Chapter 6 SOLUTION of VISCOUS-FLOW PROBLEMS

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 6 SOLUTION of VISCOUS-FLOW PROBLEMS Chapter 6 SOLUTION OF VISCOUS-FLOW PROBLEMS 6.1 Introduction HE previous chapter contained derivations of the relationships for the con- T servation of mass and momentum—the equations of motion—in rectangular, cylindrical, and spherical coordinates. All the experimental evidence indicates that these are indeed the most fundamental equations of uid mechanics, and that in principle they govern any situation involving the ow of a Newtonian uid. Unfortunately, because of their all-embracing quality, their solution in analytical terms is dicult or impossible except for relatively simple situations. However, it is important to be aware of these “Navier-Stokes equations,” for the following reasons: 1. They lead to the analytical and exact solution of some simple, yet important problems, as will be demonstrated by examples in this chapter. 2. They form the basis for further work in other areas of chemical engineering. 3. If a few realistic simplifying assumptions are made, they can often lead to approximate solutions that are eminently acceptable for many engineering purposes. Representative examples occur in the study of boundary layers, waves, lubrication, coating of substrates with lms, and inviscid (irrotational) ow. 4. With the aid of more sophisticated techniques, such as those involving power series and asymptotic expansions, and particularly computer-implemented nu- merical methods, they can lead to the solution of moderately or highly ad- vanced problems, such as those involving injection-molding of polymers and even the incredibly dicult problem of weather prediction. The following sections present exact solutions of the equations of motion for several relatively simple problems in rectangular, cylindrical, and spherical coor- dinates. Throughout, unless otherwise stated, the ow is assumed to be steady, laminar and Newtonian, with constant density and viscosity. Although these as- sumptions are necessary in order to obtain solutions, they are nevertheless realistic in many cases. All of the examples in this chapter are characterized by low Reynolds numbers. That is, the viscous forces are much more important than the inertial forces, and 272 6.1—Introduction 273 are usually counterbalanced by pressure or gravitational eects. Typical applica- tions occur at low ow rates and in the ow of high-viscosity polymers. Situations in which viscous eects are relatively unimportant will be discussed in Chapter 7. Solution procedure. The general procedure for solving each problem in- volves the following steps: 1. Make reasonable simplifying assumptions. Almost all of the cases treated here will involve steady incompressible owofaNewtonian uid in a single coordinate direction. Further, gravity may or may not be important, and a certain amount of symmetry may be apparent. 2. Write down the equations of motion—both mass (continuity) and momentum balances—and simplify them according to the assumptions made previously, striking out terms that are zero. Typically, only a very few terms—perhaps only one in some cases—will remain in each dierential equation. The simpli- ed continuity equation usually yields information that can subsequently be used to simplify the momentum equations. 3. Integrate the simplied equations in order to obtain expressions for the de- pendent variables such as velocities and pressure. These expressions will usu- ally contain some, as yet, arbitrary constants—typically two for the velocities (since they appear in second-order derivatives in the momentum equations) and one for the pressure (since it appears only in a rst-order derivative). 4. Invoke the boundary conditions in order to evaluate the constants appearing in the previous step. For pressure, such a condition usually amounts to a specied pressure at a certain location—at the inlet of a pipe, or at a free surface exposed to the atmosphere, for example. For the velocities, these conditions fall into either of the following classications: (a) Continuity of the velocity, amounting to a no-slip condition. Thus, the velocity of the uid in contact with a solid surface typically equals the velocity of that surface—zero if the surface is stationary.1 And, for the few cases in which one uid (A, say) is in contact with another immiscible uid (B), the velocity in uid A equals the velocity in uid B at the common interface. (b) Continuity of the shear stress, usually between two uids A and B, leading to the product of viscosity and a velocity gradient having the same value at the common interface, whether in uid A or B. If uid A is a liquid, and uid B is a relatively stagnant gas, which—because of its low viscosity— is incapable of sustaining any signicant shear stress, then the common shear stress is eectively zero. 5. At this stage, the problem is essentially solved for the pressure and velocities. Finally, if desired, shear-stress distributions can be derived by dierentiating 1 In a few exceptional situations there may be lack of adhesion between the uid and surface, in which case slip can occur. 274 Chapter 6—Solution of Viscous-Flow Problems the velocities in order to obtain the velocity gradients; numerical predictions of process variables can also be made. Typesofow. Two broad classes of viscous ow will be illustrated in this chapter: 1. Poiseuille ow, in which an applied pressure dierence causes uid motion between stationary surfaces. 2. Couette ow, in which a moving surface drags adjacent uid along with it and thereby imparts a motion to the rest of the uid. Occasionally, it is possible to have both types of motion occurring simultaneously, as in the screw extruder analyzed in Example 6.4. 6.2 Solution of the Equations of Motion in Rectangular Coordinates The remainder of this chapter consists almost entirely of a series of worked examples, illustrating the above steps for solving viscous-ow problems. Example 6.1—Flow Between Parallel Plates Fig. E6.1.1 shows the ow of a uid of viscosity , which ows in the x direction between two rectangular plates, whose width is very large in the z direction when compared to their separation in the y direction. Such a situation could occur in a die when a polymer is being extruded at the exit into a sheet, which is subsequently cooled and solidied. Determine the relationship between the ow rate and the pressure drop between the inlet and exit, together with several other quantities of interest. Top plate Large width Inlet Fluid Narrow gap, 2d y Exit x Bottom plate Coordinate system z Fig. E6.1.1 Geometry for ow through a rectangular duct. The spacing between the plates is exaggerated in relation to their length. Simplifying assumptions. The situation is analyzed by referring to a cross section of the duct, shown in Fig. E6.1.2, taken at any xed value of z. Let the depth be 2d (d above and below the centerline or axis of symmetry y = 0), and the length L. Note that the motion is of the Poiseuille type, since it is caused by the applied pressure dierence (p1 p2). Make the following realistic assumptions about the ow: 6.2—Solution of the Equations of Motion in Rectangular Coordinates 275 1. As already stated, it is steady and Newtonian, with constant density and viscosity. (These assumptions will often be taken for granted, and not restated, in later problems.) 2. There is only one nonzero velocity component—that in the direction of ow, vx. Thus, vy = vz =0. 3. Since, in comparison with their spacing, 2d, the plates extend for a very long distance in the z direction, all locations in this direction appear essentially identical to one another. In particular, there is no variation of the velocity in the z direction, so that ∂vx/∂z =0. 4. Gravity acts vertically downwards; hence, gy = g and gx = gz =0. 5. The velocity is zero in contact with the plates, so that vx =0aty = d. Continuity. Start by examining the general continuity equation, (5.48): ∂ ∂(v ) ∂(v ) ∂(v ) + x + y + z =0, (5.48) ∂t ∂x ∂y ∂z which, in view of the constant-density assumption, simplies to Eqn. (5.52): ∂v ∂v ∂v x + y + z =0. (5.52) ∂x ∂y ∂z But since vy = vz =0: ∂v x =0, (E6.1.1) ∂x so vx is independent of the distance from the inlet, and the velocity prole will appear the same for all values of x. Since ∂vx/∂z = 0 (assumption 3), it follows that vx = vx(y) is a function of y only. Velocity Wall profile Inlet Exit v x y d x p p Axis of 1 2 symmetry d Wall L Fig. E6.1.2 Geometry for ow through a rectangular duct. 276 Chapter 6—Solution of Viscous-Flow Problems Momentum balances. With the stated assumptions of a Newtonian uid with constant density and viscosity, Eqn. (5.73) gives the x, y, and z momentum balances: ∂v ∂v ∂v ∂v ∂p ∂2v ∂2v ∂2v x + v x + v x + v x = + x + x + x + g , ∂t x ∂x y ∂y z ∂z ∂x ∂x2 ∂y2 ∂z2 x ∂v ∂v ∂v ∂v ∂p ∂2v ∂2v ∂2v y + v y + v y + v y = + y + y + y + g , ∂t x ∂x y ∂y z ∂z ∂y ∂x2 ∂y2 ∂z2 y ∂v ∂v ∂v ∂v ∂p ∂2v ∂2v ∂2v z + v z + v z + v z = + z + z + z + g . ∂t x ∂x y ∂y z ∂z ∂z ∂x2 ∂y2 ∂z2 z With vy = vz = 0 (from assumption 2), ∂vx/∂x = 0 [from the simplied continuity equation, (E6.1.1)], gy = g, gx = gz = 0 (assumption 4), and steady ow (assumption 1), these momentum balances simplify enormously, to: ∂2v ∂p x = , (E6.1.2) ∂y2 ∂x ∂p = g, (E6.1.3) ∂y ∂p =0. (E6.1.4) ∂z Pressure distribution.
Recommended publications
  • Glossary Physics (I-Introduction)
    1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay.
    [Show full text]
  • Viscosity of Gases References
    VISCOSITY OF GASES Marcia L. Huber and Allan H. Harvey The following table gives the viscosity of some common gases generally less than 2% . Uncertainties for the viscosities of gases in as a function of temperature . Unless otherwise noted, the viscosity this table are generally less than 3%; uncertainty information on values refer to a pressure of 100 kPa (1 bar) . The notation P = 0 specific fluids can be found in the references . Viscosity is given in indicates that the low-pressure limiting value is given . The dif- units of μPa s; note that 1 μPa s = 10–5 poise . Substances are listed ference between the viscosity at 100 kPa and the limiting value is in the modified Hill order (see Introduction) . Viscosity in μPa s 100 K 200 K 300 K 400 K 500 K 600 K Ref. Air 7 .1 13 .3 18 .5 23 .1 27 .1 30 .8 1 Ar Argon (P = 0) 8 .1 15 .9 22 .7 28 .6 33 .9 38 .8 2, 3*, 4* BF3 Boron trifluoride 12 .3 17 .1 21 .7 26 .1 30 .2 5 ClH Hydrogen chloride 14 .6 19 .7 24 .3 5 F6S Sulfur hexafluoride (P = 0) 15 .3 19 .7 23 .8 27 .6 6 H2 Normal hydrogen (P = 0) 4 .1 6 .8 8 .9 10 .9 12 .8 14 .5 3*, 7 D2 Deuterium (P = 0) 5 .9 9 .6 12 .6 15 .4 17 .9 20 .3 8 H2O Water (P = 0) 9 .8 13 .4 17 .3 21 .4 9 D2O Deuterium oxide (P = 0) 10 .2 13 .7 17 .8 22 .0 10 H2S Hydrogen sulfide 12 .5 16 .9 21 .2 25 .4 11 H3N Ammonia 10 .2 14 .0 17 .9 21 .7 12 He Helium (P = 0) 9 .6 15 .1 19 .9 24 .3 28 .3 32 .2 13 Kr Krypton (P = 0) 17 .4 25 .5 32 .9 39 .6 45 .8 14 NO Nitric oxide 13 .8 19 .2 23 .8 28 .0 31 .9 5 N2 Nitrogen 7 .0 12 .9 17 .9 22 .2 26 .1 29 .6 1, 15* N2O Nitrous
    [Show full text]
  • Derivation of Fluid Flow Equations
    TPG4150 Reservoir Recovery Techniques 2017 1 Fluid Flow Equations DERIVATION OF FLUID FLOW EQUATIONS Review of basic steps Generally speaking, flow equations for flow in porous materials are based on a set of mass, momentum and energy conservation equations, and constitutive equations for the fluids and the porous material involved. For simplicity, we will in the following assume isothermal conditions, so that we not have to involve an energy conservation equation. However, in cases of changing reservoir temperature, such as in the case of cold water injection into a warmer reservoir, this may be of importance. Below, equations are initially described for single phase flow in linear, one- dimensional, horizontal systems, but are later on extended to multi-phase flow in two and three dimensions, and to other coordinate systems. Conservation of mass Consider the following one dimensional rod of porous material: Mass conservation may be formulated across a control element of the slab, with one fluid of density ρ is flowing through it at a velocity u: u ρ Δx The mass balance for the control element is then written as: ⎧Mass into the⎫ ⎧Mass out of the ⎫ ⎧ Rate of change of mass⎫ ⎨ ⎬ − ⎨ ⎬ = ⎨ ⎬ , ⎩element at x ⎭ ⎩element at x + Δx⎭ ⎩ inside the element ⎭ or ∂ {uρA} − {uρA} = {φAΔxρ}. x x+ Δx ∂t Dividing by Δx, and taking the limit as Δx approaches zero, we get the conservation of mass, or continuity equation: ∂ ∂ − (Aρu) = (Aφρ). ∂x ∂t For constant cross sectional area, the continuity equation simplifies to: ∂ ∂ − (ρu) = (φρ) . ∂x ∂t Next, we need to replace the velocity term by an equation relating it to pressure gradient and fluid and rock properties, and the density and porosity terms by appropriate pressure dependent functions.
    [Show full text]
  • On Nonlinear Strain Theory for a Viscoelastic Material Model and Its Implications for Calving of Ice Shelves
    Journal of Glaciology (2019), 65(250) 212–224 doi: 10.1017/jog.2018.107 © The Author(s) 2019. This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re- use or in order to create a derivative work. On nonlinear strain theory for a viscoelastic material model and its implications for calving of ice shelves JULIA CHRISTMANN,1,2 RALF MÜLLER,2 ANGELIKA HUMBERT1,3 1Division of Geosciences/Glaciology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany 2Institute of Applied Mechanics, University of Kaiserslautern, Kaiserslautern, Germany 3Division of Geosciences, University of Bremen, Bremen, Germany Correspondence: Julia Christmann <[email protected]> ABSTRACT. In the current ice-sheet models calving of ice shelves is based on phenomenological approaches. To obtain physics-based calving criteria, a viscoelastic Maxwell model is required account- ing for short-term elastic and long-term viscous deformation. On timescales of months to years between calving events, as well as on long timescales with several subsequent iceberg break-offs, deformations are no longer small and linearized strain measures cannot be used. We present a finite deformation framework of viscoelasticity and extend this model by a nonlinear Glen-type viscosity. A finite element implementation is used to compute stress and strain states in the vicinity of the ice-shelf calving front.
    [Show full text]
  • 1 Fluid Flow Outline Fundamentals of Rheology
    Fluid Flow Outline • Fundamentals and applications of rheology • Shear stress and shear rate • Viscosity and types of viscometers • Rheological classification of fluids • Apparent viscosity • Effect of temperature on viscosity • Reynolds number and types of flow • Flow in a pipe • Volumetric and mass flow rate • Friction factor (in straight pipe), friction coefficient (for fittings, expansion, contraction), pressure drop, energy loss • Pumping requirements (overcoming friction, potential energy, kinetic energy, pressure energy differences) 2 Fundamentals of Rheology • Rheology is the science of deformation and flow – The forces involved could be tensile, compressive, shear or bulk (uniform external pressure) • Food rheology is the material science of food – This can involve fluid or semi-solid foods • A rheometer is used to determine rheological properties (how a material flows under different conditions) – Viscometers are a sub-set of rheometers 3 1 Applications of Rheology • Process engineering calculations – Pumping requirements, extrusion, mixing, heat transfer, homogenization, spray coating • Determination of ingredient functionality – Consistency, stickiness etc. • Quality control of ingredients or final product – By measurement of viscosity, compressive strength etc. • Determination of shelf life – By determining changes in texture • Correlations to sensory tests – Mouthfeel 4 Stress and Strain • Stress: Force per unit area (Units: N/m2 or Pa) • Strain: (Change in dimension)/(Original dimension) (Units: None) • Strain rate: Rate
    [Show full text]
  • Introduction to the CFD Module
    INTRODUCTION TO CFD Module Introduction to the CFD Module © 1998–2018 COMSOL Protected by patents listed on www.comsol.com/patents, and U.S. Patents 7,519,518; 7,596,474; 7,623,991; 8,457,932; 8,954,302; 9,098,106; 9,146,652; 9,323,503; 9,372,673; and 9,454,625. Patents pending. This Documentation and the Programs described herein are furnished under the COMSOL Software License Agreement (www.comsol.com/comsol-license-agreement) and may be used or copied only under the terms of the license agreement. COMSOL, the COMSOL logo, COMSOL Multiphysics, COMSOL Desktop, COMSOL Server, and LiveLink are either registered trademarks or trademarks of COMSOL AB. All other trademarks are the property of their respective owners, and COMSOL AB and its subsidiaries and products are not affiliated with, endorsed by, sponsored by, or supported by those trademark owners. For a list of such trademark owners, see www.comsol.com/trademarks. Version: COMSOL 5.4 Contact Information Visit the Contact COMSOL page at www.comsol.com/contact to submit general inquiries, contact Technical Support, or search for an address and phone number. You can also visit the Worldwide Sales Offices page at www.comsol.com/contact/offices for address and contact information. If you need to contact Support, an online request form is located at the COMSOL Access page at www.comsol.com/support/case. Other useful links include: • Support Center: www.comsol.com/support • Product Download: www.comsol.com/product-download • Product Updates: www.comsol.com/support/updates •COMSOL Blog: www.comsol.com/blogs • Discussion Forum: www.comsol.com/community •Events: www.comsol.com/events • COMSOL Video Gallery: www.comsol.com/video • Support Knowledge Base: www.comsol.com/support/knowledgebase Part number: CM021302 Contents Introduction .
    [Show full text]
  • Fluid Inertia and End Effects in Rheometer Flows
    FLUID INERTIA AND END EFFECTS IN RHEOMETER FLOWS by JASON PETER HUGHES B.Sc. (Hons) A thesis submitted to the University of Plymouth in partial fulfilment for the degree of DOCTOR OF PHILOSOPHY School of Mathematics and Statistics Faculty of Technology University of Plymouth April 1998 REFERENCE ONLY ItorriNe. 9oo365d39i Data 2 h SEP 1998 Class No.- Corrtl.No. 90 0365439 1 ACKNOWLEDGEMENTS I would like to thank my supervisors Dr. J.M. Davies, Prof. T.E.R. Jones and Dr. K. Golden for their continued support and guidance throughout the course of my studies. I also gratefully acknowledge the receipt of a H.E.F.C.E research studentship during the period of my research. AUTHORS DECLARATION At no time during the registration for the degree of Doctor of Philosophy has the author been registered for any other University award. This study was financed with the aid of a H.E.F.C.E studentship and carried out in collaboration with T.A. Instruments Ltd. Publications: 1. J.P. Hughes, T.E.R Jones, J.M. Davies, *End effects in concentric cylinder rheometry', Proc. 12"^ Int. Congress on Rheology, (1996) 391. 2. J.P. Hughes, J.M. Davies, T.E.R. Jones, ^Concentric cylinder end effects and fluid inertia effects in controlled stress rheometry, Part I: Numerical simulation', accepted for publication in J.N.N.F.M. Signed ...^.^Ms>3.\^^. Date Ik.lp.^.m FLUH) INERTIA AND END EFFECTS IN RHEOMETER FLOWS Jason Peter Hughes Abstract This thesis is concerned with the characterisation of the flow behaviour of inelastic and viscoelastic fluids in steady shear and oscillatory shear flows on commercially available rheometers.
    [Show full text]
  • On Exact Solution of Unsteady MHD Flow of a Viscous Fluid in An
    Rana et al. Boundary Value Problems 2014, 2014:146 http://www.boundaryvalueproblems.com/content/2014/1/146 R E S E A R C H Open Access On exact solution of unsteady MHD flow of a viscous fluid in an orthogonal rheometer Muhammad Afzal Rana1, Sadia Siddiqa2* and Saima Noor3 *Correspondence: [email protected] Abstract 2Department of Mathematics, COMSATS Institute of Information This paper studies the unsteady MHD flow of a viscous fluid in which each point of Technology, Attock, Pakistan the parallel planes are subject to the non-torsional oscillations in their own planes. Full list of author information is The streamlines at any given time are concentric circles. Exact solutions are obtained available at the end of the article and the loci of the centres of these concentric circles are discussed. It is shown that the motion so obtained gives three infinite sets of exact solutions in the geometry of an orthogonal rheometer in which the above non-torsional oscillations are superposed on the disks. These solutions reduce to a single unique solution when symmetric solutions are looked for. Some interesting special cases are also obtained from these solutions. Keywords: viscous fluid; MHD flow; orthogonal rheometer; eccentric rotation; exact solutions 1 Introduction Berker [] has defined the ‘pseudo plane motions’ of the first kind that: if the streamlines in a plane flow are contained in parallel planes but the velocity components are dependent on the coordinate normal to the planes. Berker [] has obtained a class of exact solutions to the Navier-Stokes equations belonging to the above type of flows.
    [Show full text]
  • Lecture 1: Introduction
    Lecture 1: Introduction E. J. Hinch Non-Newtonian fluids occur commonly in our world. These fluids, such as toothpaste, saliva, oils, mud and lava, exhibit a number of behaviors that are different from Newtonian fluids and have a number of additional material properties. In general, these differences arise because the fluid has a microstructure that influences the flow. In section 2, we will present a collection of some of the interesting phenomena arising from flow nonlinearities, the inhibition of stretching, elastic effects and normal stresses. In section 3 we will discuss a variety of devices for measuring material properties, a process known as rheometry. 1 Fluid Mechanical Preliminaries The equations of motion for an incompressible fluid of unit density are (for details and derivation see any text on fluid mechanics, e.g. [1]) @u + (u · r) u = r · S + F (1) @t r · u = 0 (2) where u is the velocity, S is the total stress tensor and F are the body forces. It is customary to divide the total stress into an isotropic part and a deviatoric part as in S = −pI + σ (3) where tr σ = 0. These equations are closed only if we can relate the deviatoric stress to the velocity field (the pressure field satisfies the incompressibility condition). It is common to look for local models where the stress depends only on the local gradients of the flow: σ = σ (E) where E is the rate of strain tensor 1 E = ru + ruT ; (4) 2 the symmetric part of the the velocity gradient tensor. The trace-free requirement on σ and the physical requirement of symmetry σ = σT means that there are only 5 independent components of the deviatoric stress: 3 shear stresses (the off-diagonal elements) and 2 normal stress differences (the diagonal elements constrained to sum to 0).
    [Show full text]
  • Rheometry SLIT RHEOMETER
    Rheometry SLIT RHEOMETER Figure 1: The Slit Rheometer. L > W h. ∆P Shear Stress σ(y) = y (8-30) L −∆P h Wall Shear Stress σ = −σ(y = h/2) = (8-31) w L 2 NEWTONIAN CASE 6Q Wall Shear Rateγ ˙ = −γ˙ (y = h/2) = (8-32) w h2w σ −∆P h3w Viscosity η = w = (8-33) γ˙ w L 12Q 1 Rheometry SLIT RHEOMETER NON-NEWTONIAN CASE Correction for the real wall shear rate is analogous to the Rabinowitch correction. 6Q 2 + β Wall Shear Rateγ ˙ = (8-34a) w h2w 3 d [log(6Q/h2w)] β = (8-34b) d [log(σw)] σ −∆P h3w Apparent Viscosity η = w = γ˙ w L 4Q(2 + β) NORMAL STRESS DIFFERENCE The normal stress difference N1 can be determined from the exit pressure Pe. dPe N1(γ ˙ w) = Pe + σw (8-45) dσw d(log Pe) N1(γ ˙ w) = Pe 1 + (8-46) d(log σw) These relations were calculated assuming straight parallel streamlines right up to the exit of the die. This assumption is not found to be valid in either experiment or computer simulation. 2 Rheometry SLIT RHEOMETER NORMAL STRESS DIFFERENCE dPe N1(γ ˙ w) = Pe + σw (8-45) dσw d(log Pe) N1(γ ˙ w) = Pe 1 + (8-46) d(log σw) Figure 2: Determination of the Exit Pressure. 3 Rheometry SLIT RHEOMETER NORMAL STRESS DIFFERENCE Figure 3: Comparison of First Normal Stress Difference Values for LDPE from Slit Rheometer Exit Pressure (filled symbols) and Cone&Plate (open symbols). The poor agreement indicates that the more work is needed in order to use exit pressures to measure normal stress differences.
    [Show full text]
  • Guide to Rheological Nomenclature: Measurements in Ceramic Particulate Systems
    NfST Nisr National institute of Standards and Technology Technology Administration, U.S. Department of Commerce NIST Special Publication 946 Guide to Rheological Nomenclature: Measurements in Ceramic Particulate Systems Vincent A. Hackley and Chiara F. Ferraris rhe National Institute of Standards and Technology was established in 1988 by Congress to "assist industry in the development of technology . needed to improve product quality, to modernize manufacturing processes, to ensure product reliability . and to facilitate rapid commercialization ... of products based on new scientific discoveries." NIST, originally founded as the National Bureau of Standards in 1901, works to strengthen U.S. industry's competitiveness; advance science and engineering; and improve public health, safety, and the environment. One of the agency's basic functions is to develop, maintain, and retain custody of the national standards of measurement, and provide the means and methods for comparing standards used in science, engineering, manufacturing, commerce, industry, and education with the standards adopted or recognized by the Federal Government. As an agency of the U.S. Commerce Department's Technology Administration, NIST conducts basic and applied research in the physical sciences and engineering, and develops measurement techniques, test methods, standards, and related services. The Institute does generic and precompetitive work on new and advanced technologies. NIST's research facilities are located at Gaithersburg, MD 20899, and at Boulder, CO 80303.
    [Show full text]
  • Hydraulics Manual Glossary G - 3
    Glossary G - 1 GLOSSARY OF HIGHWAY-RELATED DRAINAGE TERMS (Reprinted from the 1999 edition of the American Association of State Highway and Transportation Officials Model Drainage Manual) G.1 Introduction This Glossary is divided into three parts: · Introduction, · Glossary, and · References. It is not intended that all the terms in this Glossary be rigorously accurate or complete. Realistically, this is impossible. Depending on the circumstance, a particular term may have several meanings; this can never change. The primary purpose of this Glossary is to define the terms found in the Highway Drainage Guidelines and Model Drainage Manual in a manner that makes them easier to interpret and understand. A lesser purpose is to provide a compendium of terms that will be useful for both the novice as well as the more experienced hydraulics engineer. This Glossary may also help those who are unfamiliar with highway drainage design to become more understanding and appreciative of this complex science as well as facilitate communication between the highway hydraulics engineer and others. Where readily available, the source of a definition has been referenced. For clarity or format purposes, cited definitions may have some additional verbiage contained in double brackets [ ]. Conversely, three “dots” (...) are used to indicate where some parts of a cited definition were eliminated. Also, as might be expected, different sources were found to use different hyphenation and terminology practices for the same words. Insignificant changes in this regard were made to some cited references and elsewhere to gain uniformity for the terms contained in this Glossary: as an example, “groundwater” vice “ground-water” or “ground water,” and “cross section area” vice “cross-sectional area.” Cited definitions were taken primarily from two sources: W.B.
    [Show full text]