Mexico Paul D. Spudis U.S. Geological Survey Branch of Astrogeology Flagstaff, Arizona Proceedings of a workshop sponsored by the National Aeronautics and Space Administration, Washington, D.C., and held at the Lunar and Planetary Institute Houston, Texas August 25-26, 1988 IW_A National Aeronautics and Space Administration Office of Management Scientific and Technical Information Division 1990 PREFACE This report was produced at the request of Dr. Michael B. Duke, Director of the Solar System Exploration Division of the NASA Johnson Space Center. At a meeting of the Lunar and Planetary Sample Team (LAPST), Dr. Duke (at the time also Science Director of the Office of Exploration, NASA Headquarters) suggested that future lunar geoscience activities had not been planned systematically and that geoscience goals for the lunar base program were not articulated well. LAPST is a panel that advises NASA on lunar sample allocations and also serves as an advocate for lunar science within the planetary science community. LAPST took it upon itself to organize some formal geoscience planning for a lunar base by creating a document that outlines the types of missions and activities that are needed to understand the Moon and its geologic history. -
Glossary Glossary
Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts. -
March 21–25, 2016
FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk, -
A Study About the Temporal Constraints on the Martian Yardangs’ Development in Medusae Fossae Formation
remote sensing Article A Study about the Temporal Constraints on the Martian Yardangs’ Development in Medusae Fossae Formation Jia Liu 1,2 , Zongyu Yue 1,3,*, Kaichang Di 1,3 , Sheng Gou 1,4 and Shengli Niu 4 1 State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China; [email protected] (J.L.); [email protected] (K.D.); [email protected] (S.G.) 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 CAS Center for Excellence in Comparative Planetology, Hefei 230026, China 4 State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macau 999078, China; [email protected] * Correspondence: [email protected]; Tel.: +86-10-64889553 Abstract: The age of Mars yardangs is significant in studying their development and the evolution of paleoclimate conditions. For planetary surface or landforms, a common method for dating is based on the frequency and size distribution of all the superposed craters after they are formed. However, there is usually a long duration for the yardangs’ formation, and they will alter the superposed craters, making it impossible to give a reliable dating result with the method. An indirect method by analyzing the ages of the superposed layered ejecta was devised in the research. First, the layered ejecta that are superposed on and not altered by the yardangs are identified and mapped. Then, the ages of the layered ejecta are derived according to the crater frequency and size distribution on them. These ages indicate that the yardangs ceased development by these times, and the ages are valuable for studying the evolution of the yardangs. -
The Moon After Apollo
ICARUS 25, 495-537 (1975) The Moon after Apollo PAROUK EL-BAZ National Air and Space Museum, Smithsonian Institution, Washington, D.G- 20560 Received September 17, 1974 The Apollo missions have gradually increased our knowledge of the Moon's chemistry, age, and mode of formation of its surface features and materials. Apollo 11 and 12 landings proved that mare materials are volcanic rocks that were derived from deep-seated basaltic melts about 3.7 and 3.2 billion years ago, respec- tively. Later missions provided additional information on lunar mare basalts as well as the older, anorthositic, highland rocks. Data on the chemical make-up of returned samples were extended to larger areas of the Moon by orbiting geo- chemical experiments. These have also mapped inhomogeneities in lunar surface chemistry, including radioactive anomalies on both the near and far sides. Lunar samples and photographs indicate that the moon is a well-preserved museum of ancient impact scars. The crust of the Moon, which was formed about 4.6 billion years ago, was subjected to intensive metamorphism by large impacts. Although bombardment continues to the present day, the rate and size of impact- ing bodies were much greater in the first 0.7 billion years of the Moon's history. The last of the large, circular, multiringed basins occurred about 3.9 billion years ago. These basins, many of which show positive gravity anomalies (mascons), were flooded by volcanic basalts during a period of at least 600 million years. In addition to filling the circular basins, more so on the near side than on the far side, the basalts also covered lowlands and circum-basin troughs. -
Proceedings of the United States National Museum
Proceedings of the United States National Museum SMITHSONIAN INSTITUTION • WASHINGTON, D.C. Volume 123 1967 Number 3604 Revision of the Beetles Of Genus Glyptoscelis (Coleoptera: Chrysomelidae) By Doris H. Blake Honorary Research Associate, Department of Entomology In a paper on the Coleoptera of Fort Tejon, Calif. (Proc. Acad. Nat. Sci. Philadelphia, vol. 9, p. 81, 1859), LeConte briefly de- scribed the genus Glyptoscelis as follows: "The genus Glyptoscelis (Chevrolat) [Dejean Catalogue, 3rd ed., p. 438, nomen nudum, 1837] is distinguished from the other genera allied to Eumolpus by the mouth not being covered beneath by the presternum, by the claws being toothed, and by the tibiae being longitudinally sulcate. The head is not sculptured as in Heteraspis [Graphops]." The first species, pubescens, was described as early as 1777 by Fabri- cius under Eumolpus. Linneaus in 1788 gave this species another name, and he was followed by Olivier in 1808 with still another specific name, and our own early American entomologist, Thomas Say, in 1827 gave a fourth name to this species, which is widespread over the eastern half of the United States. Say also described two other species from the eastern and middle states under Eumolpus. In LeConte's paper of 1859 he described Glyptoscelis albida, the first species from the West Coast. In 1878, nearly 20 years later, he de- scribed G. longior, a second western species. In the meantime, in l 2 PROCEEDINGS OF THE NATIONAL MUSEUM vol. 123 1873, Crotch, adopting LeConte's generic name Glyptoscelis, de- scribed from California three more species of this predominately West Coast genus. -
General Disclaimer One Or More of the Following Statements May
https://ntrs.nasa.gov/search.jsp?R=19690026252 2020-03-23T20:32:26+00:00Z General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) vss - T National Aeronautics and Space Administration Goddard Space Flight Center Contract No.NAS-5-12487 ST—PR—LS-10865 AUTOMATIC STATION ' ND-7" PHOTOGRAPHS THE MOON AND THE EARTH (TASS) PRESS RELEASE & PHOTOGRAVHS .3 0 ^ CC ::IGN f1 P1GEft1 lTHiiUI cI / >. O IC J^) ► IFJ.GLO) -1 s ^ ^e 7a? '9 INAr:. Cn 4R TMA ^A AL h.+F1UC RI iCAYEUGWrI 1 SEPTEMBER 1969 ST— PR-- LS— 108b5 AUIOMATIC STATION "ZOND-7" PHOTOGRAPHS THE MOON AND THE EARTH Tass Release and Photographs N.B. The best of all photographs s ,elected from the three news- published have been ^^a lec re,.f tor papers "PRAVDt,","KOMSOMOL'SKAYA this reproduction. -
Tossup Roentgen, Archimedes, Gauss, Balboa an D~¥As.:.? Da
Tossup , Roentgen, Archimedes, Gauss, Balboa an_d ~¥as.:.? Da Gama all have one bigger than Einstein's. Rutherford's is inside of..G!avius'. ' ~e three largest are Hertzsprung, Korolev and Apollo. For 10 points );IlUlt are t!1e~ objects, seven of which will be named for the astronauts who ~e..s-p~ttle disaster. / . Lunar Craters (' ,/ J- This Athenjan wa~ an admirer of Socrates ~ndji . him' such works as the Symposium and the Apo!?gy of Socrates. ~ - - st known wever, as an historian, the author of the Hellemca and the AnaEiastS, an a t of a mercenary expedition into Asia Minor. For 10 points, name ntury B.C. author. Xenophon ,. .. .. "The seizure of $3~&;gWo Y Hills," "Savage Lu~y ... 'Teeth Like Baseballs, Eyes Like J llied ire, '" and "A Terrible Experience with Extremely Dangerous Drugs." These e apters from, for 10 points, .what book? Fear and Loathing in Las Vegas (by Hunter S. Thompson) .' Lazlo Toth attacked her with a h~e, screaming "I Jesus Christ". He severed her left arm, smas~er nose-and lsfigured her I eye. That was in 1972, and today she and her ~n~i~ ·- behlnd i ss wall in J) Peter's Basilica the scars barely visible. For 10 y.Qin(s, "Yho are .... y, re ? ' The Pieul . L/ Accept: C~st and the Virgin Mary In 1649She invited Rene Descartes to her court to teach her philosophy. She had her lessons at 5 in the morning; Des.cartes, more used to rising at noon, caught a c . d died. Fo t's: who was this Swedish queen, \ the daughter of Gustavus Christina \, \ \ / Tossup Its biological name Ailuropod I 'l- " --~ . -
Summary of Sexual Abuse Claims in Chapter 11 Cases of Boy Scouts of America
Summary of Sexual Abuse Claims in Chapter 11 Cases of Boy Scouts of America There are approximately 101,135sexual abuse claims filed. Of those claims, the Tort Claimants’ Committee estimates that there are approximately 83,807 unique claims if the amended and superseded and multiple claims filed on account of the same survivor are removed. The summary of sexual abuse claims below uses the set of 83,807 of claim for purposes of claims summary below.1 The Tort Claimants’ Committee has broken down the sexual abuse claims in various categories for the purpose of disclosing where and when the sexual abuse claims arose and the identity of certain of the parties that are implicated in the alleged sexual abuse. Attached hereto as Exhibit 1 is a chart that shows the sexual abuse claims broken down by the year in which they first arose. Please note that there approximately 10,500 claims did not provide a date for when the sexual abuse occurred. As a result, those claims have not been assigned a year in which the abuse first arose. Attached hereto as Exhibit 2 is a chart that shows the claims broken down by the state or jurisdiction in which they arose. Please note there are approximately 7,186 claims that did not provide a location of abuse. Those claims are reflected by YY or ZZ in the codes used to identify the applicable state or jurisdiction. Those claims have not been assigned a state or other jurisdiction. Attached hereto as Exhibit 3 is a chart that shows the claims broken down by the Local Council implicated in the sexual abuse. -
Adams Adkinson Aeschlimann Aisslinger Akkermann
BUSCAPRONTA www.buscapronta.com ARQUIVO 27 DE PESQUISAS GENEALÓGICAS 189 PÁGINAS – MÉDIA DE 60.800 SOBRENOMES/OCORRÊNCIA Para pesquisar, utilize a ferramenta EDITAR/LOCALIZAR do WORD. A cada vez que você clicar ENTER e aparecer o sobrenome pesquisado GRIFADO (FUNDO PRETO) corresponderá um endereço Internet correspondente que foi pesquisado por nossa equipe. Ao solicitar seus endereços de acesso Internet, informe o SOBRENOME PESQUISADO, o número do ARQUIVO BUSCAPRONTA DIV ou BUSCAPRONTA GEN correspondente e o número de vezes em que encontrou o SOBRENOME PESQUISADO. Número eventualmente existente à direita do sobrenome (e na mesma linha) indica número de pessoas com aquele sobrenome cujas informações genealógicas são apresentadas. O valor de cada endereço Internet solicitado está em nosso site www.buscapronta.com . Para dados especificamente de registros gerais pesquise nos arquivos BUSCAPRONTA DIV. ATENÇÃO: Quando pesquisar em nossos arquivos, ao digitar o sobrenome procurado, faça- o, sempre que julgar necessário, COM E SEM os acentos agudo, grave, circunflexo, crase, til e trema. Sobrenomes com (ç) cedilha, digite também somente com (c) ou com dois esses (ss). Sobrenomes com dois esses (ss), digite com somente um esse (s) e com (ç). (ZZ) digite, também (Z) e vice-versa. (LL) digite, também (L) e vice-versa. Van Wolfgang – pesquise Wolfgang (faça o mesmo com outros complementos: Van der, De la etc) Sobrenomes compostos ( Mendes Caldeira) pesquise separadamente: MENDES e depois CALDEIRA. Tendo dificuldade com caracter Ø HAMMERSHØY – pesquise HAMMERSH HØJBJERG – pesquise JBJERG BUSCAPRONTA não reproduz dados genealógicos das pessoas, sendo necessário acessar os documentos Internet correspondentes para obter tais dados e informações. DESEJAMOS PLENO SUCESSO EM SUA PESQUISA. -
The W.A.S.P the Warren Astronomical Society Paper
Vol. 49, no. 11 November, 2018 The W.A.S.P The Warren Astronomical Society Paper President Jeff MacLeod [email protected] The Warren Astronomical Society First Vice President Jonathan Kade [email protected] Second Vice President Joe Tocco [email protected] Founded: 1961 Treasurer Ruth Huellmantel [email protected] P.O. Box 1505 Secretary Jerry Voorheis [email protected] Outreach Diane Hall [email protected] Warren, Michigan 48090-1505 Publications Brian Thieme [email protected] www.warrenastro.org Entire board [email protected] Photo credit: Joe Tocco 1 Society Meeting Times Astronomy presentations and lectures twice each month at 7:30 PM: First Monday at Cranbrook Institute of November Discussion Science. Group Meeting Third Thursday at Macomb Community College - South Campus Building E (Library) Come on over, and talk astronomy, space Note: for the rest of 2018, we are meeting in news, and whatnot! room E308, in building E. The Discussion Group meeting for November will be at Jon Blum’s home on Tuesday, November 20, at 7:00 PM. Jon has been Snack Volunteer hosting this every November for several years, Schedule so come and be part of the annual photo. Jon will provide lots of snacks, so please don’t Nov 5 Cranbrook Jim Shedlowsky bring any food or drinks. Jon’s home is in Nov 15 Macomb Riyad Matti Farmington Hills. Dec 3 Cranbrook Joe Tocco If you do not receive the address and directions If you are unable to bring the snacks on your in your email a week before this event, please scheduled day, or if you need to reschedule, email [email protected] for this information.