Arctic Fishes in the Barents Sea 2004-2015: Changes in Abundance and Distribution

Total Page:16

File Type:pdf, Size:1020Kb

Arctic Fishes in the Barents Sea 2004-2015: Changes in Abundance and Distribution IMR/PINRO J O S I 1 E N I T 2017 R E R E S P O R T Arctic fishes in the Barents Sea 2004-2015: Changes in abundance and distribution By E.Johannesen, H. L. Mørk, K. Korsbrekke, R. Wienerroither, E. Eriksen, M. Fossheim and T. de Lange Wenneck IMR and A. Dolgov, T. Prokhorova, and D. Prozorkevich PINRO Institute of Marine Research - IMR Polar Research Institute of Marine Fisheries and Oceanography - PINRO Arctic fishes in the Barents Sea 2004-2015: Changes in abundance and distribution AUTHORS: IMR: Edda Johannesen, Herdis Langøy Mørk, Knut Korsbrekke, Rupert Wienerroither, Elena Eriksen, Maria Fossheim, Thomas de Lange Wenneck PINRO: Andrey Dolgov, Tatiana Prokhorova, Dmitry Prozorkevich We thank everybody that participated on the IMR PINRO ecosystem survey 2004-2015. Sigbjørn Mehl, Åsmund Skålevik and Arne Johannes Holmin for help with StoX and Karen Gjertsen and Kjell Bakkeplass for making the maps. This report was partly funded by the Norwegian Environmental Agency as part of the work under the CAFF (Conservation of Arctic Flora and Fauna www.caff.is) program under Arctic Council. Contents 1. Synopsis ............................................................................................................................. 3 2. Zoogeographical classification of Barents Sea fishes ........................................................ 4 3. Sampling ................................................................................................................................. 7 3.1 Survey coverage and strata system ................................................................................... 7 3.2 Catchability and sub-sampling ......................................................................................... 7 4. Species identification ............................................................................................................. 9 4.1 Procedures for species identification of fishes at IMR and PINRO ................................. 9 4.2 Description of the families with Arctic fishes, and issues related to identification ......... 9 4.2.1 Rajidae ....................................................................................................................... 9 4.2.2 Gadidae ...................................................................................................................... 9 4.2.3. Cottidae .................................................................................................................. 10 4.2.4 Agonidae ................................................................................................................. 10 4.2.5 Cyclopteridae .......................................................................................................... 10 4.2.6 Liparidae .................................................................................................................. 10 4.2.7 Zoarcidae ................................................................................................................. 11 4.2.8 Pleuronectidae ......................................................................................................... 11 5. Results .................................................................................................................................. 12 5. 1 Overall trend .................................................................................................................. 12 5.2 Trends by species ........................................................................................................... 18 5.2.1. Amblyraja hyperborea ............................................................................................ 19 5.2.2 Gymnocanthus tricuspis .......................................................................................... 20 5.2.3 Icelus spp. ................................................................................................................ 22 5.2.4 Triglops nybelini ..................................................................................................... 23 5.2.5 Aspidophoroides olrikii ........................................................................................... 25 5.2.6 Eumicrotremus derjugini ......................................................................................... 27 5.2.7 Eumicrotremus spinosus ......................................................................................... 28 5.2.8 Careproctus spp. ...................................................................................................... 29 5.2.9 Liparis bathyarcticus ............................................................................................... 30 5.2.10 Liparis fabricii ....................................................................................................... 31 5.2.11 Gymnelus spp. ....................................................................................................... 33 5.2.12 Lycodes eudipleurostictus ..................................................................................... 34 5.2.13 Lycodes polaris ..................................................................................................... 36 5.2.14 Lycodes reticulatus ................................................................................................ 37 5.2.15 Lycodes rossi ......................................................................................................... 39 5.2.16 Lycodes seminudus ............................................................................................... 41 5.3 Conclusions .................................................................................................................... 44 6. Recommendations ................................................................................................................ 44 7. References ............................................................................................................................ 45 Synopsis The Barents Sea is one of nine shelf ecosystem survey bordering the Arctic Basin. The Arctic region is warming faster than the rest of the world. In the Barents Sea the years since 2000 were the warmest since the onset of regular measurements (1900, Bochkov 1982, ICES 2016) and paleo-records based on foraminifera even suggest that the Atlantic Water flowing into to the Barents Sea area was at its warmest for the last 2000 years (Spielhagen et al. 2011). As a result the extent of Arctic Water with sub-zero temperatures and sea ice is shrinking in the Barents Sea (e.g. ICES 2016). The changes in hydrographic conditions change the conditions for the poorly known Arctic fish fauna in the region. Here we present for the first time results on trends in abundance and distribution of demersal Arctic fishes in the northern Barents Sea. Here we define an “Arctic shelf ecosystem” as a system with Arctic water masses and Arctic biota. The North-northeastern Barents Sea is such an Arctic shelf ecosystem. The Joint IMR/PINRO ecosystem survey covers the whole Barents Sea shelf including the northern Arctic part. The survey started in 2004, and in October 2016 the 13th survey was completed. Due to its broad area coverage and now 13 years of data this survey is the most extensive survey of an Arctic shelf ecosystem in existence. With ever more years of monitoring amended understanding of the dynamic of the poorly known northern Barents Sea and the fishes found here can be gained. Therefore, abundance and distribution of Arctic fishes from this survey should be reported regularly. When analyzing trends in occupancy and abundance of Arctic fishes in the northern Barents Sea using data from the ecosystem survey we found that: • Overall there was a negative trend in occupancy and the number of Arctic fish species caught at each station from 2004-2015 in the Barents Sea • The decline was most pronounced in the eastern and central part of the area studied here • Some species declined all over, some decline only in the southern part over the area studied, some decline in the southern part of the study area and increased in the north indicating a displacement, while some did not show any significant change. We provide an inventory of all fishes caught at the ecosystem survey and discuss problems with species identity and identification as well as limitation due to survey coverage and sampling, and provide recommendations for future work. 3 2 Zoogeographical classification of Barents Sea fishes Biogeographical patterns are created by large-scaled historical, phylogenetic processes (Box 1). The range limits maintaining the zoogeographical patterns are due to spatial variation in the environment (including geographical barriers), the ecological traits of the species (their niche), and to what extent these traits are maintained over time (niche conservatisms). There is no approved methodology for marine biogeography and categories can be defined by distribution in relation to temperature regimes or by taxonomic/phylogenetic discreteness defined by the degree of endemism (Dipner 2001). The classification used here (below) is based on with water mass affiliation and include four different categories (CAFF 2013): Arctic (A) species are distributed in Arctic waters, spawn solely at sub-zero temperatures and are only infrequently found in temperate waters, Arctic-boreal (AB) species are distributed in Arctic and cold temperate waters and may spawn in both sub-zero temperatures and positive temperatures, Boreal (B) species are distributed
Recommended publications
  • Northern Wolffish,Anarhichas Denticulatus
    COSEWIC Assessment and Status Report on the Northern Wolffish Anarhichas denticulatus in Canada THREATENED 2012 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2012. COSEWIC assessment and status report on the Northern Wolffish Anarhichas denticulatus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. x + 41 pp. (www.registrelep-sararegistry.gc.ca/default_e.cfm) Previous report(s): COSEWIC. 2001. COSEWIC assessment and status report on the northern wolffish Anarhichas denticulatus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 21 pp. (www.sararegistry.gc.ca/status/status_e.cfm) O’Dea, N.R., and R.L. Haedrich. 2001. COSEWIC status report on the northern wolffish Anarhichas denticulatus in Canada, in COSEWIC assessment and status report on the northern wolffish Anarhichas denticulatus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-21 pp. Production note: COSEWIC would like to acknowledge Red Méthot for writing the status report on the Northern Wolffish, Anarhichas denticulatus in Canada, prepared under contract with Environment Canada. The report was overseen and edited by John Reynolds, COSEWIC Marine Fishes Specialist Subcommittee Co-chair. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur le Loup à tête large (Anarhichas denticulatus) au Canada.
    [Show full text]
  • (Anarhichas Lupus) and Spotted Wolffish (Anarhichas Minor) in West Greenland Waters
    NAFO SCI. Coun. Studies, 12: 13-20 Distribution, Abundance and Migration of Atlantic Wolffish (Anarhichas lupus) and Spotted Wolffish (Anarhichas minor) in West Greenland Waters Frank Riget Greenland Fisheries and Environment Research Institute Tagensvej 135, Copenhagen N, Denmark and J. Messtorff Bundesforschungsanstalt fUr Fischerei, Institut fUr Seefischerei 0-2850 Bremerhaven, Federal Republic of Germany Abstract Results from stratified-random bottom-trawl surveys off West Greenland during the autumns of 1982-86 indicated substantial decline in biomass and abundance of both Atlantic wolffish and spotted wolffish. Atlantic wolffish were the more abundant of the two species, with the catch rate generally decreasing from north to south, and occurred mainly in the 0-200 and 200-400 m depth ranges. Spotted wolffish, on the other hand, were rather uniformly distributed over the three depth ranges (to 600 m) and also over the north-south strata. Mean lengths of both species tended to increase from north to south. Reported recaptures from the taggings, during 1955-64, of 174 Atlantic wolffish and 746 spotted wolffish were 2 and 53 respectively. The two Atlantic wolffish were taken in the vicinity of the tagging site about 2 years after they were tagged. Spotted wolffish exhibited rather stationary behavior, with most recaptures generally within 20 nautical miles (nm) of the tagging sites up to 10 years after they were tagged. Only three spotted wolffish were found more than 100 nm from the tagging sites, two southward and one northward. Analysis of long line catches of spotted wolffish in the Nuuk area indicated local seasonal movements. Introduction experiments.
    [Show full text]
  • Early Stages of Fishes in the Western North Atlantic Ocean Volume
    ISBN 0-9689167-4-x Early Stages of Fishes in the Western North Atlantic Ocean (Davis Strait, Southern Greenland and Flemish Cap to Cape Hatteras) Volume One Acipenseriformes through Syngnathiformes Michael P. Fahay ii Early Stages of Fishes in the Western North Atlantic Ocean iii Dedication This monograph is dedicated to those highly skilled larval fish illustrators whose talents and efforts have greatly facilitated the study of fish ontogeny. The works of many of those fine illustrators grace these pages. iv Early Stages of Fishes in the Western North Atlantic Ocean v Preface The contents of this monograph are a revision and update of an earlier atlas describing the eggs and larvae of western Atlantic marine fishes occurring between the Scotian Shelf and Cape Hatteras, North Carolina (Fahay, 1983). The three-fold increase in the total num- ber of species covered in the current compilation is the result of both a larger study area and a recent increase in published ontogenetic studies of fishes by many authors and students of the morphology of early stages of marine fishes. It is a tribute to the efforts of those authors that the ontogeny of greater than 70% of species known from the western North Atlantic Ocean is now well described. Michael Fahay 241 Sabino Road West Bath, Maine 04530 U.S.A. vi Acknowledgements I greatly appreciate the help provided by a number of very knowledgeable friends and colleagues dur- ing the preparation of this monograph. Jon Hare undertook a painstakingly critical review of the entire monograph, corrected omissions, inconsistencies, and errors of fact, and made suggestions which markedly improved its organization and presentation.
    [Show full text]
  • Section 3.9 Fish
    3.9 Fish MARIANA ISLANDS TRAINING AND TESTING FINAL EIS/OEIS MAY 2015 TABLE OF CONTENTS 3.9 FISH .................................................................................................................................. 3.9-1 3.9.1 INTRODUCTION .............................................................................................................................. 3.9-2 3.9.1.1 Endangered Species Act Species ................................................................................................ 3.9-2 3.9.1.2 Taxonomic Groups ..................................................................................................................... 3.9-3 3.9.1.3 Federally Managed Species ....................................................................................................... 3.9-5 3.9.2 AFFECTED ENVIRONMENT ................................................................................................................ 3.9-9 3.9.2.1 Hearing and Vocalization ......................................................................................................... 3.9-10 3.9.2.2 General Threats ....................................................................................................................... 3.9-12 3.9.2.3 Scalloped Hammerhead Shark (Sphyrna lewini) ...................................................................... 3.9-14 3.9.2.4 Jawless Fishes (Orders Myxiniformes and Petromyzontiformes) ............................................ 3.9-15 3.9.2.5 Sharks, Rays, and Chimaeras (Class Chondrichthyes)
    [Show full text]
  • Spotted Wolffish (Anarhichas Minor) in the Northwest Atlantic
    COSEWIC Assessment and Status Report on the Spotted Wolffish Anarhichas minor in Canada THREATENED 2001 COSEWIC COSEPAC COMMITTEE ON THE STATUS OF COMITÉ SUR LA SITUATION DES ENDANGERED WILDLIFE ESPÈCES EN PÉRIL IN CANADA AU CANADA COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: Please note: Persons wishing to cite data in the report should refer to the report (and cite the author(s)); persons wishing to cite the COSEWIC status will refer to the assessment (and cite COSEWIC). A production note will be provided if additional information on the status report history is required. COSEWIC 2001. COSEWIC assessment and status report on the spotted wolffish Anarhichas minor in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 22 pp. (www.sararegistry.gc.ca/status/status_e.cfm) O’Dea, N.R. and R.L. Haedrich. 2001. COSEWIC status report on the spotted wolffish Anarhichas minor in Canada, in COSEWIC assessment and status report on the spotted wolffish Anarhichas minor in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-22 pp. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: (819) 997-4991 / (819) 953-3215 Fax: (819) 994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Rapport du COSEPAC sur la situation du loup tacheté (Anarhichas minor) au Canada Cover illustration: Spotted Wolffish — from Scott and Scott, 1988.
    [Show full text]
  • Preliminary Mass-Balance Food Web Model of the Eastern Chukchi Sea
    NOAA Technical Memorandum NMFS-AFSC-262 Preliminary Mass-balance Food Web Model of the Eastern Chukchi Sea by G. A. Whitehouse U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Alaska Fisheries Science Center December 2013 NOAA Technical Memorandum NMFS The National Marine Fisheries Service's Alaska Fisheries Science Center uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series reflect sound professional work and may be referenced in the formal scientific and technical literature. The NMFS-AFSC Technical Memorandum series of the Alaska Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest Fisheries Center. The NMFS-NWFSC series is currently used by the Northwest Fisheries Science Center. This document should be cited as follows: Whitehouse, G. A. 2013. A preliminary mass-balance food web model of the eastern Chukchi Sea. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-262, 162 p. Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. NOAA Technical Memorandum NMFS-AFSC-262 Preliminary Mass-balance Food Web Model of the Eastern Chukchi Sea by G. A. Whitehouse1,2 1Alaska Fisheries Science Center 7600 Sand Point Way N.E. Seattle WA 98115 2Joint Institute for the Study of the Atmosphere and Ocean University of Washington Box 354925 Seattle WA 98195 www.afsc.noaa.gov U.S. DEPARTMENT OF COMMERCE Penny. S. Pritzker, Secretary National Oceanic and Atmospheric Administration Kathryn D.
    [Show full text]
  • Joint PINRO/IMR Report on the State of the Barents Sea Ecosystem 2006, with Expected Situation and Considerations for Management
    IMR/PINRO J O S I E N I 2 R T 2007 E R E S P O R T JOINT PINRO/IMR REPORT ON THE STATE OFTHE BARENTS SEA ECOSYSTEM IN 2006 WITH EXPECTED SITUATION AND CONSIDERATIONS FOR MANAGEMENT Institute of Marine Research - IMR Polar Research Institute of Marine Fisheries and Oceanography - PINRO This report should be cited as: Stiansen, J.E and A.A. Filin (editors) Joint PINRO/IMR report on the state of the Barents Sea ecosystem 2006, with expected situation and considerations for management. IMR/PINRO Joint Report Series No. 2/2007. ISSN 1502-8828. 209 pp. Contributing authors in alphabetical order: A. Aglen, N.A. Anisimova, B. Bogstad, S. Boitsov, P. Budgell, P. Dalpadado, A.V. Dolgov, K.V. Drevetnyak, K. Drinkwater, A.A. Filin, H. Gjøsæter, A.A. Grekov, D. Howell, Å. Høines, R. Ingvaldsen, V.A. Ivshin, E. Johannesen, L.L. Jørgensen, A.L. Karsakov, J. Klungsøyr, T. Knutsen, P.A. Liubin, L.J. Naustvoll, K. Nedreaas, I.E. Manushin, M. Mauritzen, S. Mehl, N.V. Muchina, M.A. Novikov, E. Olsen, E.L. Orlova, G. Ottersen, V.K. Ozhigin, A.P. Pedchenko, N.F. Plotitsina, M. Skogen, O.V. Smirnov, K.M. Sokolov, E.K. Stenevik, J.E. Stiansen, J. Sundet, O.V. Titov, S. Tjelmeland, V.B. Zabavnikov, S.V. Ziryanov, N. Øien, B. Ådlandsvik, S. Aanes, A. Yu. Zhilin Joint PINRO/IMR report on the state of the Barents Sea ecosystem in 2006, with expected situation and considerations for management ISSUE NO.2 Figure 1.1. Illustration of the rich marine life and interactions in the Barents Sea.
    [Show full text]
  • Table of Contents
    Table of Contents Chapter 2. Alaska Arctic Marine Fish Inventory By Lyman K. Thorsteinson .............................................................................................................. 23 Chapter 3 Alaska Arctic Marine Fish Species By Milton S. Love, Mancy Elder, Catherine W. Mecklenburg Lyman K. Thorsteinson, and T. Anthony Mecklenburg .................................................................. 41 Pacific and Arctic Lamprey ............................................................................................................. 49 Pacific Lamprey………………………………………………………………………………….…………………………49 Arctic Lamprey…………………………………………………………………………………….……………………….55 Spotted Spiny Dogfish to Bering Cisco ……………………………………..…………………….…………………………60 Spotted Spiney Dogfish………………………………………………………………………………………………..60 Arctic Skate………………………………….……………………………………………………………………………….66 Pacific Herring……………………………….……………………………………………………………………………..70 Pond Smelt……………………………………….………………………………………………………………………….78 Pacific Capelin…………………………….………………………………………………………………………………..83 Arctic Smelt………………………………………………………………………………………………………………….91 Chapter 2. Alaska Arctic Marine Fish Inventory By Lyman K. Thorsteinson1 Abstract Introduction Several other marine fishery investigations, including A large number of Arctic fisheries studies were efforts for Arctic data recovery and regional analyses of range started following the publication of the Fishes of Alaska extensions, were ongoing concurrent to this study. These (Mecklenburg and others, 2002). Although the results of included
    [Show full text]
  • Marine Fishes of the Arctic C
    Marine Fishes of the Arctic C. W. Mecklenburg1,2, E. Johannesen3, C. Behe4, I. Byrkjedal5, J. S. Christiansen6, A. Dolgov7, K. J. Hedges8, O. V. Karamushko9, A. Lynghammar6, T. A. Mecklenburg2, P. R. Møller10, R. Wienerroither3, B.A. Holladay11 1 California Academy of Sciences, USA; 2 Point Stephens Research, USA; 3 Institute of Marine Research, Norway; 4 Inuit Circumpolar Council, USA; 5 University Museum of Bergen, Norway; 6 University of Tromsø, Norway; 7 Polar Research Institute of Marine Fisheries and Oceanography, Russia; 8 Fisheries and Oceans Canada, Canada; 9 Russian Academy of Sciences, Murmansk Marine Biological Institute, Russia; 10 University of Copenhagen, Zoological Museum, Denmark, 11University of Alaska Fairbanks, Alaska, USA Recognition of global climate change and the concomitant increased research in Arctic seas have revealed significant knowledge gaps, reviewed recently in the Council of Arctic Flora and Fauna (CAFF) ARCTIC REGION Arctic Biodiversity Assessment. The chapter on marine fishes demonstrated the need for a comprehensive review and assessment Arctic Region, defined as it pertains for marine fishes. of distribution, taxonomy, and biology. The atlas and guide Truly Arctic marine fish species are rarely found under current development will provide a baseline reference for outside of this region. Many warmer-water, Boreal identifying marine fish species of the Arctic region and evaluating species have penetrated into this region. changes in diversity and distribution. Marine Fishes of the Arctic builds on a guide to the Pacific Arctic marine fishes which is nearing completion and has been developed under the Russian–American Long-Term Census of the Arctic sponsored by the U.S.
    [Show full text]
  • The Morphology and Sculpture of Ossicles in the Cyclopteridae and Liparidae (Teleostei) of the Baltic Sea
    Estonian Journal of Earth Sciences, 2010, 59, 4, 263–276 doi: 10.3176/earth.2010.4.03 The morphology and sculpture of ossicles in the Cyclopteridae and Liparidae (Teleostei) of the Baltic Sea Tiiu Märssa, Janek Leesb, Mark V. H. Wilsonc, Toomas Saatb and Heli Špilevb a Institute of Geology at Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia; [email protected] b Estonian Marine Institute, University of Tartu, Mäealuse Street 14, 12618 Tallinn, Estonia; [email protected], [email protected], [email protected] c Department of Biological Sciences and Laboratory for Vertebrate Paleontology, University of Alberta, Edmonton, Alberta T6G 2E9 Canada; [email protected] Received 31 August 2009, accepted 28 June 2010 Abstract. Small to very small bones (ossicles) in one species each of the families Cyclopteridae and Liparidae (Cottiformes) of the Baltic Sea are described and for the first time illustrated with SEM images. These ossicles, mostly of dermal origin, include dermal platelets, scutes, tubercles, prickles and sensory line segments. This work was undertaken to reveal characteristics of the morphology, sculpture and ultrasculpture of these small ossicles that could be useful as additional features in taxonomy and systematics, in a manner similar to their use in fossil material. The scutes and tubercles of the cyclopterid Cyclopterus lumpus Linnaeus are built of small denticles, each having its own cavity viscerally. The thumbtack prickles of the liparid Liparis liparis (Linnaeus) have a tiny spinule on a porous basal plate; the small size of the prickles seems to be related to their occurrence in the exceptionally thin skin, to an adaptation for minimizing weight and/or metabolic cost and possibly to their evolution from isolated ctenii no longer attached to the scale plates of ctenoid scales.
    [Show full text]
  • XIV. Appendices
    Appendix 1, Page 1 XIV. Appendices Appendix 1. Vertebrate Species of Alaska1 * Threatened/Endangered Fishes Scientific Name Common Name Eptatretus deani black hagfish Lampetra tridentata Pacific lamprey Lampetra camtschatica Arctic lamprey Lampetra alaskense Alaskan brook lamprey Lampetra ayresii river lamprey Lampetra richardsoni western brook lamprey Hydrolagus colliei spotted ratfish Prionace glauca blue shark Apristurus brunneus brown cat shark Lamna ditropis salmon shark Carcharodon carcharias white shark Cetorhinus maximus basking shark Hexanchus griseus bluntnose sixgill shark Somniosus pacificus Pacific sleeper shark Squalus acanthias spiny dogfish Raja binoculata big skate Raja rhina longnose skate Bathyraja parmifera Alaska skate Bathyraja aleutica Aleutian skate Bathyraja interrupta sandpaper skate Bathyraja lindbergi Commander skate Bathyraja abyssicola deepsea skate Bathyraja maculata whiteblotched skate Bathyraja minispinosa whitebrow skate Bathyraja trachura roughtail skate Bathyraja taranetzi mud skate Bathyraja violacea Okhotsk skate Acipenser medirostris green sturgeon Acipenser transmontanus white sturgeon Polyacanthonotus challengeri longnose tapirfish Synaphobranchus affinis slope cutthroat eel Histiobranchus bathybius deepwater cutthroat eel Avocettina infans blackline snipe eel Nemichthys scolopaceus slender snipe eel Alosa sapidissima American shad Clupea pallasii Pacific herring 1 This appendix lists the vertebrate species of Alaska, but it does not include subspecies, even though some of those are featured in the CWCS.
    [Show full text]
  • Curriculum Vita Is Available Here
    COLLEGE OF WILLIAM AND MARY Curriculum Vita Standard Format PERSONAL INFORMATION Name: John A. Musick Date: 21 October 2014 Office Address: School of Marine Science, Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA 23062 Phone: (804) 684-7317 Fax: (804) 684-7327 Email: [email protected] Home Address: 7036 Sassafras Landing Road, Gloucester, VA 23061 Phone: (804) 693-0719 Professional position: Marshall Acuff Professor of Marine Science Emeritus EDUCATION B.A. Rutgers University 1962 M.A. Harvard University 1964 Ph.D. Harvard University 1969 ACADEMIC POSITIONS 2008- Marshall Acuff Professor in Marine Science Emeritus, College of William and Mary 1999-2007: Marshall Acuff Chair in Marine Science, Head Vertebrate Ecology and Systematics Programs, College of William and Mary 1981-1999: Professor of Marine Science, Head, Vertebrate Ecology and Systematics programs, College of William and Mary, Virginia Institute of Marine Science. Gloucester Point, Virginia 2000-2006 Adjunct Graduate Faculty: School of Fisheries, Animal and Veterinary Science, University of Rhode Island 1971-1978: Scientific Collaborator. U.S. National Park Service, Cape Hatteras National Seashore 1979-1980: Associate Professor of Marine Science, College of William and Mary 1969-1979: Assistant Professor of Marine Science, University of Virginia 1968-1969: Instructor in Marine Science, College of William and Mary HONORS, PRIZES AND AWARDS 2009, Distinguished Fellow Award, American Elasmobranch Society 2008, Lifetime Achievement Award in Science, Commonwealth of Virginia 2002, Excellence in Fisheries Education Award, American Fisheries Society. 2001, Outstanding Faculty Award, State Council on Higher Education in Virginia 2000, Distinguished Service Award, American Fisheries Society [“You are recognized for your contributions toward providing understanding of the risks to long-lived marine fish species.
    [Show full text]