Réactions De Cyclisation En Cascade : Un Nouvel Accès À Des Structures Polycycliques Exotiques [4.6.4.6]Fenestradiènes Versus Cyclooctatriènes

Total Page:16

File Type:pdf, Size:1020Kb

Réactions De Cyclisation En Cascade : Un Nouvel Accès À Des Structures Polycycliques Exotiques [4.6.4.6]Fenestradiènes Versus Cyclooctatriènes THÈSE présentée pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ LOUIS PASTEUR STRASBOURG I Discipline : Chimie Organique par Catherine HULOT Réactions de cyclisation en cascade : un nouvel accès à des structures polycycliques exotiques [4.6.4.6]fenestradiènes versus cyclooctatriènes Soutenue publiquement le 5 décembre 2008 devant la commission d’examen : Pr. Janick ARDISSON (Université Paris Descartes) Rapporteur externe Pr. Françoise COLOBERT (ECPM Strasbourg) Rapporteur interne Pr. Armin de MEIJERE (Georg-August-Universität Göttingen) Rapporteur externe Pr. Max MALACRIA (Université Paris VI) Examinateur externe Dr. Gaëlle BLOND (Université Strasbourg I) Membre invité Dr. Jean SUFFERT (Université Strasbourg I) Directeur de thèse Laboratoire de Pharmacochimie de la Communication Cellulaire (UMR 7175, LC1) THÈSE présentée pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ LOUIS PASTEUR STRASBOURG I Discipline : Chimie Organique par Catherine HULOT Réactions de cyclisation en cascade : un nouvel accès à des structures polycycliques exotiques [4.6.4.6]fenestradiènes versus cyclooctatriènes Soutenue publiquement le 5 décembre 2008 devant la commission d’examen : Pr. Janick ARDISSON (Université Paris Descartes) Rapporteur externe Pr. Françoise COLOBERT (ECPM Strasbourg) Rapporteur interne Pr. Armin de MEIJERE (Georg-August-Universität Göttingen) Rapporteur externe Pr. Max MALACRIA (Université Paris VI) Examinateur externe Dr. Gaëlle BLOND (Université Strasbourg I) Membre invité Dr. Jean SUFFERT (Université Strasbourg I) Directeur de thèse Laboratoire de Pharmacochimie de la Communication Cellulaire (UMR 7175, LC1) À Guillaume, À mes parents, À mon frère, À ma sœur. Remerciements Remerciements Je tiens tout d’abord à remercier le Dr Jean Suffert de m’avoir accueillie dans son laboratoire pour ces trois années de thèse, et de m’avoir guidée tout au long de ce travail. Je le remercie de m’avoir confié un sujet aussi passionnant et captivant. Je le remercie également d’avoir été disponible pour la moindre question, et de m’avoir fait partager toutes ses connaissances et son expérience, toujours avec le sourire et un mot d’humour. Je ne remercierai jamais assez le Dr Gaëlle Blond pour son soutien et sa confiance sans faille. En plus de ses précieux conseils du point de vue scientifique, qui ont permis de faire avancer ma thèse à grand pas, elle a toujours gardé sa bonne humeur, son dynamisme impressionnant et son enthousiasme communicatif. Que de fous rires ! Elle m’a appris à être efficace au quotidien. Un très très grand merci également pour son extrême disponibilité. Parmi les excellents souvenirs, un moment reste ainsi gravé dans ma mémoire : notre dernière répétition avant ma première communication orale à Palaiseau sur mes travaux de thèse. Je tiens à remercier chacun des membres du jury, les Prs Janick Ardisson (Université Paris Descartes), Françoise Colobert (ECPM Strasbourg), Armin de Meijere (Université Georg-August Göttingen) et Max Malacria (Université Paris VI), de me faire bénéficier de leur expertise en acceptant de juger ce travail et de consacrer du temps à l’examen de ce manuscrit. Je remercie également le Pr Peter Schreiner et Shadi Amiri (Université Justus-Liebig Giessen), pour leur collaboration fructueuse et très enrichissante concernant la partie théorique de ce manuscrit. Je les remercie de m’avoir permis de passer quelques jours très sympathiques dans leur équipe. J’aimerais ensuite remercier les anciens du laboratoire, tout d’abord les Drs Bahaâ Salem et Christophe Bour pour avoir initié ces travaux de recherche. J’en profite pour remercier également Christophe pour son aide et les bons moments durant ma première année de thèse. J’ai également eu le plaisir de travailler aux côtés du Dr Carmen Maiereanu, lors de ma deuxième année de thèse. Je tiens à la remercier vivement pour ses conseils et astuces scientifiques, tels que l’utilisation des colonnes de chromatographie, pour tous les moments très sympathiques et pour nos goûts musicaux communs. J’ai beaucoup apprécié sa chimie roumaine, avec le « brout » de réaction ! Je remercie également Régis, alias Réglisse, pour toutes nos discussions et tous nos nombreux délires durant ces années de thèse. Que ces quelques lignes leur expriment toute mon amitié. Merci également à Dimitry, Loïc, Paco, Enrique pour l’ambiance sympathique du laboratoire… Je remercie également les étudiants actuels du laboratoire, tout d’abord Aïcha, pour sa sympathie et ses nombreux cours d’allemand, quel dommage que nous n’ayons pas travaillé ensemble plus longtemps ! Merci également à Sophie, Mathieu, Thomas et en particulier Etienne qui a toujours trouvé le temps pour m’aider du point de vue informatique, de même que le Dr Nicolas Girard. Je tiens également à remercier les permanents du laboratoire, Angèle pour les discussions sympathiques et son aide, et le Dr André Mann pour sa disponibilité et ses conseils scientifiques. Remerciements Merci à Cyril, Pascale, Patrick et au Dr Bruno Didier, ainsi que toutes les autres personnes qui m’ont apporté une aide technique tout au long de ces années. Merci aux Drs Jean Peluso et Christian Muller pour leur contribution au niveau de la biologie. Merci également à Françoise et Marianne pour leur aide du point de vue administratif. Merci à tous les membres de l’UMR 7175 et de la faculté de pharmacie, en particulier à Pascal, Alexandre, Pascaline, Arthur, Ricardo, Phanélie et Clément, ainsi qu’aux personnes du laboratoire du Dr Wagner, notamment à Cynthia pour sa sympathie et pour la semaine passée ensemble à la SECO. Un grand merci au Dr Alexandre Specht pour ses conseils scientifiques et son aide, au Dr Karine Alarcon pour nos discussions, ainsi qu’aux autres membres du laboratoire du Pr Goeldner, en particulier Portia. Merci également au Dr Jean-Marc Weibel pour sa sympathie, et pour l’éthanolamine ! Je tiens à remercier aussi les Drs Viviane Van Dorsselaer et Franz Lorgé, ainsi que Véronique Rougean pour les moments forts sympathiques et très enrichissants passés à Sanofi-Aventis durant mon stage de maîtrise. Ce stage a été décisif dans mon envie de continuer dans la recherche. Merci à Franz pour la rigueur et l’organisation qu’il m’a inculquées. Merci également aux amis : Maher alias Mac, mon meilleur ami, ancien trinôme de chimie du DEUG, qui m’a montré notamment comment on pouvait s’amuser en chimie, ainsi que sa petite famille Tatiana et Yannis ; Carole alias ma folle, mon amie depuis notre rencontre mémorable lors du premier jour du DEUG ; le Dr Aurélie Guenet et Mathieu l’autre fan du PSG bien malheureux ! pour nos supers soirées animées ; le Dr Ludivine Fetzer, pour son écoute et nos discussions de thésardes ; Cécile alias Cess, que de chemin parcouru depuis le CP ! et Fabrice ; Caro, pour tous nos délires ; Marion et Hervé alias Pinpon Pro, qu’ils reçoivent toute mon estime ; le Dr Djalil Coowar et le Dr Mazen Hanbali, pour leur aide lors de mon DEA. Pour finir, un petit clin d’œil à mon petit chat Molybdène ! Je souhaite remercier profondément mon père, ma mère, mon frère et sa copine Marine, et bien entendu ma soeurette, pour m’avoir soutenue et comprise tout au long de ce travail. Sans eux, rien de tout cela n’aurait été possible ! Je pense que le fait de cotoyer des spectromètres RMN Bruker dès mon plus jeune âge avec mon père m’a probablement poussée dans cette direction ! Ils m’ont encouragé tout au long de ma scolarité. Que cette thèse leur soit dédiée. Merci aussi à mes grands- parents, qui ont toujours eu confiance en moi, ainsi qu’à toute ma famille. Je ne pourrais pas terminer sans remercier du fond du cœur Guillaume, pour son amour et sa présence dès la première année de DEUG. Merci tout simplement d’être à mes côtés. Je suis heureuse qu’on puisse vivre l’aventure de nos deux thèses ensemble, chacun dans son domaine. Un grand merci également pour son aide informatique durant cette rédaction, sans lui, le manuscrit ne serait pas ce qu’il est actuellement. Je ne compte plus les heures qu’il a passées à m’aider ! Que cette thèse lui soit dédiée. Je tiens également à remercier son père pour son soutien indéfectible, son frère, et je pense très fort à sa mère qui a toujours cru en nous et qui, je l’espère, est fière de nous de là-haut. Abréviations et symboles Abréviations et symboles Å angström FDA food and drug administration Ac acétyle FT-IR infrarouge à transformée de Fourier AcOEt acétate d’éthyle g gramme AIBN 2,2-azobisisobutyronitrile g.mol-1 gramme par mole Ar aryle h heure arom aromatique hfacac hexafluoroacétylacétonate AsPh3 triphénylarsine HMBC heteronuclear multiple bond BER borohydride exchange resine correlation BHT 3,5-di-tert-butyl-4-hydroxytoluène HMPA hexaméthylphosphoramide Bn benzyle HOMO highest occupied molecular orbital Boc tert-butyloxycarbonyle HRMS high resolution mass spectra BSA N,O-bis(triméthylsilyl)acétamide HSQC heteronuclear single quantum i-Bu iso-butyle coherence n-Bu n-butyle Hünig N,N-diisopropyléthylamine t-Bu tert-butyle Hz hertz n-BuLi n-butyllithium Im imidazole n-Bu3N n-tributylamine IR infrarouge n-BuNH2 n-butylamine j jour t-BuOH tert-butanol Ki constante d’inhibition t-BuOK tert-butanolate de potassium LDA diisopropylamidure de lithium cat. quantité catalytique LHMDS hexaméthyldisilazidure de lithium CCM chromatographie sur couche mince LUMO lowest unoccupied molecular orbital CDCl3 chloroforme deutéré lutidine 2,6-diméthylpyridine CHBr3 bromoforme m multiplet -1 CH2Cl2 dichlorométhane M mol.L CHCl3 chloroforme Me méthyle CH3CN acétonitrile Men menthyle cm centimètre MeOH méthanol
Recommended publications
  • A Mesoporous Aluminosilicate Nanoparticle-Supported Nickel-Boron Composite for the Catalytic Reduction of Nitroarenes
    Lawrence Berkeley National Laboratory Recent Work Title A Mesoporous Aluminosilicate Nanoparticle-Supported Nickel-Boron Composite for the Catalytic Reduction of Nitroarenes Permalink https://escholarship.org/uc/item/02m7d916 Journal ACS Applied Nano Materials, 2(3) ISSN 2574-0970 Authors Hauser, JL Amberchan, G Tso, M et al. Publication Date 2019-03-22 DOI 10.1021/acsanm.8b02351 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Article Cite This: ACS Appl. Nano Mater. XXXX, XXX, XXX−XXX www.acsanm.org A Mesoporous Aluminosilicate Nanoparticle-Supported Nickel− Boron Composite for the Catalytic Reduction of Nitroarenes † † † † ‡ Jesse L. Hauser, Gabriella Amberchan, Monique Tso, Ryan Manley, Karen Bustillo, § † † † Jason Cooper, Josh H. Golden, Bakthan Singaram,*, and Scott R. J. Oliver*, † Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064, United States ‡ § National Center for Electron Microscopy, Molecular Foundry, and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States *S Supporting Information ABSTRACT: An amorphous nickel and boron composite (NBC) was synthesized from nickel chloride hexahydrate · (NiCl2 6H2O) and sodium borohydride (NaBH4) in absolute ethanol, both in bulk and supported on mesoporous alumi- nosilicate nanoparticles (MASN). Comparatively, NBC-MASN demonstrated better catalytic activity for the selective reduction of the nitro group on a variety of polysubstituted nitroarenes, · using hydrazine hydrate (N2H4 H2O) as the reducing agent at 25 °C. Reuse and regeneration of NBC-MASN for the reduction of p-nitrotoluene to p-toluidine were studied with NaBH4 acting as a regeneration agent. Good catalytic activity was sustained through nine reuse cycles when equimolar NaBH4 was present in situ with · − N2H4 H2O (99% 67% isolated aniline yield).
    [Show full text]
  • Catalysis-2018 Program
    Scientific UNITED Group Welcome to the City of Lights JO N U O R B ! 2nd International Conference on Catalysis and Chemical Engineering February 19-21, 2018 Paris Marriott Charles de Gaulle Airport Hotel Exhibitors Supporting Sponsor Publishing Partner Supporter We are excited to use Whova as our event platform. Attendees please download Whova event app. The event invitation code is: usgmv Floor Plan PARIS CHARLES DE GAULLE Gallery 1 Main Meeting Room WiFi Details Network : Marriott_conf Lunch Password : marriottfev Gallery 2 Loft 3 Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Loft 2 Studio Studio Studio Studio Studio Studio Loft 1 1 2 3 Foyer 4 5 6 170 Rue des Terres Bourdin 69140 Rillieux-La-Pape FRANCE +33 (0)4 37 40 33 55 [email protected] www.equilabo.com EQUILABO provider of tools for catalytic studies Parr reactors and pressure vessels include both standard designs and custom-built equipment in laboratory and pilot plant sizes. Uses for this equipment are found in a broad range of chemical, petrochemical, pharmaceutical and biotech research, development and control laboratories. Parr offers a wide choice of design options for catalyst studies as batch reactor, stirred reactor, fluidized bed reactor, catalyst baskets, liquid gas filling and monitoring systems and many more. Minimum working volume for pressure reactor is now 5 milliliters. HEL Group’s offer innovative, robust and flexible solutions to chemists working on various hydrogenation and catalysis applications. Stirred and fixed-bed reactors for catalytic & thermal conversions are supplied to a range of industries. Often at elevated temperature & pressure, HEL are specialised in research scale, multi-reactor and high pressure reactors processing.
    [Show full text]
  • The Mechanism and Kinetics of Thiophene Adsorption On
    THE MECHANISM AND KINETICS OF THIOPHENE ADSORPTION ON NICKEL AT AMBIENT TEMPERATURES AND PRESSURES A thesis submitted for the degree of Doctor of Philosophy of the University of London and for the Diploma of Imperial College Khaliq Ahmed Department of Chemical Engineering and Chemical Technology Imperial College of Science and Technology London SW7 United Kingdom January 1987 ABSTRACT An experimental and modelling study of the kinetics of thiophene adsorption on nickel at ambient temperatures and pressures has been made. The objective of the study was to acquire a better understanding of the mechanism involved than is currently available. The reactant (1000 ppm thiophene in hydrogen) was contacted with a nickel on gamma alumina catalyst. Experiments were carried out in a microbalance flow reactor and the uptake of thiophene by the catalyst was recorded as a function of time. Prior to adsorption of thiophene, the catalyst was characterised in terms of its total BET surface area, pore-size distribution, active Ni-area and average crystallite size. All measurements were performed in situ except for that of the crystallite size which was determined by x-ray line broadening. The experimental study revealed that at room temperature thiophene adsorbs on nickel either directly as thiophene molecules, or as a hydrogenated species namely, thiophane ; no gaseous products eluted indicating that thiophene was not undergoing decomposition under these conditions. Overall uptake of thiophene by nickel in the catalyst showed that there were at least two possible modes of adsorption. It is postulated that these are perpendicular and coplanar. The crystallite size of nickel in the catalyst was varied by changing the loading of the catalyst, or by 2 sintering in an atmosphere of hydrogen at elevated temperatures.
    [Show full text]
  • REDUCTION of NITRO COMPOUNDS USING 3D
    PUBLISHED IN ITS FINAL FORM ON: Chem. Rev. 2019, 119, 2611-2680. DOI: 10.1021/acs.chemrev.8b00547 REDUCTION OF NITRO COMPOUNDS USING 3d- NON-NOBLE METAL CATALYSTS Dario Formenti, Francesco Ferretti, Florian Korbinian Scharnagl, and Matthias Beller* Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany Corresponding author e-mail: [email protected] Dedicated to Dr. Michelangelo Scalone, F. Hoffmann-La Roche, for his important contributions to catalysis. ABSTRACT. The reduction of nitro compounds to the corresponding amines is one of the most utilized catalytic processes in the fine and bulk chemical industry. The latest development of catalysts with cheap metals like Fe, Co, Ni and Cu has led to their tremendous achievements over the last years prompting to their greater application as “standard” catalysts. In this review we will comprehensively discuss the use of homogeneous and heterogeneous catalysts based on non-noble 3d-metals for the reduction of nitro compounds using various reductants. The different systems will be revised considering both the catalytic performances and synthetic aspects highlighting also their advantages and disadvantages. 1 Contents 1. Introduction: setting the scene .................................................................................................................. 4 2. Survey of reducing agents employed in the reduction of nitro compounds .............................................. 9 3. Heterogeneous iron-based catalysts
    [Show full text]
  • 11 Concerted Pericyclic Reactions
    11 Concerted Pericyclic Reactions Introduction There are many reactions in organic chemistry that give no evidence of involving intermediates when subjected to the usual probes for studying reaction mechanisms. Highly polar transition states do not seem to be involved either,since the rates of the reactions are often insensitive to solvent polarity. Efforts to detect free-radical intermedi- ates in these reactions by spectroscopic or chemical means have not been successful,and the reaction rates are neither increased by initiators nor decreased by inhibitors of free- radical reactions. This absence of evidence of intermediates leads to the conclusion that the reactions are single-step processes in which bond making and bond breaking both contribute to the structure at the transition state,although not necessarily to the same degree. Such processes are called concerted reactions. There are numerous examples of both unimolecular and bimolecular concerted reactions. An important group of concerted reactions are the concerted pericyclic reactions.1 A pericyclic reaction is characterized as a change in bonding relationship that takes place as a continuous concerted reorganization of electrons. The word ``concerted'' speci®es that there is a single transition state and that there are no intermediates in the process. To maintain continuous electron ¯ow,pericyclic reactions must occur through cyclic transi- tion states. Furthermore,the cyclic transition state must correspond to an arrangement of the participating orbitals that can maintain a bonding interaction between the reacting atoms throughout the course of the reaction. We shall see shortly that these requirements make pericyclic reaction highly predictable in terms of such features as relative reactivity, stereospeci®city,and regioselectivity.
    [Show full text]
  • Borane-Tetrahydrofurane Complex
    Modern Research in Catalysis, 2016, 5, 19-30 Published Online January 2016 in SciRes. http://www.scirp.org/journal/mrc http://dx.doi.org/10.4236/mrc.2016.51003 Borane-Tetrahydrofurane Complex Reduction of Nickel and First Transition Metals in Tetrahydrofurane Media: Controllable Chemistry Leading to Nanoscale Metal and Metal Boride Particles Delicia Acosta*, Elio E. Gonzo, Hugo A. Destéfanis Instituto de Investigaciones para la Industria Química—INIQUI-CONICET ANPCyT, Consejo de Investigaciones— CIUNSa, Facultad de Ingeniería—UNSa, Buenos Aires, Argentina Received 10 November 2015; accepted 10 January 2016; published 13 January 2016 Copyright © 2016 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Nickel borides doped with transition metal (Cr, Mn, Fe, Co, Cu, and Zn) MNiB, 4% w/w respect to Ni were prepared by chemical reduction of nickel and metallic salts in methanol solution with bo- rane-tetrahydrofurane (BH3-THF) complex obtained in aprotic solvent (THF anhydrous). Different techniques were used to characterize these materials. The MNiB amorphous structure was veri- fied by XRD. Thermal treatment in N2 shows Ni˚, Ni2 Band NiO phases. Spongy-morphology was evident by SEM studies in all cases. XPS and TEM show that doped and non-doped nickel boride was present as Ni˚ in metallic state as principal phase and nickel alloying with boron was observed in minor quantities. The oxidation stability, magnetic susceptibility and catalytic effect are corre- lated with parameters of each dopant metal. Keywords NiB, Doped NiB, Borane-Tetrahydrofurane Reduction, Catalyst 1.
    [Show full text]
  • The First Hydrides of Boron
    UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS SECÇÃO AUTÓNOMA DE HISTÓRIA E FILOSOFIA DAS CIÊNCIAS UNDER THE CARBON SPELL: DIBORANE’S PUZZLING STRUCTURE AND THE EMERGENGE OF BORON CHEMISTRY Nuno Manuel Castanheira de Figueiredo Dissertação orientada pela Professora Doutora Ana Simões, da Secção Autónoma de Filosofia e História das Ciências da Faculdade de Ciências da Universidade de Lisboa. MESTRADO EM HISTÓRIA E FILOSOFIA DAS CIÊNCIAS 2011 Resumo Este trabalho apresenta o primeiro estudo sistemático da história da química dos boranos, compostos de boro e hidrogénio cujas estruturas e natureza das ligações químicas desafiaram de forma irredutível a teoria da ligação química até aos anos cinquenta do século XX. Actualmente, a química do boro é um dos mais promissores ramos da química, com um vasto leque de aplicações às indústrias química e farmacéutica, à nano-tecnologia e à medicina. Neste último ramo, destacam-se as aplicações na luta contra o cancro e no desenvolvimento de medicamentos com um elevado grau de especificidade e inovação. Num futuro próximo, espera-se que a química do boro seja capaz de operar uma verdadeira revolução social, posicionando-se como uma poderosa alternativa à química do carbono que será capaz de oferecer todo um novo mundo de aplicações inéditas. Estas são o resultado da fascinante capacidade do átomo de boro para se ligar de formas surpreendentes e formar complexas estruturas que se baseiam em compostos de boro e hidrogénio (boranos). A grande apetência do boro para se ligar ao oxigénio impede que os boranos existam na natureza. A grande susceptibilidade destes à acção da humidade e do ar torna-os especialmente instáveis e difíceis de manusear e preservar.
    [Show full text]
  • Routes Towards Low-Cost Renewable Hydrogen Production
    University of Dundee DOCTOR OF PHILOSOPHY Routes towards low-cost renewable hydrogen production Dixon, Christopher Ross Award date: 2015 Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 03. Oct. 2021 Routes towards low-cost renewable hydrogen production Christopher Ross Dixon The thesis submitted to the Division of Physics, University of Dundee, in fulfilment of the requirement for the degree of Doctor of Philosophy (PhD) May 2015 i Contents List of Figures and Tables ................................................................................................. vi Acknowledgements .......................................................................................................... xi Signed Declaration .........................................................................................................
    [Show full text]
  • Sodium Borohydride Production and Utilisation for Improved Hydrogen Storage
    Sodium Borohydride Production and Utilisation for Improved Hydrogen Storage Sean S. Muir BE (Chemical) Hons I, BSc A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in July 2013 Australian Institute for Bioengineering and Nanotechnology Abstract Sodium borohydride (NaBH4) has been the subject of extensive investigation as a potential hydrogen storage material. Its advantages include its ability to be stored as a stabilised aqueous solution and hydrolysed catalytically on demand, providing hydrogen safely, controllably, and at mild conditions. However, several drawbacks were identified by the US Department of Energy (DOE) in their “No-Go” recommendation in 2007; namely, the limitations on its gravimetric hydrogen storage capacity (GHSC) and its prohibitive manufacturing cost. This thesis aims to address some of the major issues associated with the use of NaBH4 for hydrogen storage. Efforts have been spread across three key research areas, which were identified in a review of the recent literature: Synthesising an efficient, durable, and inexpensive catalyst for the hydrolysis of aqueous NaBH4 solution The design of a hydrogen storage system based on NaBH4 which can overcome the GHSC constraints imposed by the solubility of its hydrolysis by-product, NaBO2 The development of a novel recycling process for regenerating NaBH4 from NaBO2, with the goal of reducing its production cost to within the DOE’s target range of $2-4 per gallon of gasoline equivalent (gge) To achieve the first goal, a new electroless plating method was developed for preparing cobalt-boron (Co-B) catalysts supported on shaped substrates. This method involves mixing the plating solutions at low temperature (<5 oC), in contrast to previously employed methods, which are generally carried out at room temperature or higher.
    [Show full text]
  • Terminal and Non Terminal Alkynes Partial Hydrogenation Catalyzed By
    Chapter 6 Terminal and Non Terminal Alkynes Partial Hydrogenation 8 Catalyzed by Some d Transition Metal Complexes in Homogeneous and Heterogeneous Systems Domingo Liprandi, Edgardo Cagnola, Cecilia Lederhos, Juan Badano and Mónica Quiroga Additional information is available at the end of the chapter http://dx.doi.org/10.5772/47742 1. Introduction The synthesis and manufacture of food additives, flavours and fragrances, as well as pharmaceutical, agrochemical and petrochemical substances, examples of fine and industrial chemicals, are closely related to selective alkyne hydrogenation [1,2]. Regarding alkyne partial hydrogenation, the main goal is to avoid hydrogenation to single bond and in the case of non-terminal alkynes is to give priority to the highest possible conversion and selectivity to the (Z)-alkene [3-5]. These kind of reactions are carried out by means of a catalytic process where control over conversion and selectivity can be exerted in different ways, e.g.: by varying a) the active species or b) the support, and/or by adding c) a promoter / a poison / a modifier, and finally, and not less important, by modifying the reaction temperature. Examples of factor b) are: mesoporous [6] and siliceous [7] materials, a pumice [8], carbons [9], and hydrotalcite [3]. Cases of factor c) are the typical Lindlar catalyst (palladium heterogenized on calcium carbonate poisoned by lead acetate or lead oxide, Pd-CaCO3-Pb) [10] and the presence of quinoline and triphenylphosphine [11,12]. Research on factors a) and c) include bi-elemental systems such as Ni-B, Pd-Cu, etc. [13-19]. An example of the effect of the reaction temperature is a paper by Choi and Yoon, who found that the selectivity to (Z)-alkene increases when the temperature decreases using a Ni catalyst [20].
    [Show full text]
  • Hydrogen Generation by Both Acidic and Catalytic Hydrolysis of Sodium
    Catal. Sustain. Energy 2018; 5: 41–48 Short communication Olga V. Netskina*, Tihon N. Filippov, Oksana V. Komova, Valentina I. Simagina Hydrogen generation by both acidic and catalytic hydrolysis of sodium borohydride https://doi.org/10.1515/cse-2018-0006 most closely satisfy these severe requirements [8-13]. First, Received October 9, 2018; accepted October 16, 2018 they have no rivals in the mass content of hydrogen. For Abstract: Sodium borohydride tablets have been employed example, potassium borohydride, sodium borohydride as hydrogen-storage materials. Hydrogen release was and ammonia borane have hydrogen densities of 0.083, performed by acidic hydrolysis where solutions of sulfuric 0.112 and 0.145 g·cm-3, respectively, which exceeds the and hydrochloric acids were added to the tablets, and value for liquefied hydrogen (0.07 g·cm-3). Second, hydride by catalytic hydrolysis where water was added tablets interaction with water increases the hydrogen yield of solid-state NaBH4/Co composite. In acidic solutions twofold, water being involved in the gas generation. hydrogen evolution occurred instantaneously, and at high concentrations of acids the releasing hydrogen contained an MH n + nH2O → M(OH )n + nH2 , (1) (1) admixture of diborane. Hydrogen evolution from the solid- where M is an alkali or alkaline-earth metal. state NaBH4/Co composite proceeded at a uniform rate of 4CoCl + 8NaBH + 18H O ⎯⎯→ (4Co : 2B) + 6B(OH ) + 8NaCl + 25H (2) 13.8±0.1 cm3·min-1, water vapor being the only impurity in the However, hydrolysis2 of hydrides4 is not2 a totally safe catalyst 3 2 evolving gas. process, since it evolves a large amount of heat per mole of -1 -1 hydrogen: 2LiHBH –3 145→ kJ·molB2 H6; MgH 2 – 160 kJ·mol ; LiBH 4 – (4) -1 -1 -1 Keywords: Hydrogen, sodium borohydride, acid 90 kJ·mol ; LiAlH4 – 150 kJ·mol ; NaAlH4 – 142 kJ·mol ; AlH3 hydrolysis, diborane, catalyst hydrolysis 156 kJ·mol-1; CaH – 140 kJ·mol-1; NaH – 152 kJ·mol-1 [14,15].
    [Show full text]
  • Templated Synthesis and Chemical Behavior of Nickel Nanoparticles Within High Aspect Ratio Silica Capsules Nicholas C
    Chemistry Publications Chemistry 11-20-2013 Templated Synthesis and Chemical Behavior of Nickel Nanoparticles within High Aspect Ratio Silica Capsules Nicholas C. Nelson Iowa State University, [email protected] T. Purnima Iowa State University A. Ruberu Iowa State University Malinda D. Reichert Iowa State University, [email protected] Javier Vela Iowa State University, [email protected] Follow this and additional works at: http://lib.dr.iastate.edu/chem_pubs Part of the Catalysis and Reaction Engineering Commons, and the Chemistry Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ chem_pubs/126. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Chemistry at Iowa State University Digital Repository. It has been accepted for inclusion in Chemistry Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Templated Synthesis and Chemical Behavior of Nickel Nanoparticles within High Aspect Ratio Silica Capsules Abstract One-dimensional transition metal nanostructures are of interest in many magnetic and catalytic applications. Using a combination of wet chemical synthesis, optical (infrared), and structural characterization methods (powder X-ray diffraction, scanning and transmission electron microscopy), we have investigated four paths to access 1D nickel nanostructures: (1) direct chemical reduction of a self-assembled nickel-hydrazine coordination complex, (2) thermal decomposition of the silica encapsulated nickel-hydrazine complex, (3) treatment of the silica encapsulated nickel-hydrazine complex with sodium borohydride followed by thermal annealing, and (4) electroless nickel plating using silica encapsulated nickel seed particles.
    [Show full text]