Pohl's Introduction to Physics

Total Page:16

File Type:pdf, Size:1020Kb

Pohl's Introduction to Physics Klaus Lüders Robert O. Pohl Editors Pohl’s Introduction to Physics Volume 2: Electrodynamics and Optics With videos: Demonstrations and biography of Robert W.Pohl Pohl’s Introduction to Physics Klaus Lüders Robert Otto Pohl Editors Pohl’s Introduction to Physics Volume 2: Electrodynamics and Optics Editors Klaus Lüders Robert Otto Pohl Fachbereich Physik Department of Physics Freie Universität Berlin Cornell University Berlin, Germany Ithaca, NY, USA Translated by Prof. William D. Brewer, PhD, Fachbereich Physik, Freie Universität Berlin, Berlin, Germany Additional material to this book can be downloaded from http://extras.springer.com. ISBN 978-3-319-50267-0 ISBN 978-3-319-50269-4 (eBook) https://doi.org/10.1007/978-3-319-50269-4 Library of Congress Control Number: 2017944730 © Springer International Publishing AG 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, repro- duction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a war- ranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Printed on acid-free paper This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland Preface to the 24th German Edition (2018) and the 2nd English Edition (2018) Accompanying Volume 1, this second volume of “Pohl” will be published in an up-to-date format, with a modern system of numbering of the chapters, equations and figures and with exercises at the end of each chapter. Once again, we have taken the opportunity to carry out a critical reading of the whole text. Along with numerous clarifications and new formulations, we have revised many figures and comments to conform with modern notation and symbols, in order to make reviewing the material and reference to other literature as straightforward as possible. As in Volume 1, we have carried out major revisions to the accompanying videos. In the e-book format, they will be readily accessible and can be opened directly by clicking on the links provided. This is true also of supplementary references from the Internet, and of the historical documentary “Simplicity is the Mark of Truth – the Life and Work of Robert Wichard Pohl” by the science journalist Ekkehard Sieker (see the Preface to the 22nd edition, sidenote). He has dealt extensively with the biography of Robert Wichard Pohl in Göttingen. Once again, it is our pleasure and duty to expressly thank the Erstes Physikalisches Institut at the Georg-August-Universität Göttingen and the Fachbereich Physik at the Freie Universität Berlin for generous support. Special thanks go to Prof. K. Samwer, Prof. G. Beuermann, Mr. J. Feist and Mr. C. Mahn from Göttingen, as well as most especially Dr. J. Kirstein from the Freie Universität Berlin, without whose help the preparation of the videos for this new edition would not have been possible. The first English edition of Pohl’s “Physical Principles of Electricity and Magnetism” appeared in 1930 (translated, as was his “Physical Principles of Mechanics and Acoustics” two years later, by Winifred M. Deans). It was published by Blackie & Son, Ltd., London and Glasgow. The translation was based on the second edition of Pohl’s “Einführung in die Physik, Elektrizitätslehre” (Julius Springer, 1929). The present new, second English edition is based on the 24th edition of “Pohls Einführung in die Physik”,Vol.2(Elektrizitätslehre und Optik, Springer Spektrum, Berlin Heidelberg 2018). Again, we gratefully acknowledge the help of Professor W.D. Brewer from the Fachbereich Physik of the Freie Universität Berlin, not only for carrying out the translation of the text with great quality and speed, but also, and this is probably even more important, for his help with the identification and clarification of unclear parts in the text and in our comments. The English-language readers will appreciate the numerous links he added for further information. We owe thanks also to E. Sieker for his translation and production of the English version of his video biography of R.W. Pohl, which is included in the links for this edition. We also wish to thank Dr. T. Schneider and the Springer-Verlag for making this edition possible, and for their generous help in carrying out its preparation and production. Berlin, Göttingen, Ithaca, March 2017 K. Lüders R.O. Pohl v From the Preface to the 23rd German Edition (2009) After the publication of Vol. 1 of R.W. POHL’s Introduction to Physics, covering the topics of Mechanics, Acoustics and Thermodynamics in a new, revised edition in 2008, we now follow it with this Vol. 2, dealing with Electromagnetism and Optics, likewise as a newly-revised edition. We have again taken the opportunity to add supplemental information where it seemed appropriate to us. In addition to new or revised comments and a number of clarifications in the text, the novel features include in particular a series of videos showing demonstration experiments as well as a collection of exercises for the readers. The chapter on Ferromagnetism from earlier editions was againincludedinthesectiononElectromagnetism. The additional videos for this edition were recorded under our own direction in the new physics lecture hall at the University of Göttingen, or else in cooperation with the Physics Didactics Group at the Free University in Berlin. The main part of the exercises on electromagnetism comes from the original English-language edition of 1930; however, we have again added new exercises to both the Electromagnetism and Optics sections. They deal in particular with questions which arise in the text, the figures, or the videos, and so provide additional information and an aid to understanding the concepts introduced; they are thus intended to make it easier for the reader to review and digest the material in the book. Berlin and Göttingen, June 2009 K. Lüders R.O. Pohl vii From the Preface to the 22nd German Edition ROBERT WICHARD POHL completed his three-volume “Introduction to Physics” in 1940 with the publication of the first edition of his “Optics”. After we had edited the new, revised first volume covering the fields of Mechanics, Acoustics and Thermodynamics in 2004, we decided to combine the chapters on the fundamentals of Electromagnetism and Optics into a second volume. As with the first volume, we wanted to make an appropriate selection of the material from the many previous editions. The present Vol. 2 is based on the 20th edition of the “Elektrizitätslehre” and the 12th edition of “Optik und Atomphysik”, both of which appeared in 1967. For this volume, as for Vol. 1, the IWF Wissen und Medien (Institute for Scientific Films) in Göttingen prepared short videos showing original demonstration experiments. They are made available with the book as a DVD. In addition, the DVD contains the historical documentary film1 “Simplicity is the Mark of Truth” (Original title: “Einfachheit ist das Zeichen des Wahren”, Pohl’s scientific motto; see the Comment), which was planned, researched and, together with the Düsseldorf production studio ‘Kiosque’, filmed by the scientific journalist Ekkehard Sieker. The film offers a detailed view of the life and work of Robert Wichard Pohl in Göttingen. It describes how R.W. Pohl, together with his famous colleagues Max Born and James Franck, made essential contributions to research and the teaching of physics in Germany in the 1920’s. The Physics Institutes of the University of Göttingen in those days became one of the internationally most important centers of physics. Max Born engaged early on in research into Einstein’s theory of relativity and made important contributions to the theoretical foundation of modern quantum theory. James Franck’s research interests likewise lay in the field of quantum mechanics, in particular in the areas of atomic and molecular physics. R.W. Pohl was a pioneer of solid-state physics, and through his research and as a brilliant teacher, he influenced generations of physicists from all over the world. The excellent standing of physics in Göttingen was brought to an abrupt end by the political takeover of the National Socialist (Nazi) Party at the end of January, 1933. Max Born and James Franck were forced to emigrate from Germany; R.W. Pohl remained as the sole physics professor in Göttingen. He was not a publicly political person – he was a scientist, whose area of commitment was in his Institute. 1 Video: “Simplicity is the Mark of Truth” – the Life and Work of Robert Wichard Pohl – http://tiny.cc/xucxny The title of this film is the translation of Pohl’s scientific motto, “Simplex sigillum veri”, under which he held his famous lectures over several decades. It was written on the front wall of the physics lecture hall in Göttingen, and was occasionally mistranslated by jokesters as “Sealing wax is the only truth”.
Recommended publications
  • Physics Teaching and Research at Göttingen University 2 GREETING from the PRESIDENT 3
    Physics Teaching and Research at Göttingen University 2 GREETING FROM THE PRESIDENT 3 Greeting from the President Physics has always been of particular importance for the Current research focuses on solid state and materials phy- Georg-August-Universität Göttingen. As early as 1770, Georg sics, astrophysics and particle physics, biophysics and com- Christoph Lichtenberg became the first professor of Physics, plex systems, as well as multi-faceted theoretical physics. Mathematics and Astronomy. Since then, Göttingen has hos- Since 2003, the Physics institutes have been housed in a new ted numerous well-known scientists working and teaching physics building on the north campus in close proximity to in the fields of physics and astronomy. Some of them have chemistry, geosciences and biology as well as to the nearby greatly influenced the world view of physics. As an example, Max Planck Institute (MPI) for Biophysical Chemistry, the MPI I would like to mention the foundation of quantum mecha- for Dynamics and Self Organization and the MPI for Solar nics by Max Born and Werner Heisenberg in the 1920s. And System Research. The Faculty of Physics with its successful Georg Christoph Lichtenberg and in particular Robert Pohl research activities and intense interdisciplinary scientific have set the course in teaching as well. cooperations plays a central role within the Göttingen Cam- pus. With this booklet, the Faculty of Physics presents itself It is also worth mentioning that Göttingen physicists have as a highly productive and modern faculty embedded in an accepted social and political responsibility, for example Wil- attractive and powerful scientific environment and thus per- helm Weber, who was one of the Göttingen Seven who pro- fectly prepared for future scientific challenges.
    [Show full text]
  • Background Information Lichtenberg Figures
    Factors That Affect Lichtenberg Figures Name Institution Date Background information Lichtenberg Figures Lichtenberg Figures are caused by electric discharges that sometimes occur on the surface of or inside insulating materials, such as wood, acrylic, or even human skin. German Physicist Georg Christoph Lichtenberg discovered them and subsequently researched them. In 1777, Lichtenberg built a large electrophorus to generate high voltage static electricity, after then discharging this high voltage he used pressed paper to record these patterns, this discovering the basic principle of xerography (What are Lichtenberg Figures? A bit of history..., 2020). These figures are of enormous interest because they exhibit fractal properties. A fractal is a never-ending pattern which repeats itself at different scales. This property is called “Self-Similarity”. Fractals are very complex; however, they are made by a straightforward repeating process. Fractals appear a lot in nature, such as in the shape of galaxies, hurricanes, and trees. One Fractal which is particularly well known is the Mandelbrot Set. What gives rise to these structures in nature? In this essay, I hypothesize what factors affect the formation of these Lichtenberg figures in insulating materials. Main Body The hypothesis I will discuss is that the following points affect the geometry Lichtenberg Figure; Distance between contact points, Duration of exposure, and Variation of material. As Lichtenberg Figures are caused by dielectric breakd changing these properties alter the electrodynamic properties of the material. By their very nature insulators do not readily allow current to flow through them, however the case of dialectic breakdown, we can see that this must be occurring.
    [Show full text]
  • Lichtenberg Figures and How Are They Produced? Copyright Stoneridge Engineering, 1999-2004, Updated 8/15/04
    What are Lichtenberg Figures and how are they produced? Copyright Stoneridge Engineering, 1999-2004, Updated 8/15/04 Lichtenberg Figures are patterns that are formed on the surface or inside insulating materials by high voltage electrical discharges. The first Lichtenberg Figures were actually two-dimensional patterns formed in dust on a charged plate in the laboratory of their discoverer, Georg Christoph Lichtenberg (1742-1799), a German physicist. The basic principles involved in the formation of these early figures are also fundamental to the operation of modern copy machines and laser printers. Using modern materials and powerful particle accelerators, 3-D Lichtenberg Figures can now be created inside clear plastic blocks, permanently forming beautiful “Captured Lightning ™”. Acrylic plastic (Polymethylmethacrylate - PMMA) is used as the medium for our Lichtenberg Figures because it has an excellent combination of optical, dielectric, and mechanical properties. A linear accelerator (LINAC) is used to produce large numbers of high-speed electrons - a high-energy electron beam (e-beam). Electrons in the beam are accelerated to up to 99.5% of the speed of light. These “relativistic” electrons have acquired a very large amount of kinetic energy (measured in Millions of Electron Volts or MeV). Specially selected and prepared pieces of acrylic are placed in the path of this electron beam. As the energetic electrons in the beam hit the surface of the acrylic, they don’t immediately stop. Instead, they collide with the molecules of acrylic, slowing down and coming to rest deep inside the block. Under continued irradiation, electrons rapidly accumulate inside the acrylic, forming a layer of excess negative charge called a space charge.
    [Show full text]
  • Electrostatic Discharges and Multifractal Analysis of Their Lichtenberg figures
    J. Phys. D: Appl. Phys. 32 (1999) 219–226. Printed in the UK PII: S0022-3727(99)96851-1 Electrostatic discharges and multifractal analysis of their Lichtenberg figures T Ficker Department of Physics, Technical University, Ziˇ zkovaˇ 17, CZ-602 00 Brno, Czech Republic Received 17 August 1998, in final form 30 September 1998 Abstract. Morphological features of Lichtenberg figures created by electrostatic separation discharges on the surfaces of electret samples have been studied by means of multifractal analysis. The monofractal ramification of surface positive-channel streamers has been confirmed and found to be dependent on actual experimental conditions. For the lower level of electret saturation used, the fractal dimension D 1.4 of the surface Lichtenberg channels has been obtained. Various registration features of electret≈ and non-electret samples have been discussed and illustrated. 1. Introduction The majority of the studies dealing with Lichtenberg figures has used point-to-plane electrode systems and short Typical electrostatic discharges arise during separation of a voltage pulses in the microsecond and nanosecond regimes. charged sheet of a highly resistive material from a grounded The consequence of such special experimental arrangements object. Such electrostatic discharges are sometimes called is the characteristic form of the corresponding Lichtenberg ‘separation discharges’. Their damaging effects on some figures: a single circular star-shaped channel structure for a industrial products are well known: they degrade tracks on positive pulse (positive streamers) and a single circular spot paper and photographic materials, induce noise in electronic built up in a practically continuous manner for a negative components or cause inconvenience for the human body, pulse (negative streamers).
    [Show full text]
  • Injuries and Deaths from Lightning J Clin Pathol: First Published As 10.1136/Jclinpath-2020-206492 on 12 August 2020
    Review Injuries and deaths from lightning J Clin Pathol: first published as 10.1136/jclinpath-2020-206492 on 12 August 2020. Downloaded from Ryan Blumenthal Department of Forensic ABSTRACT above zero at the base of the cloud to aboutminus Medicine, University of Pretoria, This paper reviews recent academic research into 50°C at its top. Violent up and down draughts and Pretoria, Gauteng, South Africa the pathology of trauma of lightning. Lightning may severe turbulence occur in specific regions of the injure or kill in a variety of different ways. Aimed at the cloud.8 Correspondence to Professor Ryan Blumenthal, trainee, or practicing pathologist, this paper provides a According to Malan (1967), an electrically active Department of Forensic clinicopathological approach. thundercloud may be regarded as an electrostatic Medicine, University of Pretoria, generator suspended in an atmosphere of low Private Bag X323, Gezina, 0031, electrical conductivity. It is situated between two South Africa; ryan. blumenthal@ As Ponocrates grew familiar with Gargantua’s vi- up. ac. za cious manner of studying, he began to plan a differ- concentric conductors, namely, the surface of the ent course of education for the lad; but at first he let earth and the electrosphere, the latter being the Received 27 March 2020 him go on as before knowing that nature does not highly conducting layers of the atmosphere at alti- Revised 30 June 2020 9 endure abrupt changes without great violence. tudes above 50–60 km. Accepted 3 July 2020 Published Online First Rabelais, “The Old Education and the New”, Gar- There are different types of lightning discharges: 12 August 2020 gantua, Book 1.
    [Show full text]
  • What Are Lichtenberg Figures and How Are They Created? Copyright 2010, Bert Hickman
    What are Lichtenberg Figures and how are they created? Copyright 2010, Bert Hickman Lichtenberg Figures are branching, tree-like patterns that are sometimes formed on the surface or inside insulating materials by high voltage electrical discharges. The first Lichtenberg Figures were two-dimensional patterns formed in dust on charged insulating plates by the German physicist who discovered them, Georg Christoph Lichtenberg (1742-1799). The principles involved in the formation of these early figures are also fundamental to the operation of modern copy machines and laser printers. Using modern materials and powerful particle accelerators, beautiful 3-D Lichtenberg Figures can now be created inside clear acrylic, creating lightning sculptures. We use acrylic (Polymethyl Methacrylate or PMMA) to make our Lichtenberg Figures, since it has an ideal combination of optical, electrical, and mechanical properties. We also use a linear accelerator (LINAC) to create a beam of high-speed electrons. Electrons in the beam are accelerated to as much as 99.5% of the speed of light. These “relativistic” electrons have a very large amount of kinetic energy, measured in millions of electron Volts (MeV). Polished acrylic specimens are placed in the path of the beam. As the high speed electrons hit the acrylic surface, they don’t stop immediately. Instead, they collide with acrylic molecules, rapidly slowing down, eventually coming to rest deep inside the acrylic. As we continue to irradiate the specimens, huge numbers of electrons accumulate inside, forming an invisible cloud-like layer of excess negative charge. Since acrylic is an excellent electrical insulator, the excess electrons are trapped within the charge layer.
    [Show full text]
  • Bibliography
    Bibliography F.H. Attix, Introduction to Radiological Physics and Radiation Dosimetry (John Wiley & Sons, New York, New York, USA, 1986) V. Balashov, Interaction of Particles and Radiation with Matter (Springer, Berlin, Heidelberg, New York, 1997) British Journal of Radiology, Suppl. 25: Central Axis Depth Dose Data for Use in Radiotherapy (British Institute of Radiology, London, UK, 1996) J.R. Cameron, J.G. Skofronick, R.M. Grant, The Physics of the Body, 2nd edn. (Medical Physics Publishing, Madison, WI, 1999) S.R. Cherry, J.A. Sorenson, M.E. Phelps, Physics in Nuclear Medicine, 3rd edn. (Saunders, Philadelphia, PA, USA, 2003) W.H. Cropper, Great Physicists: The Life and Times of Leading Physicists from Galileo to Hawking (Oxford University Press, Oxford, UK, 2001) R. Eisberg, R. Resnick, Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles (John Wiley & Sons, New York, NY, USA, 1985) R.D. Evans, TheAtomicNucleus(Krieger, Malabar, FL USA, 1955) H. Goldstein, C.P. Poole, J.L. Safco, Classical Mechanics, 3rd edn. (Addison Wesley, Boston, MA, USA, 2001) D. Greene, P.C. Williams, Linear Accelerators for Radiation Therapy, 2nd Edition (Institute of Physics Publishing, Bristol, UK, 1997) J. Hale, The Fundamentals of Radiological Science (Thomas Springfield, IL, USA, 1974) W. Heitler, The Quantum Theory of Radiation, 3rd edn. (Dover Publications, New York, 1984) W. Hendee, G.S. Ibbott, Radiation Therapy Physics (Mosby, St. Louis, MO, USA, 1996) W.R. Hendee, E.R. Ritenour, Medical Imaging Physics, 4 edn. (John Wiley & Sons, New York, NY, USA, 2002) International Commission on Radiation Units and Measurements (ICRU), Electron Beams with Energies Between 1 and 50 MeV,ICRUReport35(ICRU,Bethesda, MD, USA, 1984) International Commission on Radiation Units and Measurements (ICRU), Stopping Powers for Electrons and Positrons, ICRU Report 37 (ICRU, Bethesda, MD, USA, 1984) 646 Bibliography J.D.
    [Show full text]
  • Static Electricity Vocabulary Key Ideas Static Charge, P
    09-SciProbe9-Chap09 2/8/07 10:47 AM Page 296 CHAPTER 9 Review Static Electricity Vocabulary Key Ideas static charge, p. 274 discharge, p. 274 Static electric charges can build up on objects. electrostatics, p. 274 • A static electric charge remains at rest until it is discharged. • A neutral object has an equal number of positive and negative charges. law of electric charges, p. 275 • Neutral objects can be given static charges that are either negative (by induced charge separation, p. 277 gaining electrons) or positive (by losing electrons). charging by friction, p. 279 Neutral objects are attracted to charged objects because of separation • charging by conduction, p. 279 of charges. charging by induction, p. 280 ؊ ؊ ؊ ؉ ؉ ؊ ؉ ؉ ؊ ؉ insulator, p. 282 ؊ ؉ ؊ ؉ ؊ ؉ ؉ ؉ ؊ ؊ ؊ ؊ ؊ ؊ ؉ ؉ ؉ ؉؊؉ conductor,p.282 grounded, p. 283 Van de Graaff generator, p. 285 electric force, p. 285 (a) a neutral (b) a sphere with a (c) a sphere with a positive sphere negative charge (more charge (fewer electrons Coulomb’s law, p. 286 electrons than protons) than protons) coulomb (C), p. 286 Objects become charged by friction, conduction, and induction. • Friction causes one object to gain electrons from another object. • Some materials, such as metals, are conductors of electricity, while other materials are insulators. • An object is charged by conduction when the excess charge on one object is transferred through contact to another object. • Induction occurs when a charged object influences the charge distribution in another object. 296 Unit C Electricity NEL 09-SciProbe9-Chap09 2/8/07 10:48 AM Page 297 An electric force between static charges can either attract or repel the charges.
    [Show full text]
  • Copies in Seconds by David Owen
    From Copies in Seconds by David Owen. Copyright © 2004 by David Owen. Reprinted by permission of Simon & Schuster, Inc., New York. Copies in Seconds by David Owen When Chester Carlson, working in the patent office at P. R. Mallory, needed a copy of a drawing in a patent application, his only option was to have a photographic copy made by an outside company that owned a Photostat or Rectigraph machine. “Their representative would come in, pick up the drawing, take it to their plant, make a copy, bring it back,” he recalled later. “It might be a wait of half a day or even twenty-four hours to get it back.” This was a costly nuisance, and it meant that what we now think of as a mindless clerical task was then an ongoing corporate operation involving outside vendors, billing, record keeping, and executive supervision. “So I recognized a very great need for a machine that could be right in an office,” he con- tinued, “where you could bring a document to it, push it in a slot, push a button, and get a copy out.” As Carlson began to consider how such a machine might work, he naturally thought first of photography. But he realized quickly that photog- raphy had distressingly many inherent limitations. Reducing the size of a bulky Photostat machine might be possible, but a smaller machine would still require coated papers and messy chemi- cals—the two main reasons making Photostats was expensive and inconvenient. Photography, furthermore, was already so well understood that it was unlikely to yield an important discovery to a lone inventor like Carlson.
    [Show full text]
  • Göttinger Geschichten Für Das Erste Physikalische Institut Gesammelt Von Manfred Achilles 2012
    Göttinger Geschichten für das Erste Physikalische Institut gesammelt von Manfred Achilles 2012 1 Manfred Achilles, TU Berlin Im Januar 2012 Eosanderstr. 17, 10587 Berlin achilles.manfred@t~online.de Episoden und Anekdoten aus der Göttinger Physik Die Geschichten und Anekdoten, die der Autor zu diesem Thema zusammengetragen hat, verdankt er zum großen Teil seinem verehrten Lehrer Prof. Dr. Walther Bünger (1905-1988), der in unzähligen Kaffeepausen seit 1965 bis wenige Tage vor seinem Tod mir und den anderen Angehörigen des "Institutes für Fachdidaktik und Lehrerbildung" der TU Berlin (vorher Pädagogische Hochschule) von den Ereignissen in der Göttinger Physik voller Freude berichtet hat. Als Pohlschüler fühlte er sich seinem alten Chef höchst verbunden. Es war für ihn und viele andere eine Selbstverständlichkeit, Pohl alljährlich zum Geburtstag zu gratulieren. Dieses Zusammengehörigkeitsgefühl der Pohlschule war so intensiv, dass es ein wenig auf den Autor übertragen wurde, obwohl dieser Pohl nie kennengelernt hat. Nur so ist es zu verstehen, dass diese Sammlung zu Stande gekommen ist, an deren Zusammenstellung ich seit zehn Jahren arbeite. Weitere Quellen sind die Herren E. Mollwo, W.Flechsig, F.Hund, L.Hagedorn (Arzt), Pohls Sohn, R.O.Pohl, u..a., die ich im Verlauf vieler Jahre interviewed hatte. Nach Möglichkeit nenne ich den Erzähler. Bei der Herstellung der hier vorliegenden Sammlung, und vor allem der Einfügung weiterer Geschichten, die zum Teil aus der Auflage vom November 2010 stammen, hat mir R.O.Pohl mit seinem Rechner geholfen. Mir ist natürlich bewusst, dass diese Sammlung keine Wissenschaft ist und keinesfalls einigermaßen erschöpfend sein kann. Manche der Anekdoten sind auch wie "Stille Post" durch mehrere Münder und Ohren gegangen, sind verändert worden oder aus der Erinnerung heraus nicht korrekt berichtet und aus dem Zusammenhang gerissen.
    [Show full text]
  • SIS Bulletin Index Issues 1 to 80
    Scientific Instrument Society Bulletin of the Scientific Instrument Society Index No 1 to No 80 Scientific Instrument Society Bulletin of the Scientific Instrument Society Index No 1 to No 80 Contents Introduction Index of Topics 3 Index of Articles 37 Index of Book Reviews 51 The Scientific Instrument Society 61 Documents Associated with the Index 61 Introduction Development of the Index of the Bulletin of the Scientific Instrument Society The first 40 issues of the Bulletin were indexed successively, ten issues at a time. With the advent of No 50 it was decided to amalgamate the earlier work and create a single index for all 50 issues. The work involved was a vast undertaking requiring the use of optical character recognition and other computer techniques on the earlier work, and a good deal of careful proof reading. The final product was handsomely produced in A4 size uniform with the Bulletin, running to 64 index pages. Having reached 80 issues, a similar combining exercise has been done, but with fewer categories within the Index. However, whilst the main index of individual topics remains as comprehensive as previously it is presented in a smaller typeface and makes use of more columns. At the time of printing, consideration is being given to the use of this new Index as a facility on the Society's website and also in connection with CDROMs of the Bulletin. Notes for using the 3 sections of the Bulletin Index, Issue No 1 to Issue No 80 Index of Topics Topics are arranged alphabetically by subject. References are shown as 'Issue No : Page No' eg 2:15 or 45:7-11 Index of Articles Authors of articles are listed alphabetically with the titles of their articles following in issue order.
    [Show full text]
  • Das Göttinger Nobelpreiswunder Ł 100 Jahre Nobelpreis
    1 Göttinger Bibliotheksschriften 21 2 3 Das Göttinger Nobelpreiswunder 100 Jahre Nobelpreis Herausgegeben von Elmar Mittler in Zusammenarbeit mit Monique Zimon 2., durchgesehene und erweiterte Auflage Göttingen 2002 4 Umschlag: Die linke Bildleiste zeigt folgende Nobelpreisträger von oben nach unten: Max Born, James Franck, Maria Goeppert-Mayer, Manfred Eigen, Bert Sakmann, Otto Wallach, Adolf Windaus, Erwin Neher. Die abgebildete Nobelmedaille wurde 1928 an Adolf Windaus verliehen. (Foto: Ronald Schmidt) Gedruckt mit Unterstützung der © Niedersächsische Staats- und Universitätsbibliothek Göttingen 2002 Umschlag: Ronald Schmidt, AFWK • Satz und Layout: Michael Kakuschke, SUB Digital Imaging: Martin Liebetruth, GDZ • Einband: Burghard Teuteberg, SUB ISBN 3-930457-24-5 ISSN 0943-951X 5 Inhalt Grußworte Thomas Oppermann ............................................................................................. 7 Horst Kern ............................................................................................................ 8 Herbert W. Roesky .............................................................................................. 10 Jürgen Danielowski ............................................................................................ 11 Elmar Mittler ...................................................................................................... 12 Fritz Paul Alfred Nobel und seine Stiftung ......................................................................... 15 Wolfgang Böker Alfred Bernhard Nobel ......................................................................................
    [Show full text]