Particle Filtering: a Priori Estimation of Observational Errors of a State-Space Model with Linear Observation Equation †
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Spatial Duration Data for the Spatial Re- Gression Context
Missing Data In Spatial Regression 1 Frederick J. Boehmke Emily U. Schilling University of Iowa Washington University Jude C. Hays University of Pittsburgh July 15, 2015 Paper prepared for presentation at the Society for Political Methodology Summer Conference, University of Rochester, July 23-25, 2015. 1Corresponding author: [email protected] or [email protected]. We are grateful for funding provided by the University of Iowa Department of Political Science. Com- ments from Michael Kellermann, Walter Mebane, and Vera Troeger greatly appreciated. Abstract We discuss problems with missing data in the context of spatial regression. Even when data are MCAR or MAR based solely on exogenous factors, estimates from a spatial re- gression with listwise deletion can be biased, unlike for standard estimators with inde- pendent observations. Further, common solutions for missing data such as multiple im- putation appear to exacerbate the problem rather than fix it. We propose a solution for addressing this problem by extending previous work including the EM approach devel- oped in Hays, Schilling and Boehmke (2015). Our EM approach iterates between imputing the unobserved values and estimating the spatial regression model using these imputed values. We explore the performance of these alternatives in the face of varying amounts of missing data via Monte Carlo simulation and compare it to the performance of spatial regression with listwise deletion and a benchmark model with no missing data. 1 Introduction Political science data are messy. Subsets of the data may be missing; survey respondents may not answer all of the questions, economic data may only be available for a subset of countries, and voting records are not always complete. -
Kalman and Particle Filtering
Abstract: The Kalman and Particle filters are algorithms that recursively update an estimate of the state and find the innovations driving a stochastic process given a sequence of observations. The Kalman filter accomplishes this goal by linear projections, while the Particle filter does so by a sequential Monte Carlo method. With the state estimates, we can forecast and smooth the stochastic process. With the innovations, we can estimate the parameters of the model. The article discusses how to set a dynamic model in a state-space form, derives the Kalman and Particle filters, and explains how to use them for estimation. Kalman and Particle Filtering The Kalman and Particle filters are algorithms that recursively update an estimate of the state and find the innovations driving a stochastic process given a sequence of observations. The Kalman filter accomplishes this goal by linear projections, while the Particle filter does so by a sequential Monte Carlo method. Since both filters start with a state-space representation of the stochastic processes of interest, section 1 presents the state-space form of a dynamic model. Then, section 2 intro- duces the Kalman filter and section 3 develops the Particle filter. For extended expositions of this material, see Doucet, de Freitas, and Gordon (2001), Durbin and Koopman (2001), and Ljungqvist and Sargent (2004). 1. The state-space representation of a dynamic model A large class of dynamic models can be represented by a state-space form: Xt+1 = ϕ (Xt,Wt+1; γ) (1) Yt = g (Xt,Vt; γ) . (2) This representation handles a stochastic process by finding three objects: a vector that l describes the position of the system (a state, Xt X R ) and two functions, one mapping ∈ ⊂ 1 the state today into the state tomorrow (the transition equation, (1)) and one mapping the state into observables, Yt (the measurement equation, (2)). -
STOCHASTIC CONTROL Contents 1. Introduction 1 2. Mathematical Probability 1 3. Stochastic Calculus 3 4. Diffusions 7 5. the Stoc
STOCHASTIC CONTROL NAFTALI HARRIS Abstract. In this paper we discuss the Stochastic Control Problem, which deals with the best way to control a stochastic system and has applications in fields as diverse as robotics, finance, and industry. After quickly reviewing mathematical probability and stochastic integration, we prove the Hamilton- Jacobi-Bellman equations for stochastic control, which transform the Stochas- tic Control Problem into a partial differential equation. Contents 1. Introduction 1 2. Mathematical Probability 1 3. Stochastic Calculus 3 4. Diffusions 7 5. The Stochastic Control Problem 11 6. The Hamilton-Jacobi-Bellman Equation 12 7. Acknowledgements 18 References 18 1. Introduction The Stochastic Control Problem arises when we wish to control a continuous- time random system optimally. For example, we wish to fly an airplane through turbulence, or manage a stock portfolio, or precisely maintain the temperature and pressure of a system in the presence of random air currents and temperatures. To build up to a formal definition of this problem, we will first review mathematical probability and stochastic calculus. These will give us the tools to talk about It^o processes and diffusions, which will allow us to state the Stochastic Control Problem formally. Finally, we will spend the latter half of this paper proving necessary conditions and sufficient conditions for its solution. 2. Mathematical Probability In this section we briskly define the mathematical model of probability required in the rest of this paper. We define probability spaces, random variables, and conditional expectation. For more detail, see Williams [4]. Definition 2.1 (Probability Space). A probability space is a triple (Ω; F;P ), where Ω is an arbitrary set, F is a sigma algebra over Ω, and P is a measure on sets in F with P (Ω) = 1. -
A Fourier-Wavelet Monte Carlo Method for Fractal Random Fields
JOURNAL OF COMPUTATIONAL PHYSICS 132, 384±408 (1997) ARTICLE NO. CP965647 A Fourier±Wavelet Monte Carlo Method for Fractal Random Fields Frank W. Elliott Jr., David J. Horntrop, and Andrew J. Majda Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, New York 10012 Received August 2, 1996; revised December 23, 1996 2 2H k[v(x) 2 v(y)] l 5 CHux 2 yu , (1.1) A new hierarchical method for the Monte Carlo simulation of random ®elds called the Fourier±wavelet method is developed and where 0 , H , 1 is the Hurst exponent and k?l denotes applied to isotropic Gaussian random ®elds with power law spectral the expected value. density functions. This technique is based upon the orthogonal Here we develop a new Monte Carlo method based upon decomposition of the Fourier stochastic integral representation of the ®eld using wavelets. The Meyer wavelet is used here because a wavelet expansion of the Fourier space representation of its rapid decay properties allow for a very compact representation the fractal random ®elds in (1.1). This method is capable of the ®eld. The Fourier±wavelet method is shown to be straightfor- of generating a velocity ®eld with the Kolmogoroff spec- ward to implement, given the nature of the necessary precomputa- trum (H 5 Ad in (1.1)) over many (10 to 15) decades of tions and the run-time calculations, and yields comparable results scaling behavior comparable to the physical space multi- with scaling behavior over as many decades as the physical space multiwavelet methods developed recently by two of the authors. -
Missing Data Module 1: Introduction, Overview
Missing Data Module 1: Introduction, overview Roderick Little and Trivellore Raghunathan Course Outline 9:00-10:00 Module 1 Introduction and overview 10:00-10:30 Module 2 Complete-case analysis, including weighting methods 10:30-10:45 Break 10:45-12:00 Module 3 Imputation, multiple imputation 1:30-2:00 Module 4 A little likelihood theory 2:00-3:00 Module 5 Computational methods/software 3:00-3:30 Module 6: Nonignorable models Module 1:Introduction and Overview Module 1: Introduction and Overview • Missing data defined, patterns and mechanisms • Analysis strategies – Properties of a good method – complete-case analysis – imputation, and multiple imputation – analysis of the incomplete data matrix – historical overview • Examples of missing data problems Module 1:Introduction and Overview Module 1: Introduction and Overview • Missing data defined, patterns and mechanisms • Analysis strategies – Properties of a good method – complete-case analysis – imputation, and multiple imputation – analysis of the incomplete data matrix – historical overview • Examples of missing data problems Module 1:Introduction and Overview Missing data defined variables If filled in, meaningful for cases analysis? • Always assume missingness hides a meaningful value for analysis • Examples: – Missing data from missed clinical visit( √) – No-show for a preventive intervention (?) – In a longitudinal study of blood pressure medications: • losses to follow-up ( √) • deaths ( x) Module 1:Introduction and Overview Patterns of Missing Data • Some methods work for a general -
Coping with Missing Data in Randomized Controlled Trials
EVALUATION TECHNICAL ASSISTANCE BRIEF for OAH & ACYF Teenage Pregnancy Prevention Grantees May 2013 • Brief 3 Coping with Missing Data in Randomized Controlled Trials issing data in randomized controlled trials (RCTs) can respondents3 if there are no systematic differences between Mlead to biased impact estimates and a loss of statistical respondents in the treatment group and respondents in the power. In this brief we describe strategies for coping with control group. However, if respondents in the treatment group missing data in RCTs.1 Specifically, we discuss strategies to: are systematically different from respondents in the control group, then the impact we calculate for respondents lacks ● Describe the extent and nature of missing data. We suggest causal validity. We call the difference between the calculated ways to provide a clear and accurate accounting of the extent impact for respondents and the true impact for respondents and nature of missing outcome data. This will increase the “causal validity bias.” This type of bias is the focus of the transparency and credibility of the study, help with interpret- evidence review of teen pregnancy prevention programs ing findings, and also help to select an approach for addressing (Mathematica Policy Research and Child Trends 2012). missing data in impact analyses. We suggest conducting descriptive analyses designed to assess ● Address missing data in impact analyses. Missing outcome the potential for both types of bias in an RCT. or baseline data pose mechanical and substantive problems when conducting impact analyses. The mechanical problem With regard to generalizability, we suggest conducting two is that mathematical operations cannot be performed on analyses. -
Monte Carlo Likelihood Inference for Missing Data Models
MONTE CARLO LIKELIHOOD INFERENCE FOR MISSING DATA MODELS By Yun Ju Sung and Charles J. Geyer University of Washington and University of Minnesota Abbreviated title: Monte Carlo Likelihood Asymptotics We describe a Monte Carlo method to approximate the maximum likeli- hood estimate (MLE), when there are missing data and the observed data likelihood is not available in closed form. This method uses simulated missing data that are independent and identically distributed and independent of the observed data. Our Monte Carlo approximation to the MLE is a consistent and asymptotically normal estimate of the minimizer ¤ of the Kullback- Leibler information, as both a Monte Carlo sample size and an observed data sample size go to in¯nity simultaneously. Plug-in estimates of the asymptotic variance are provided for constructing con¯dence regions for ¤. We give Logit-Normal generalized linear mixed model examples, calculated using an R package that we wrote. AMS 2000 subject classi¯cations. Primary 62F12; secondary 65C05. Key words and phrases. Asymptotic theory, Monte Carlo, maximum likelihood, generalized linear mixed model, empirical process, model misspeci¯cation 1 1. Introduction. Missing data (Little and Rubin, 2002) either arise naturally|data that might have been observed are missing|or are intentionally chosen|a model includes random variables that are not observable (called latent variables or random e®ects). A mixture of normals or a generalized linear mixed model (GLMM) is an example of the latter. In either case, a model is speci¯ed for the complete data (x; y), where x is missing and y is observed, by their joint den- sity f(x; y), also called the complete data likelihood (when considered as a function of ). -
Missing Data
4 Missing Data Paul D. Allison INTRODUCTION they have spent a great deal time, money and effort in collecting. And so, many methods for Missing data are ubiquitous in psychological ‘salvaging’ the cases with missing data have research. By missing data, I mean data that become popular. are missing for some (but not all) variables For a very long time, however, missing and for some (but not all) cases. If data are data could be described as the ‘dirty little missing on a variable for all cases, then that secret’ of statistics. Although nearly everyone variable is said to be latent or unobserved. had missing data and needed to deal with On the other hand, if data are missing on the problem in some way, there was almost all variables for some cases, we have what nothing in the textbook literature to pro- is known as unit non-response, as opposed vide either theoretical or practical guidance. to item non-response which is another name Although the reasons for this reticence are for the subject of this chapter. I will not deal unclear, I suspect it was because none of the with methods for latent variables or unit non- popular methods had any solid mathematical response here, although some of the methods foundation. As it turns out, all of the most we will consider can be adapted to those commonly used methods for handling missing situations. data have serious deficiencies. Why are missing data a problem? Because Fortunately, the situation has changed conventional statistical methods and software dramatically in recent years. -
Fourier, Wavelet and Monte Carlo Methods in Computational Finance
Fourier, Wavelet and Monte Carlo Methods in Computational Finance Kees Oosterlee1;2 1CWI, Amsterdam 2Delft University of Technology, the Netherlands AANMPDE-9-16, 7/7/2016 Kees Oosterlee (CWI, TU Delft) Comp. Finance AANMPDE-9-16 1 / 51 Joint work with Fang Fang, Marjon Ruijter, Luis Ortiz, Shashi Jain, Alvaro Leitao, Fei Cong, Qian Feng Agenda Derivatives pricing, Feynman-Kac Theorem Fourier methods Basics of COS method; Basics of SWIFT method; Options with early-exercise features COS method for Bermudan options Monte Carlo method BSDEs, BCOS method (very briefly) Kees Oosterlee (CWI, TU Delft) Comp. Finance AANMPDE-9-16 1 / 51 Agenda Derivatives pricing, Feynman-Kac Theorem Fourier methods Basics of COS method; Basics of SWIFT method; Options with early-exercise features COS method for Bermudan options Monte Carlo method BSDEs, BCOS method (very briefly) Joint work with Fang Fang, Marjon Ruijter, Luis Ortiz, Shashi Jain, Alvaro Leitao, Fei Cong, Qian Feng Kees Oosterlee (CWI, TU Delft) Comp. Finance AANMPDE-9-16 1 / 51 Feynman-Kac theorem: Z T v(t; x) = E g(s; Xs )ds + h(XT ) ; t where Xs is the solution to the FSDE dXs = µ(Xs )ds + σ(Xs )d!s ; Xt = x: Feynman-Kac Theorem The linear partial differential equation: @v(t; x) + Lv(t; x) + g(t; x) = 0; v(T ; x) = h(x); @t with operator 1 Lv(t; x) = µ(x)Dv(t; x) + σ2(x)D2v(t; x): 2 Kees Oosterlee (CWI, TU Delft) Comp. Finance AANMPDE-9-16 2 / 51 Feynman-Kac Theorem The linear partial differential equation: @v(t; x) + Lv(t; x) + g(t; x) = 0; v(T ; x) = h(x); @t with operator 1 Lv(t; x) = µ(x)Dv(t; x) + σ2(x)D2v(t; x): 2 Feynman-Kac theorem: Z T v(t; x) = E g(s; Xs )ds + h(XT ) ; t where Xs is the solution to the FSDE dXs = µ(Xs )ds + σ(Xs )d!s ; Xt = x: Kees Oosterlee (CWI, TU Delft) Comp. -
Parameter Estimation in Stochastic Volatility Models with Missing Data Using Particle Methods and the Em Algorithm
PARAMETER ESTIMATION IN STOCHASTIC VOLATILITY MODELS WITH MISSING DATA USING PARTICLE METHODS AND THE EM ALGORITHM by Jeongeun Kim BS, Seoul National University, 1998 MS, Seoul National University, 2000 Submitted to the Graduate Faculty of the Department of Statistics in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2005 UNIVERSITY OF PITTSBURGH DEPARTMENT OF STATISTICS This dissertation was presented by Jeongeun Kim It was defended on April 22, 2005 and approved by David S. Stoffer, Professor Ori Rosen, Professor Wesley Thompson, Professor Anthony Brockwell, Professor Dissertation Director: David S. Stoffer, Professor ii Copyright c by Jeongeun Kim 2005 iii PARAMETER ESTIMATION IN STOCHASTIC VOLATILITY MODELS WITH MISSING DATA USING PARTICLE METHODS AND THE EM ALGORITHM Jeongeun Kim, PhD University of Pittsburgh, 2005 The main concern of financial time series analysis is how to forecast future values of financial variables, based on all available information. One of the special features of financial variables, such as stock prices and exchange rates, is that they show changes in volatility, or variance, over time. Several statistical models have been suggested to explain volatility in data, and among them Stochastic Volatility models or SV models have been commonly and successfully used. Another feature of financial variables I want to consider is the existence of several missing data. For example, there is no stock price data available for regular holidays, such as Christmas, Thanksgiving, and so on. Furthermore, even though the chance is small, stretches of data may not available for many reasons. I believe that if this feature is brought into the model, it will produce more precise results. -
Efficient Monte Carlo Methods for Estimating Failure Probabilities
Reliability Engineering and System Safety 165 (2017) 376–394 Contents lists available at ScienceDirect Reliability Engineering and System Safety journal homepage: www.elsevier.com/locate/ress ffi E cient Monte Carlo methods for estimating failure probabilities MARK ⁎ Andres Albana, Hardik A. Darjia,b, Atsuki Imamurac, Marvin K. Nakayamac, a Mathematical Sciences Dept., New Jersey Institute of Technology, Newark, NJ 07102, USA b Mechanical Engineering Dept., New Jersey Institute of Technology, Newark, NJ 07102, USA c Computer Science Dept., New Jersey Institute of Technology, Newark, NJ 07102, USA ARTICLE INFO ABSTRACT Keywords: We develop efficient Monte Carlo methods for estimating the failure probability of a system. An example of the Probabilistic safety assessment problem comes from an approach for probabilistic safety assessment of nuclear power plants known as risk- Risk analysis informed safety-margin characterization, but it also arises in other contexts, e.g., structural reliability, Structural reliability catastrophe modeling, and finance. We estimate the failure probability using different combinations of Uncertainty simulation methodologies, including stratified sampling (SS), (replicated) Latin hypercube sampling (LHS), Monte Carlo and conditional Monte Carlo (CMC). We prove theorems establishing that the combination SS+LHS (resp., SS Variance reduction Confidence intervals +CMC+LHS) has smaller asymptotic variance than SS (resp., SS+LHS). We also devise asymptotically valid (as Nuclear regulation the overall sample size grows large) upper confidence bounds for the failure probability for the methods Risk-informed safety-margin characterization considered. The confidence bounds may be employed to perform an asymptotically valid probabilistic safety assessment. We present numerical results demonstrating that the combination SS+CMC+LHS can result in substantial variance reductions compared to stratified sampling alone. -
Statistical Inference in Missing Data by MCMC And
I Takahashi, M 2017 Statistical Inference in Missing Data by MCMC and CODATA '$7$6&,(1&( S Non-MCMC Multiple Imputation Algorithms: Assessing the Effects of U -2851$/ Between-Imputation Iterations. Data Science Journal, 16: 37, pp. 1–17, DOI: https://doi.org/10.5334/dsj-2017-037 RESEARCH PAPER Statistical Inference in Missing Data by MCMC and Non-MCMC Multiple Imputation Algorithms: Assessing the Effects of Between-Imputation Iterations Masayoshi Takahashi IR Office, Tokyo University of Foreign Studies, Tokyo, JP [email protected] Incomplete data are ubiquitous in social sciences; as a consequence, available data are inefficient (ineffective) and often biased. In the literature, multiple imputation is known to be the standard method to handle missing data. While the theory of multiple imputation has been known for decades, the implementation is difficult due to the complicated nature of random draws from the posterior distribution. Thus, there are several computational algorithms in software: Data Augmentation (DA), Fully Conditional Specification (FCS), and Expectation-Maximization with Bootstrapping (EMB). Although the literature is full of comparisons between joint modeling (DA, EMB) and conditional modeling (FCS), little is known about the relative superiority between the MCMC algorithms (DA, FCS) and the non-MCMC algorithm (EMB), where MCMC stands for Markov chain Monte Carlo. Based on simulation experiments, the current study contends that EMB is a confidence proper (confidence-supporting) multiple imputation algorithm without between-imputation iterations; thus, EMB is more user-friendly than DA and FCS. Keywords: MCMC; Markov chain Monte Carlo; Incomplete data; Nonresponse; Joint modeling; Conditional modeling 1 Introduction Generally, it is quite difficult to obtain complete data in social surveys (King et al.