Sodium Borohydride Production and Utilisation for Improved Hydrogen Storage

Total Page:16

File Type:pdf, Size:1020Kb

Sodium Borohydride Production and Utilisation for Improved Hydrogen Storage Sodium Borohydride Production and Utilisation for Improved Hydrogen Storage Sean S. Muir BE (Chemical) Hons I, BSc A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in July 2013 Australian Institute for Bioengineering and Nanotechnology Abstract Sodium borohydride (NaBH4) has been the subject of extensive investigation as a potential hydrogen storage material. Its advantages include its ability to be stored as a stabilised aqueous solution and hydrolysed catalytically on demand, providing hydrogen safely, controllably, and at mild conditions. However, several drawbacks were identified by the US Department of Energy (DOE) in their “No-Go” recommendation in 2007; namely, the limitations on its gravimetric hydrogen storage capacity (GHSC) and its prohibitive manufacturing cost. This thesis aims to address some of the major issues associated with the use of NaBH4 for hydrogen storage. Efforts have been spread across three key research areas, which were identified in a review of the recent literature: Synthesising an efficient, durable, and inexpensive catalyst for the hydrolysis of aqueous NaBH4 solution The design of a hydrogen storage system based on NaBH4 which can overcome the GHSC constraints imposed by the solubility of its hydrolysis by-product, NaBO2 The development of a novel recycling process for regenerating NaBH4 from NaBO2, with the goal of reducing its production cost to within the DOE’s target range of $2-4 per gallon of gasoline equivalent (gge) To achieve the first goal, a new electroless plating method was developed for preparing cobalt-boron (Co-B) catalysts supported on shaped substrates. This method involves mixing the plating solutions at low temperature (<5 oC), in contrast to previously employed methods, which are generally carried out at room temperature or higher. The new method requires only one plating step to achieve the desired catalyst loading, and has higher loading efficiency than processes requiring multiple plating steps, due to reduced catalyst wastage. The catalysts produced by this method show significantly higher NaBH4 hydrolysis activity than those prepared by conventional methods, with a hydrogen o generation rate over 24000 mL/min/g recorded at a temperature of 30 C and a NaBH4 concentration of 15 wt%. The improved activity of these catalysts was thought to be due to their increased boron content and nanosheet-like morphology, both of which are products of the low temperature preparation method. i The stability of these catalysts was examined over several usage and deactivation cycles, which involved long-term exposure to alkaline solution. It was found that the deactivated catalysts were able to recover 80-90% of their initial activity even after 10 cycles, if operated at 40 oC or higher. Characterisation of the deactivated catalysts revealed that a layer of NaBO2 had formed on the surface, blocking the catalytically active Co sites. The improved cyclic stability is most likely due to the dissolution of this layer at higher temperatures. A new reactor design for a NaBH4-based hydrogen storage system was developed, with the goal of overcoming the GHSC limitations encountered by conventional system designs. The new design is based on a fed-batch configuration in which solid NaBH4 is added gradually to a container of alkaline solution and reacted as it is needed, eliminating the need for high NaBH4 concentrations. The reactor is separated into high and low temperature zones, each of which serves a different purpose; the hydrolysis of NaBH4 occurs in the former, while crystallisation of the by-product NaBO2 occurs in the latter. This separation helps to prevent the crystallised NaBO2 from blocking and damaging the catalyst, which is a major issue encountered in previous designs. A 2.0 L-scale prototype reactor was built and tested, with a maximum GHSC of 4.10 wt% achieved on a reactants- only basis. This was increased to 4.74 wt% with simulation of water recycling from an attached fuel cell. Finally, a novel process for the low-cost regeneration of NaBH4 was proposed. This process uses organometallic hydrides to produce NaBH4 from an alkoxylated derivative of NaBO2, a new reaction which is reported for the first time in this thesis. The production of NaBH4 was confirmed by XRD, XPS, and NMR analyses, and an unoptimised yield of 45% was obtained. The organometallic hydrides can themselves be regenerated within the process, by thermal decarboxylation of the corresponding organometallic formate. If all intermediates are recycled, the only key input into the process is formic acid, a relatively inexpensive organic reagent. It is anticipated that this process can provide cost and energy savings of an order of magnitude relative to current NaBH4 production methods. ii Declaration by author This thesis is composed of my original work, and contains no material previously published or written by another person except where due reference has been made in the text. I have clearly stated the contribution by others to jointly-authored works that I have included in my thesis. I have clearly stated the contribution of others to my thesis as a whole, including statistical assistance, survey design, data analysis, significant technical procedures, professional editorial advice, and any other original research work used or reported in my thesis. The content of my thesis is the result of work I have carried out since the commencement of my research higher degree candidature and does not include a substantial part of work that has been submitted to qualify for the award of any other degree or diploma in any university or other tertiary institution. I have clearly stated which parts of my thesis, if any, have been submitted to qualify for another award. I acknowledge that an electronic copy of my thesis must be lodged with the University Library and, subject to the General Award Rules of The University of Queensland, immediately made available for research and study in accordance with the Copyright Act 1968. I acknowledge that copyright of all material contained in my thesis resides with the copyright holder(s) of that material. Where appropriate I have obtained copyright permission from the copyright holder to reproduce material in this thesis. iii Publications during candidature Journal Publications Muir, SS & Yao, XD 2011, ‘Progress in sodium borohydride as a hydrogen storage material: Development of hydrolysis catalysts and reaction systems’, International Journal of Hydrogen Energy, vol. 36, no. 10, pp. 5983-97. Muir, SS, Chen, ZG, Wood, BJ, Wang, LZ, Yao, XD & Lu, GQ 2013, ‘New electroless plating method for preparation of highly active CoB catalysts for NaBH4 hydrolysis’, International Journal of Hydrogen Energy (submitted). Provisional Patents The University of Queensland 2012, Process, AU Patent 2012904699. The University of Queensland 2012, Substrate, AU Patent 2012904700. The University of Queensland 2012, Reactor, AU Patent 2012904953. Conference Presentations Muir, SS 2010, ‘New method for synthesising Co-B catalysts for NaBH4 hydrolysis with high cyclic stability’, presented to the 7th Annual Conference of the ARC Centre for Functional Nanomaterials, Gold Coast, 25-26 November. Muir, SS, Chen, ZG, Wang, LZ, Yao, XD & Lu, GQ 2012, ‘New electroless plating method for preparation of highly active CoB catalysts for NaBH4 hydrolysis’, paper presented to the 8th Annual Conference of the ARC Centre for Functional Nanomaterials, Sydney, 15-16 November. Publications included in this thesis No publications included. iv Contributions by others to the thesis Prof Max Lu, A/Prof Xiangdong Yao and A/Prof Lianzhou Wang all contributed to the thesis in an advisory capacity, particularly in the conception and design of the project and its goals. Further contributions in this area were made by Mr Angus Lilley and Mr Edo Dol of Control Technologies International. Mr Dol also contributed to the designing and testing of the NaBH4 hydrolysis reactor. Cyclic stability testing of the Co-B catalysts (Chapter 4) was carried out by Mr Xinyang Li as part of his Masters of Engineering program. The SEM, TEM, and EDX analyses in Chapter 3 were carried out by Dr Zhigang Chen. XPS experiments (Chapters 3, 4, and 6) were conducted by Dr Barry Wood, who also contributed to the interpretation of the data for compositional analysis. ICP-OES analysis in Chapter 3 was carried out by Mr David Appleton. NMR experiments in Chapter 6 were conducted by Dr Ekaterina Strounina (11B) and Dr Lynette Lambert (1H and 29Si), both of whom also contributed to the analysis and interpretation of the data. Statement of parts of the thesis submitted to qualify for the award of another degree None. v Acknowledgements I have been privileged to receive the support and assistance of so many people over the past four years. First and foremost, thanks must go to my advisory team of Prof Max Lu, A/Prof Xiangdong Yao and Prof Lianzhou Wang, for giving me the opportunity to undertake this PhD, and for their support and guidance along the way. Thanks must also go to my collaborators at Control Technologies International: Mr Angus Lilley, Mr Edo Dol, Mr Stephen Brown, and Mr Matthias Abram. It has been a pleasure to work with you all, and I hope you have enjoyed seeing this project come to fruition as much as I have. I wish to express my gratitude to those who provided technical support and assistance with my experimental work: Mr Xinyang Li, Dr Zhigang Chen, Dr Barry Wood, Mr David Appleton, Dr Ekaterina Strounina, and Dr Lynette Lambert. Thanks must also go to all those who built or provided support with lab equipment: Mr Robin Berlyn of UQ Glassblowing Services, Mr Robert Orr of Labglass, Mr Malcolm Marker and Mr Peter Bleakey of the EAIT Instrumentation Support Group, and Mr Ian Livingstone of AVT Services. During 2010 I had the privilege of working at the Institute of Metal Research at the Chinese Academy of Sciences in Shenyang, China P.R.
Recommended publications
  • A Mesoporous Aluminosilicate Nanoparticle-Supported Nickel-Boron Composite for the Catalytic Reduction of Nitroarenes
    Lawrence Berkeley National Laboratory Recent Work Title A Mesoporous Aluminosilicate Nanoparticle-Supported Nickel-Boron Composite for the Catalytic Reduction of Nitroarenes Permalink https://escholarship.org/uc/item/02m7d916 Journal ACS Applied Nano Materials, 2(3) ISSN 2574-0970 Authors Hauser, JL Amberchan, G Tso, M et al. Publication Date 2019-03-22 DOI 10.1021/acsanm.8b02351 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Article Cite This: ACS Appl. Nano Mater. XXXX, XXX, XXX−XXX www.acsanm.org A Mesoporous Aluminosilicate Nanoparticle-Supported Nickel− Boron Composite for the Catalytic Reduction of Nitroarenes † † † † ‡ Jesse L. Hauser, Gabriella Amberchan, Monique Tso, Ryan Manley, Karen Bustillo, § † † † Jason Cooper, Josh H. Golden, Bakthan Singaram,*, and Scott R. J. Oliver*, † Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064, United States ‡ § National Center for Electron Microscopy, Molecular Foundry, and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States *S Supporting Information ABSTRACT: An amorphous nickel and boron composite (NBC) was synthesized from nickel chloride hexahydrate · (NiCl2 6H2O) and sodium borohydride (NaBH4) in absolute ethanol, both in bulk and supported on mesoporous alumi- nosilicate nanoparticles (MASN). Comparatively, NBC-MASN demonstrated better catalytic activity for the selective reduction of the nitro group on a variety of polysubstituted nitroarenes, · using hydrazine hydrate (N2H4 H2O) as the reducing agent at 25 °C. Reuse and regeneration of NBC-MASN for the reduction of p-nitrotoluene to p-toluidine were studied with NaBH4 acting as a regeneration agent. Good catalytic activity was sustained through nine reuse cycles when equimolar NaBH4 was present in situ with · − N2H4 H2O (99% 67% isolated aniline yield).
    [Show full text]
  • Sodium Borohydride
    Version 6.6 SAFETY DATA SHEET Revision Date 01/21/2021 Print Date 09/25/2021 SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1 Product identifiers Product name : Sodium borohydride Product Number : 452882 Brand : Aldrich CAS-No. : 16940-66-2 1.2 Relevant identified uses of the substance or mixture and uses advised against Identified uses : Laboratory chemicals, Synthesis of substances 1.3 Details of the supplier of the safety data sheet Company : Sigma-Aldrich Inc. 3050 SPRUCE ST ST. LOUIS MO 63103 UNITED STATES Telephone : +1 314 771-5765 Fax : +1 800 325-5052 1.4 Emergency telephone Emergency Phone # : 800-424-9300 CHEMTREC (USA) +1-703- 527-3887 CHEMTREC (International) 24 Hours/day; 7 Days/week SECTION 2: Hazards identification 2.1 Classification of the substance or mixture GHS Classification in accordance with 29 CFR 1910 (OSHA HCS) Chemicals which, in contact with water, emit flammable gases (Category 1), H260 Acute toxicity, Oral (Category 3), H301 Skin corrosion (Category 1B), H314 Serious eye damage (Category 1), H318 Reproductive toxicity (Category 1B), H360 For the full text of the H-Statements mentioned in this Section, see Section 16. 2.2 GHS Label elements, including precautionary statements Pictogram Signal word Danger Aldrich - 452882 Page 1 of 9 The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the US and Canada Hazard statement(s) H260 In contact with water releases flammable gases which may ignite spontaneously. H301 Toxic if swallowed. H314 Causes severe skin burns and eye damage. H360 May damage fertility or the unborn child.
    [Show full text]
  • Part I. the Total Synthesis Of
    AN ABSTRACT OF THE THESIS OF Lester Percy Joseph Burton forthe degree of Doctor of Philosophy in Chemistry presentedon March 20, 1981. Title: Part 1 - The Total Synthesis of (±)-Cinnamodialand Related Drimane Sesquiterpenes Part 2 - Photochemical Activation ofthe Carboxyl Group Via NAcy1-2-thionothiazolidines Abstract approved: Redacted for privacy DT. James D. White Part I A total synthesis of the insect antifeedant(±)-cinnamodial ( ) and of the related drimanesesquiterpenes (±)-isodrimenin (67) and (±)-fragrolide (72)are described from the diene diester 49. Hydro- boration of 49 provided the C-6oxygenation and the trans ring junction in the form of alcohol 61. To confirm the stereoselectivity of the hydroboration, 61 was convertedto both (t)-isodrimenin (67) and (±)-fragrolide (72) in 3 steps. A diisobutylaluminum hydride reduction of 61 followed by a pyridiniumchlorochromate oxidation and treatment with lead tetraacetate yielded the dihydrodiacetoxyfuran102. The base induced elimination of acetic acid preceded theepoxidation and provided 106 which contains the desired hydroxy dialdehydefunctionality of cinnamodial in a protected form. The epoxide 106 was opened with methanol to yield the acetal 112. Reduction, hydrolysis and acetylation of 112 yielded (t)- cinnamodial in 19% overall yield. Part II - Various N- acyl- 2- thionothiazolidineswere prepared and photo- lysed in the presence of ethanol to provide the corresponding ethyl esters. The photochemical activation of the carboxyl function via these derivatives appears, for practical purposes, to be restricted tocases where a-keto hydrogen abstraction and subsequent ketene formation is favored by acyl substitution. Part 1 The Total Synthesis of (±)-Cinnamodial and Related Drimane Sesquiterpenes. Part 2 Photochemical Activation of the Carboxyl Group via N-Acy1-2-thionothiazolidines.
    [Show full text]
  • Catalysis-2018 Program
    Scientific UNITED Group Welcome to the City of Lights JO N U O R B ! 2nd International Conference on Catalysis and Chemical Engineering February 19-21, 2018 Paris Marriott Charles de Gaulle Airport Hotel Exhibitors Supporting Sponsor Publishing Partner Supporter We are excited to use Whova as our event platform. Attendees please download Whova event app. The event invitation code is: usgmv Floor Plan PARIS CHARLES DE GAULLE Gallery 1 Main Meeting Room WiFi Details Network : Marriott_conf Lunch Password : marriottfev Gallery 2 Loft 3 Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Loft 2 Studio Studio Studio Studio Studio Studio Loft 1 1 2 3 Foyer 4 5 6 170 Rue des Terres Bourdin 69140 Rillieux-La-Pape FRANCE +33 (0)4 37 40 33 55 [email protected] www.equilabo.com EQUILABO provider of tools for catalytic studies Parr reactors and pressure vessels include both standard designs and custom-built equipment in laboratory and pilot plant sizes. Uses for this equipment are found in a broad range of chemical, petrochemical, pharmaceutical and biotech research, development and control laboratories. Parr offers a wide choice of design options for catalyst studies as batch reactor, stirred reactor, fluidized bed reactor, catalyst baskets, liquid gas filling and monitoring systems and many more. Minimum working volume for pressure reactor is now 5 milliliters. HEL Group’s offer innovative, robust and flexible solutions to chemists working on various hydrogenation and catalysis applications. Stirred and fixed-bed reactors for catalytic & thermal conversions are supplied to a range of industries. Often at elevated temperature & pressure, HEL are specialised in research scale, multi-reactor and high pressure reactors processing.
    [Show full text]
  • The Mechanism and Kinetics of Thiophene Adsorption On
    THE MECHANISM AND KINETICS OF THIOPHENE ADSORPTION ON NICKEL AT AMBIENT TEMPERATURES AND PRESSURES A thesis submitted for the degree of Doctor of Philosophy of the University of London and for the Diploma of Imperial College Khaliq Ahmed Department of Chemical Engineering and Chemical Technology Imperial College of Science and Technology London SW7 United Kingdom January 1987 ABSTRACT An experimental and modelling study of the kinetics of thiophene adsorption on nickel at ambient temperatures and pressures has been made. The objective of the study was to acquire a better understanding of the mechanism involved than is currently available. The reactant (1000 ppm thiophene in hydrogen) was contacted with a nickel on gamma alumina catalyst. Experiments were carried out in a microbalance flow reactor and the uptake of thiophene by the catalyst was recorded as a function of time. Prior to adsorption of thiophene, the catalyst was characterised in terms of its total BET surface area, pore-size distribution, active Ni-area and average crystallite size. All measurements were performed in situ except for that of the crystallite size which was determined by x-ray line broadening. The experimental study revealed that at room temperature thiophene adsorbs on nickel either directly as thiophene molecules, or as a hydrogenated species namely, thiophane ; no gaseous products eluted indicating that thiophene was not undergoing decomposition under these conditions. Overall uptake of thiophene by nickel in the catalyst showed that there were at least two possible modes of adsorption. It is postulated that these are perpendicular and coplanar. The crystallite size of nickel in the catalyst was varied by changing the loading of the catalyst, or by 2 sintering in an atmosphere of hydrogen at elevated temperatures.
    [Show full text]
  • REDUCTION of NITRO COMPOUNDS USING 3D
    PUBLISHED IN ITS FINAL FORM ON: Chem. Rev. 2019, 119, 2611-2680. DOI: 10.1021/acs.chemrev.8b00547 REDUCTION OF NITRO COMPOUNDS USING 3d- NON-NOBLE METAL CATALYSTS Dario Formenti, Francesco Ferretti, Florian Korbinian Scharnagl, and Matthias Beller* Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany Corresponding author e-mail: [email protected] Dedicated to Dr. Michelangelo Scalone, F. Hoffmann-La Roche, for his important contributions to catalysis. ABSTRACT. The reduction of nitro compounds to the corresponding amines is one of the most utilized catalytic processes in the fine and bulk chemical industry. The latest development of catalysts with cheap metals like Fe, Co, Ni and Cu has led to their tremendous achievements over the last years prompting to their greater application as “standard” catalysts. In this review we will comprehensively discuss the use of homogeneous and heterogeneous catalysts based on non-noble 3d-metals for the reduction of nitro compounds using various reductants. The different systems will be revised considering both the catalytic performances and synthetic aspects highlighting also their advantages and disadvantages. 1 Contents 1. Introduction: setting the scene .................................................................................................................. 4 2. Survey of reducing agents employed in the reduction of nitro compounds .............................................. 9 3. Heterogeneous iron-based catalysts
    [Show full text]
  • The Reaction of Sodium Borohydride
    THE REACTION OF SODIUM BOROHYDRIDE WITH N-·ACYLANILINES By ROBERT FRA.."\\JK LINDEl"J.ANN Ir Bachelor of Arts Wittenberg College Springfield, Ohio 1952 Submitted to the Faculty of the Graduate School of the Oklahoma Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of MA.STER OF SCIENCE August, 19.54 i THE REACTION OF SODIUM BOROHYDRIDE WITH N-ACYLANILINES Thesis Approved: ~ - Dean of the Graduate School ii l!l Al C! 0~ 11J/~~. 2t"'I'Ii .ACKN01rJLEDGEMENT The author-wishes to express his gratitude to Dr. H. Po Johnston for the invaluable assistance and guidance given. This project was made possible by the Chemistry Department in the form of a Graduate Fellowship and by an unnamed sponsor through the Research Foundation. iii TABLE OF CONTENTS Page · I. .Introduction ...................................... ., o ••••••·· .... 1 II o Historical ... o o • .,, • (I .. ., •.••• G ••••.•••••••• .is •••••••• "' •. o o •••••• o '°. 2 Preparation of Sodium Borohydride ........................... 2 Physical Properties ofSodium Borohydrj.de ................... 3 Chemical Properties of · Sodium Borohydride .............. " •••• 3 III. Experimental. 0 ·• •• ·•. 0 •••• 0 ·• •••• 0. (I •••• 0 0 • 0 Q • .., ••• Q e. 0. 0. 0 D. 0 e 8 Purification of Sodium Borohydride ........................... 8 Reaction of Sodium Borohydride w:i. th Acetanilide ..........._ •• 9 Reaction of Sodium Borohydride w:i. th For.manilide oo •• oe.,. .... 27 Discussion ••• o o. o. o o o o. o ·O fl o • .e. o o ........ o. o. o o • ., o ~. o" o (Io o o o .29 IV. S11ITil11ary •• 0. Cl Ct. 0 0 0. 0. 0 -0 DO O O O C. c,.. 0. 0 4 11) 0 0 0 -0 0 0 0 -0 a O O .0 0 0 .0.
    [Show full text]
  • 19.8 Reduction of Aldehydes and Ketones to Alcohols
    19_BRCLoudon_pgs5-0.qxd 12/9/08 11:41 AM Page 914 914 CHAPTER 19 • THE CHEMISTRY OF ALDEHYDES AND KETONES. CARBONYL-ADDITION REACTIONS 19.8 REDUCTION OF ALDEHYDES AND KETONES TO ALCOHOLS Aldehydes and ketones are reduced to alcohols with either lithium aluminum hydride, LiAlH4, or sodium borohydride, NaBH4. These reactions result in the net addition of the elements of H2 across the CAO bond. H O A H O OH 4 3 | 4 " 3 LiAlH4 ether L Li| and Al | salts (19.22) V + V + cyclobutanone lithium cyclobutanol aluminum (90% yield) hydride 4 CH3O CHA O 4 CH3OH NaBH4 LL ++ CH3OH sodium p-methoxybenzaldehyde borohydride H 4 CH3OO"C H Na|_B(OCH3)4 (19.23) LLL+ "H p-methoxybenzyl alcohol (96% yield) As these examples illustrate, reduction of an aldehyde gives a primary alcohol, and reduction of a ketone gives a secondary alcohol. Lithium aluminum hydride is one of the most useful reducing agents in organic chemistry. It serves generally as a source of H:_, the hydride ion. Because hydrogen is more electroneg- ative than aluminum (Table 1.1), the Al–H bonds of the _AlH4 ion carry a substantial fraction of the negative charge. In other words, H H reacts as if it were (19.24) H "Al_ H H "Al H _ L L L 3 "H "H The hydride ion in LiAlH4 is very basic. For this reason, LiAlH4 reacts violently with water and therefore must be used in dry solvents such as anhydrous ether and THF. 1 H 1 H Li| H "Al_ H H OH H "Al HH Li| _ OH (19.25) L L L 1 L ++hydrogenL gas 3 1 "H "H (reacts further lithium aluminum with water) hydride Like many other strong bases, the hydride ion in LiAlH4 is a good nucleophile, and LiAlH4 contains its own “built-in” Lewis acid, the lithium ion.
    [Show full text]
  • Reduction of Vanillin with Sodium Borohydride to Form Vanillyl Alcohol
    Expt 3: Reduction of Vanillin with Sodium Borohydride to form Vanillyl Alcohol INTRODUCTION One of the most commonly used methods for preparing 1º and 2º alcohols is the reduction of aldehydes [equation (1)] or ketones [equation (2)]. Although many different reagents can be used to achieve tis transformation, sodium borohydride (NaBH4) or lithium aluminum hydride (LiAlH4), are employed most recently. Sodium borohydride was originally developed by H.C. Brown (who developed the hydroboration-oxidation reaction of alkenes) in the 1940’s, in the context of uranium enrichment for the production of nuclear weapons. As a result, the synthetic applications of this reagent in organic chemistry were only declassified and published in 1953 after the conclusion of World War II. O OH [H] (1) R H R H H O OH [H] (2) R R' R R' H As a reducing agent, NaBH4 has several distinct advantages over LiAlH4. First, NaBH4 is much safer to use in a laboratory setting since LiAlH4 can react explosively with water. In contrast, freshly prepared solutions of sodium borohydride in water or methanol are stable at room temperature for several hours. Moreover, NaBH4 exhibits excellent chemoselectivity, and will generally only react with aldehydes and ketones. Lithium aluminum hydride is a much stronger reducing agent and will reduce virtually all carbonyl-containing organic compounds (esters, carboxylic acids, amides, ketones, etc.). O OH H3CO 1. NaBH , NaOH H3CO H 4 4 2. HCl 4 (3) HO HO Vanillin, 1 Vanillyl alcohol, 2 This preparation involves the reduction of the aldehyde group in vanillin (1, a flavoring compound found in vanilla) [See Note 1] to produce vanillyl alcohol (2) using sodium 1 borohydride as the reducing agent [equation (3)].
    [Show full text]
  • US5608116.Pdf
    |||||||||| US005608116A United States Patent (19) 11 Patent Number: 5,608,116 Halling et al. 45 Date of Patent: Mar. 4, 1997 54) PROCESS FOR THE ALKOXYLATION OF 4,483,941 11/1984 Yang ....................................... 502/171. FLUORNATED ALCOHOLS 4,490,561 12/1984 Yang et al. ... ... 568/615 4,533,759 8/1985 Harris...................................... 568/648 (75) Inventors: Robert A. Halling, Wilmington; 5,097,090 3/1992 Beck ....................................... 568/842 Hsu-Nan Huang, Newark, both of Del. FOREIGN PATENT DOCUMENTS 73 Assignee: E. I. Du Pont de Nemours and 0161459 4/1985 European Pat. Off. ........ C07C 43/11 Company, Wilmington, Del. 2459900 12/1974 Germany .......... C08G 65/12 2153373 8/1985 United Kingdom............ C07C 65/26 WO95/35272 12/1995 WIPO ............................. C07C 43/11 21 Appl. No.: 405,327 |22) Filed: Mar 16, 1995 OTHER PUBLICATIONS *Derwent Publications Abstract "Surface Active Alkoxy Related U.S. Application Data lated Fluoro Alcohols-Useful for Making Fluoropolymers for Textile Finishing’ & DD,A,111522 (Greiner A.), 20 Feb. (63) Continuation-in-part of Ser. No. 263,091, Jun. 21, 1994. 1975. 51 Int. Cl. .................... C07C 41/03 Primary Examiner-Porfirio Nazario-Gonzalez 52 ve 568/615; 568/614 Assistant Examiner-Dwayne C. Jones 58 Field of Search ............................................... 568/615 (57) ABSTRACT 56) References Cited The present invention relates to the preparation of fluoro alkylalkoxylates in which one reacts at least one fluorinated U.S. PATENT DOCUMENTS alcohol with at least one alkylene epoxide in the presence of 2,723,999 11/1955 Cowen et al. .......................... 260/615 a novel catalyst system comprising an iodine source and an 3,948,668 4/1976 Hayek et al.
    [Show full text]
  • A Recycling Hydrogen Supply System of Nabh4 Based on a Facile Regeneration Process: a Review
    inorganics Review A Recycling Hydrogen Supply System of NaBH4 Based on a Facile Regeneration Process: A Review Liuzhang Ouyang 1,2,3, Hao Zhong 1,2, Hai-Wen Li 4,* ID and Min Zhu 1,2,* 1 School of Materials Science and Engineering, Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641, China; [email protected] (L.O.); [email protected] (H.Z.) 2 China-Australia Joint Laboratory for Energy & Environmental Materials, South China University of Technology, Guangzhou 510641, China 3 Key Laboratory for Fuel Cell Technology in Guangdong Province, Guangzhou 510641, China 4 Kyushu University Platform of Inter/Transdisciplinary Energy Research, International Research Center for Hydrogen Energy and International Institute for Carbon-Neutral Energy, Kyushu University, Fukuoka 819-0395, Japan * Correspondence: [email protected] (H.-W.L.); [email protected] (M.Z.) Received: 24 October 2017; Accepted: 5 January 2018; Published: 6 January 2018 Abstract: NaBH4 hydrolysis can generate pure hydrogen on demand at room temperature, but suffers from the difficult regeneration for practical application. In this work, we overview the state-of-the-art progress on the regeneration of NaBH4 from anhydrous or hydrated NaBO2 that is a byproduct of NaBH4 hydrolysis. The anhydrous NaBO2 can be regenerated effectively by MgH2, whereas the production of MgH2 from Mg requires high temperature to overcome the sluggish hydrogenation kinetics. Compared to that of anhydrous NaBO2, using the direct hydrolysis byproduct of hydrated NaBO2 as the starting material for regeneration exhibits significant advantages, i.e., omission of the high-temperature drying process to produce anhydrous NaBO2 and the water included can react with chemicals like Mg or Mg2Si to provide hydrogen.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,847,110 Dragsten Et Al
    USOO584711 OA United States Patent (19) 11 Patent Number: 5,847,110 Dragsten et al. (45) Date of Patent: Dec. 8, 1998 54 METHOD OF REDUCING ASCHIFF BASE 4,217,338 8/1980 Ouash ......................................... 424/1 4,419,444 12/1983 Quash ......................................... 435/7 (75) Inventors: Paul R. Dragsten, Chanhassen; 4,699.784 10/1987 Shih et al. ..... ... 424/85 Gregory J. Hansen, Fridley, both of 4,975,533 12/1990 Kondo et al. ... ... 536/55.3 Minn. 5,057,313 10/1991 Shih et al. ........................... 424/85.91 73 Assignee: Biomedical Frontiers, Inc., Minneapolis, Minn. OTHER PUBLICATIONS 21 Appl. No.: 911,991 Pelter, A. et al., “Reductive Aminations of Ketones and 1-1. Aldehydes using Borane-Pyridine”, J. Chem. Soc., Perkins 22 Filed: Aug. 15, 1997 Trans. 1, pp. 717–720 (1984). 51 Int. Cl. ........................... C08B 30/00; CO8B 37/00; C08B 37/02; CO7C 209/00 52 U.S. Cl. ........................ 536,124. 536/179536/185. Primary Examiner Howard C. Lee 536/18.7; 536/102; 536/112; 536/123.1; Attorney, Agent, Or Firm-Merchant, Gould, Smith, Edell, 564/123; 564/488; 564/489 Welter & Schmidt, PA. 58 Field of Search .................................. 536/17.9, 18.5, 536/18.7, 102, 112, 123.1, 124; 564/8, 57 ABSTRACT 123,489, 488 The invention relates to methods of reducing Schiff bases 56) References Cited and making chelator conjugates by treating with borane pyridine complex. U.S. PATENT DOCUMENTS 3,706,633 12/1972 Katchalski et al. ....................... 195/63 47 Claims, No Drawings 5,847,110 1 2 METHOD OF REDUCING ASCHIFF BASE includes Steps of reacting a water Soluble carrier with an amine, and treating reacted water Soluble carrier with BACKGROUND OF THE INVENTION borane-pyridine complex.
    [Show full text]