Gas Explosion Handbook

Total Page:16

File Type:pdf, Size:1020Kb

Gas Explosion Handbook Gas Explosion Handbook Authors: Dag Bjerketvedt Jan Roar Bakke Kees van Wingerden Gas Explosion Handbook (1992) Preamble The original Gas Explosion Handbook was written by CMR (later CMR Gexcon) in 1992 and distributed as a set of HTML files. We recently decided to instead distribute a printable pdf version with an updated frontpage and preamble, to make it easier to print and to search within the content. Apart from these changed the content is identical to the HTML version from 1992. Obviously, since the publication of this handbook 25 years ago, more research has been done into the various types of explosion phenomena and some of the previous insights may have changed or have been refined over the years. However, the described main mechanisms and the majority of the content are still equally valid today and the handbook should still be a useful starting point for understanding explosion phenomena today. Dr. Kees van Wingerden Senior Vice President Gexcon AS (previously CMR Gexcon) February 2019, Bergen Norway For information on the various related services and software products Gexcon provides, please visit our website at: www.gexcon.com. Disclaimer: Gexcon AS accepts no legal liability or responsibility whatsoever for the consequences of unqualified use or misuse of this book or any results thereof. © Gexcon AS. The information contained herein is to be used by the recipient solely for the purpose for which it was supplied. It shall not be disclosed in whole or in part, by any other party without the written permission of Gexcon AS. GAS EXPLOSION HANDBOOK Authors: Dag Bjerketvedt Jan Roar Bakke Kees van Wingerden TABLE OF CONTENTS • FOREWORD • 1. INTRODUCTION TO GAS EXPLOSIONS • 2. DEFINITIONS • 3. FORMATION OF EXPLOSIVE GAS CLOUDS • 4. COMBUSTION PROPERTIES OF FUEL-AIR MIXTURES • 5. DEFLAGRATIONS • 6. DETONATIONS • 7. BLAST WAVES • 8. RESPONSE OF STRUCTURES • 9. GAS EXPLOSIONS IN VESSELS, PIPES, CHANNELS AND TUNNELS • 10. GAS EXPLOSIONS IN COMPARTMENTS, BUILDINGS AND OFFSHORE MODULES • 11. GAS EXPLOSIONS IN PROCESS AREAS AND UNCONFINED AREAS • 12. FLACS SIMULATIONS • 13. µFLACS SIMULATIONS • 14. ACCIDET INVESTIGATION • 15. LIST OF TERMS AND EXPRESSIONS • ANIMATIONS • ACKNOWLEDGEMENTS • REFERENCES • COMMENT FORM Disclaimer: Christian Michelsen Research AS accepts no legal liability or responsibility whatsoever for the consequences of unqualified use or misuse of this book or any results thereof. Page 2 • How to Read this Handbook • Objectives of the Handbook Foreword • Gas Explosion Activities at CMR This handbook has been written as a part of Christian Michelsen Research's (CMR) research programme "Gas Safety Programme 19901992" (GSP90-92). The participants of the programme are: BP Norway Limited U.A., Bundesministerium für Forschung und Technologie, Conoco Norway Inc., Elf Petroleum Norge A/S, Esso Norge A/S, Gaz de France, Health and Safety Executive, Mobil Exploration Norway Inc., Norsk Hydro, Norwegian Petroleum Directorate, N.V. Nederlandse Gasunie, Phillips Petroleum Company Norway and Statoil. The purpose of this handbook is to give a brief introduction to gas explosion safety, based on our current knowledge of the subject and on our experience in applying this knowledge to practical problems in the industry. Because of the intended brevity and simplicity of the handbook the information provided may in some cases be strongly simplified and/or incomplete. For in-depth information on the various subjects the reader is referred to the literature described in the References . The user of this handbook is intended to be a process- , design- or structural engineer, but the handbook should also be useful for safety engineers. How to Read this Handbook The handbook is divided into 15 chapters. The individual chapters can be grouped in four categories: i) Introduction, ii) Background and Basics, iii) Practical Aspects and iv) Tools and Analysis. The chapters of each category are shown in Figure 1. Foreword Introduction 1. Introduction to Gas Explosions 2. Definitions 3. Formation of Explosive Gas Clouds 4. Combustion Properties of Fuel-Air Mixtures Background and 5. Deflagrations Basics 6. Detonations 7. Blast Waves 8. Response of Structures Practical Aspects 9. Gas Explosions in Vessels, Pipes, Channels and Tunnels Page 3 10. Gas Explosions in Compartments, Buildings and Offshore Modules 11. Gas Explosions in Process Areas and Unconfined Areas 12. FLACS Simulations 13. µFlacs Simulations 14. Accident Investigation Tools and Analysis 15. List of Terms and Expressions Animations Acknowledgements References Figure 1. Organisation of the handbook. The chapters in the first category "Introduction" contain the description and physics of gas explosion phenomena, definitions and loss experience. Under "Background and Basics", cloud formation, gas explosions, blast waves and structural response are described. The part "Practical Aspects" relates the information presented in "Background and Basics" to different industrial situations The final part on "Tools and Analysis" focuses on what one can do to improve gas explosion safety. In particular a description is given of the FLACS and µFlacs codes, and how these tools can be applied for predicting the consequences of gas explosions in an industrial environment. When writing this handbook, it was our intention that the reader could start directly in one chapter listed under "Practical Aspects" or "Tools and Analysis" and use the other chapters for supplementary information. However, if the field of gas explosions is new to the reader, we would recommend going through Chapters 1 and 2 as a first introduction to the subject. Chapter 15 contains a list of terms and expressions. To avoid too much cross-referencing and thereby making the use of the handbook more cumbersome, there is a certain amount of overlap between what is contained in the two first parts and the two last parts. This makes each of the two halves more self- contained and the handbook may therefore be used as a reference work without having to read it all. Objectives of the Handbook Today there is a lot of information available in scientific papers and reports on gas explosions. However, in most cases the practical implications of this information are very hard to extract. A need for a handbook with simpler presentation of the available information that can be used in the industry, has therefore been identified. Page 4 This handbook summarises the main results and experience from our previous research programmes and consultancy activity on gas explosion safety (Bakke et al., 1991). We are focusing on pressure build-up during gas explosions. Important areas of gas explosion safety, such as how to prevent leaks and what is the ignition probability, are not covered. In this handbook we assume that the premixed combustible gas has been generated and ignited. Phenomena of flame propagation and pressure build-up are discussed. The important factors influencing pressure build-up are pointed out and some simple guidelines are presented. The use of numerical codes (FLACS and µFlacs) for simulation of gas explosions in industrial environments is also covered. Figure The Handbook, µFlacs and FLACS constitute a complementary set of 2. tools. The handbook is one of three tools for analysis of gas explosions, which have been provided by CMR. The two other tools are FLACS and µFlacs. FLACS is the most advanced code of the two. FLACS is used for detailed analysis, while µFlacs is a PC screening tool and does not require the same amount of detailed input and resources as FLACS. Our goal is that the handbook, FLACS and µFlacs are used together in gas explosion analyses as supplementary tools. Which tool to use will depend on the stage of the analysis and the detail of information required. Our intention is that the CMR gas explosion handbook is a "live" document that will be updated when new information is available. Further comments and suggestions for improvement of the handbook will be gratefully received. A comment form is included in the handbook. Gas Explosion Activities at CMR In the late 60's and in the 70's, large oil and gas fields were discovered in the North Sea. It was recognised that gas explosions might constitute a hazard for the drilling and production installations in the North Sea and that the knowledge about gas explosions in industrial environments was limited. At Chr. Michelsen Institute's Dept. of Science and Technology (CMI-DST, from June 1992 Christian Michelsen Research - CMR), gas explosion research was started in the late 1970's as part of the programme "Sikkerhet På Sokkelen". Since then gas explosion research has been an important activity at CMI/CMR, as shown in Figure 3. The gas explosion research Page 5 was a continuation of the research work on dust explosions. The dust explosion research work is described by Eckhoff (1991). Figure 3. Research programmes and consultancy activity on explosions at CMR. In the period 1980-1990 CMI carried out two major research programmes on gas explosions. A total of 80 man-years of research have provided new insight into gas dispersion and gas explosions in industrial environments. The primary objectives of the work have been to generate know-how and tools for minimising the effect of accidental explosions. CMI's strategy has been to combine large- and small-scale experimental work with the development of advanced fluid-dynamic codes. In GEP 80-86 pressure development due to flame acceleration by obstacle-generated turbulence was studied. This mechanism was identified as being mainly responsible for explosions occurring in complex geometries typically found on offshore platforms. The phenomenon was studied both in small and large scale (0.2 m3 and 50 m3) for geometrical layouts of increasing complexity. The most complex layout was a scale 1:5 offshore module. Different gases and ignition strengths were studied, as were ignition positions and vent arrangements. Results from these experiments served two purposes: they provided new insight about flame acceleration in complex geometries and also data for validation of computer codes developed for explosion overpressure prediction.
Recommended publications
  • A Simple Approach to the Supernova Progenitor-Explosion Connection
    A Simple Approach to the Supernova Progenitor-Explosion Connection Bernhard Müller Queen's University Belfast Monash Alexander Heger, David Liptai, Joshua Cameron (Monash University) Many potential/indirect observables from core-collapse supernovae, but some of the most direct ones (explosion energies, remnant masses) are heavy elements challenging for SN theory! massive star core-collapse supernovae neutron stars & gravitational waves neutrinos supernova remnants The neutrino-driven mechanism in its modern flavour shock ● Stalled accretion shock still oscillations (“SASI”) pushed outward to ~150km as matter piles up on the PNS, then recedes again convection ● Heating or gain region g develops some tens of ms n i t g a n after bounce e li h o o c ● Convective overturn & shock oscillations “SASI” enhance the efficiency of -heating, shock which finally revives the shock ● Big challenge: Show that this works! Status of 3D Neutrino Hydrodynamics Models with Multi-Group Transport First-principle 3D models: ● Mixed record, some failures ● Some explosions, delayed compared to 2D ● Models close to the threshold So what is missing? 27 M Hanke et al. (2013) 2 3/5 2 −3/5 ⊙ ● Lcrit ∝M˙ M 14 Ma /3 ● → Increase neutrino heating or Reynolds stresses ● Unknown/undetermined microphysics (e.g. Melson et al. 2015)? ● 20 M Melson et al. (2015) Lower explosion threshold in ⊙ SASI-dominated regime (Fernandez 2015)? 15 M⊙ Lentz et al. (2015) ● Better 1D/multi-D progenitor Or with simpler schemes: e.g. IDSA+leakage Takiwaki et al. (2014) models? Challenge: Connecting to Observables Several 50 diagnostic 10 erg with explosion sustained energy accretion . l a ) t 2 e 1 a 0 k 2 ( n Pejcha & Prieto (2015): Explosion energies a J vs.
    [Show full text]
  • Leak Test Requirements
    METRIC/SI (ENGLISH) NASA TECHNICAL STANDARD NASA-STD-7012 Office of the NASA Chief Engineer Approved: 2019-03-05 LEAK TEST REQUIREMENTS APPROVED FOR PUBLIC RELEASE – DISTRIBUTION IS UNLIMITED NASA-STD-7012 DOCUMENT HISTORY LOG Status Document Change Approval Date Description Revision Number Baseline 2019-03-05 Initial Release APPROVED FOR PUBLIC RELEASE – DISTRIBUTION IS UNLIMITED 2 of 54 NASA-STD-7012 FOREWORD This NASA Technical Standard is published by the National Aeronautics and Space Administration (NASA) to provide uniform engineering and technical requirements for processes, procedures, practices, and methods that have been endorsed as standard for NASA programs and projects, including requirements for selection, application, and design criteria of an item. This NASA Technical Standard is approved for use by NASA Headquarters and NASA Centers and Facilities, and applicable technical requirements may be cited in contract, program, and other Agency documents. It may also apply to the Jet Propulsion Laboratory (a Federally Funded Research and Development Center (FFRDC)), other contractors, recipients of grants and cooperative agreements, and parties to other agreements only to the extent specified or referenced in applicable contracts, grants, or agreements. This NASA Technical Standard establishes uniform use of leak test requirements for NASA vehicles, subsystems and their components, and payloads. This NASA Technical Standard was developed by the Johnson Space Center (JSC) Requirements, Test, and Verification Panel (RTVP) supported by JSC Engineering. To provide additional technical expert guidance, the RTVP established a Technical Discipline Working Group that involved many known space industry experts in leak testing from Glenn Research Center, Kennedy Space Center, Langley Research Center, and Marshall Space Flight Center (MSFC) in particular.
    [Show full text]
  • Outside Diameter Initiated Stress Corrosion Cracking Revised Final White Paper", Developed by AREVA and Westinghouse Under PWROG Program PA-MSC-0474
    Program Management Office PWROG 102 Addison Road Connecticut 06095 q .Windsor, ko'ners-- PA-MSC-0474 Project Number 694 October 14, 2010 OG-10-354 U.S. Nuclear Regulatory Commission Document Control Desk Washington, DC 20555-0001 Subject: PWR Owners Group For Information Only - Outside Diameter Initiated Stress Corrosion Crackin2 Revised Final White Paper, PA-MSC-0474 This letter transmits two (2) non-proprietary copies of PWROG document "Outside Diameter Initiated Stress Corrosion Cracking Revised Final White Paper", developed by AREVA and Westinghouse under PWROG program PA-MSC-0474. This document is being submitted for information only. No safety evaluation (SE) is expected and therefore, no review fees should be incurred. This white paper summarizes the recent occurrences of ODSCC of stainless steel piping identified at Callaway, Wolf Creek and SONGS. Available operating experience (OE) at units that have observed similar phenomena is summarized as well to give a better understanding of the issue. Each of the key factors that contribute to ODSCC was considered along with the reported operating experience to perform a preliminary assessment of areas that may be susceptible to ODSCC. Also a qualitative evaluation was performed to determine whether ODSCC of stainless steel piping represents an immediate safety concern. This white paper is meant to address the issue of ODSCC of stainless steel systems for the near term. I&E guidelines are currently being developed through the PWROG to provide long term guidance. Correspondence related to this transmittal should be addressed to: Mr. W. Anthony Nowinowski, Manager Owners Group, Program Management Office Westinghouse Electric Company 1000 Westinghouse Drive, Suite 380 Cranberry Township, PA 16066 U.S.
    [Show full text]
  • Forensic Analysis Involving Fugitive Natural Gas and Propane
    199.pdf A SunCam online continuing education course Forensic Analysis Involving Fugitive Natural Gas and Propane by Michael E. Weyler, Ph.D., P.E., CFI Weyler Engineering, PC 199.pdf Forensic Analysis Involving Fugitive Natural Gas and Propane A SunCam online continuing education course I. Overview Engineers are frequently called upon to perform forensic analyses of the origin and cause of explosions1 and fires involving fuel gas systems that use either natural gas or propane. This course will concentrate on those cases where the natural gas or propane vapor has escaped from its normal confinement, and caused an explosion or fire or both. Propane explosion inside house, propane tank in background at top of photo Natural gas explosion inside house, gas meter seen at foundation wall 1 National Fire Protection Association definition of explosion, which will be used in this course: The sudden conversion of potential energy (chemical or mechanical) into kinetic energy with the production and release of gases under pressure, or the release of gas under pressure. These high-pressure gases then do mechanical work such as moving, changing, or shattering nearby materials. An ignition that produces sound alone does not qualify as an explosion in this context. www.SunCam.com Copyright 2014 Michael E. Weyler Page 2 of 37 199.pdf Forensic Analysis Involving Fugitive Natural Gas and Propane A SunCam online continuing education course The operations of gas-fired systems are based on the release of heat energy by the burning of either natural gas or propane. The presence of a flame or fire is, in and of itself, an integral part of such systems.
    [Show full text]
  • Could a Nearby Supernova Explosion Have Caused a Mass Extinction? JOHN ELLIS* and DAVID N
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 235-238, January 1995 Astronomy Could a nearby supernova explosion have caused a mass extinction? JOHN ELLIS* AND DAVID N. SCHRAMMtt *Theoretical Physics Division, European Organization for Nuclear Research, CH-1211, Geneva 23, Switzerland; tDepartment of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637; and *National Aeronautics and Space Administration/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510 Contributed by David N. Schramm, September 6, 1994 ABSTRACT We examine the possibility that a nearby the solar constant, supernova explosions, and meteorite or supernova explosion could have caused one or more of the comet impacts that could be due to perturbations of the Oort mass extinctions identified by paleontologists. We discuss the cloud. The first of these has little experimental support. possible rate of such events in the light of the recent suggested Nemesis (4), a conjectured binary companion of the Sun, identification of Geminga as a supernova remnant less than seems to have been excluded as a mechanism for the third,§ 100 parsec (pc) away and the discovery ofa millisecond pulsar although other possibilities such as passage of the solar system about 150 pc away and observations of SN 1987A. The fluxes through the galactic plane may still be tenable. The supernova of y-radiation and charged cosmic rays on the Earth are mechanism (6, 7) has attracted less research interest than some estimated, and their effects on the Earth's ozone layer are of the others, perhaps because there has not been a recent discussed.
    [Show full text]
  • Dust Or Gas Explosion: Case Study of Dryer Explosion and Design Venting
    GCPS 2010 __________________________________________________________________________ Dust or Gas Explosion: Case Study of Dryer Explosion and Design Venting Scott G. Davis GexCon US 7735 Old Georgetown Rd., Suite 1010 Bethesda, MD 20814 [email protected] Derek Engel and Olav R. Hansen GexCon US 7735 Old Georgetown Rd., Suite 1010 Bethesda, MD 20814 [email protected] and [email protected] [This work is the property of GexCon and cannot be reproduced without permission] Prepared for Presentation at American Institute of Chemical Engineers 2010 Spring Meeting 6th Global Congress on Process Safety San Antonio, Texas March 22-24, 2010 UNPUBLISHED AIChE shall not be responsible for statements or opinions contained in papers or printed in its publications GCPS 2010 __________________________________________________________________________ Dust or Gas Explosion: Case Study of Dryer Explosion and Design Venting Scott G. Davis GexCon US 7735 Old Georgetown Rd., Suite 1010 Bethesda, MD 20814 [email protected] Derek Engel, Olav R. Hansen GexCon US Keywords: dust explosion, gas explosion, explosion venting Abstract A recent explosion occurred in a single burner, recirculating solids ring dryer. No one was reported injured as a result of the explosion, however the explosion caused significant damage to the dryer and minor damage to sections of the facility. Despite the dryer having been designed with seven explosion doors, the explosion caused a section of the dryer recycle duct to rupture and various doors on the dryer equipment to fail. As a result of the blast, two of the explosion doors on the external ring duct were separated from their hinges, with one landing on the upper roof section, while the other fell back through the roof of the facility in the area of workers.
    [Show full text]
  • Leak Detection in Natural Gas and Propane Commercial Motor Vehicles Course
    Leak Detection in Natural Gas and Propane Commercial Motor Vehicles Course July 2015 Table of Contents 1. Leak Detection in Natural Gas and Propane Commercial Motor Vehicles Course ............................................... 1 1.1 Introduction and Overview ............................................................................................................................ 1 1.2 Welcome ........................................................................................................................................................ 1 1.3 Course Goal .................................................................................................................................................... 1 1.4 Training Outcomes ......................................................................................................................................... 1 1.5 Training Outcomes (Continued) ..................................................................................................................... 2 1.6 Course Objectives .......................................................................................................................................... 2 1.7 Course Topic Areas ........................................................................................................................................ 2 1.8 Course Overview ............................................................................................................................................ 2 1.9 Module One: Overview of CNG, LNG,
    [Show full text]
  • Investigation of the LPG Gas Explosion of a Welding and Cutting Torch at a Construction Site
    Korean Chem. Eng. Res., 56(6), 811-818 (2018) https://doi.org/10.9713/kcer.2018.56.6.811 PISSN 0304-128X, EISSN 2233-9558 Investigation of the LPG Gas Explosion of a Welding And Cutting Torch at a Construction Site Su-kyung Lee, Jung-hoon Lee† and Dong-woo Song Department of Safety Engineering, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811, Korea (Received 9 October 2018; Received in revised form 2 November 2018; accepted 2 November 2018) Abstract − A fire and explosion accident caused by a liquefied petroleum gas (LPG) welding and cutting torch gas leak occurred 10 m underground at the site of reinforcement work for bridge columns, killing four people and seriously injuring ten. We conducted a comprehensive investigation into the accident to identify the fundamental causes of the explosion by analyzing the structure of the construction site and the properties of propane, which was the main compo- nent of LPG welding and cutting work used at the site. The range between the lower and upper explosion limits of leak- ing LPG for welding and cutting work was examined using Le Chatelier's formula; the behavior of LPG concentration change, which included dispersion and concentration change, was analyzed using the fire dynamic simulator (FDS). We concluded that the primary cause of the accident was combustible LPG that leaked from a welding and cutting torch and formed a explosion range between the lower and upper limits. When the LPG contacted the flame of the welding and cutting torch, LPG explosion occurred.
    [Show full text]
  • Liquid Copper™ Block Seal Intake & Radiator Stop Leak
    RISLONE TECHNICAL BULLETIN Tech Bulletin #: TB-31109-2 Page 1 of 2 st Date 1 Issued: February 13, 2009 Date Revised: November 10, 2016 Rislone® Liquid Copper™ Block Part #: 31109 ISO 9001 CERTIFIED Seal Intake & Radiator Stop Leak ™ LIQUID COPPER BLOCK SEAL INTAKE & RADIATOR STOP LEAK Rislone® Liquid Copper™ Block Seal Intake & Radiator Stop Leak seals larger leaks regular stop leaks won’t. One step formula permanently repairs leaks in gaskets, radiators, heater cores, intake manifolds, blocks, heads and freeze plugs. Use on cars, trucks, vans, SUV’s and RV’s. One “1” Step Sealer contains an antifreeze compatible sodium silicate liquid glass formula, so no draining of the cooling system is required. It will not harm the cooling system when used properly. Use with all types of antifreeze including conventional green or blue (Silicate- based ) and extended life red/orange or yellow (OAT / HOAT) coolant. NOTE: Cooling systems that are dirty or partially clogged should be flushed before usage. DIRECTIONS: 1. Allow engine to cool. Ensure your engine is cool enough so radiator cap can safely be Part Number: 31109 removed. UPC Item: 0 69181 31109 1 2. Shake well. Pour LIQUID COPPER™ BLOCK UPC Case: 1 00 69181 31109 8 SEAL directly into radiator. If using in a small Bottle Size: 510 g cooling system, such as 4 cylinders with no air Bottle Size (cm): 6,6 x 6,6 x 18,8 conditioning, install ½ of bottle. Bottle Cube: 819 TIP: When you don’t have access to the Case Pack: 6 bottles per case radiator cap: for quickest results remove top Case Size (cm): 20,6 x 14 x 20,1 hose where it connects to the top of the Case Cube: 5797 radiator and install product in hose.
    [Show full text]
  • Why Use a Flame Arrester?
    Why use a Flame Arrester? Protecting People, Property and our Planet. 1 elmactechnologies.com elmactechnologies.com An introduction to Elmac Technologies Elmac Technologies® is the international This brief guide provides an introduction to flame arresters (also leader in flame and explosion prevention arrestors) and includes a summary of their design/construction systems for use in some of the world’s most and how they work. There are useful notes explaining the different types of gases & vapours and also specific flame types challenging industrial environments. and where they may occur. In addition, you will find details of the most current international flame arrester standards. For comprehensive technical advice regarding the selection and use of flame arresters please contact: Elmac Technologies Limited Tel: +44 (0) 1352 717 555 Email: [email protected] Fax: +44 (0) 1352 717 642 Coast Road, Greenfield, Flintshire, CH8 9DP United Kingdom 2 3 elmactechnologies.com A flame arrester is a device fitted to the opening of an Definition of a enclosure or to the connecting pipework in a system of enclosures. They permit gases or vapours to flow but prevent Flame Arrester the transmission of a flame should an ignition take place. In this guide, consideration is limited to flame arresters for use where the flame burns in air i.e. not in oxygen where different considerations apply. Furthermore, the guide is restricted to passive flame arresting devices with no moving parts. Why use a Flame Arrester? One of the greatest dangers involved with the Whenever a flammable gas or vapour is mixed with air (oxygen), transport or storage of flammable liquids or gases there is the potential for an explosion.
    [Show full text]
  • Accident Knowledge and Emergency Management
    Ris0-R-945(EN) DK9700056 Accident Knowledge and Emergency Management Birgitte Rasmussen, Carsten D. Gr0nberg Ris0 National Laboratory, Roskilde, Denmark March 1997 VOL 2 p III 1 2 Accident Knowledge and Emergency Management Birgitte Rasmussen, Carsten D. Gr0nberg Ris0 National Laboratory, Roskilde, Denmark March 1997 Abstract. The report contains an overall frame for transformation of knowledge and experience from risk analysis to emergency education. An accident model has been developed to describe the emergency situation. A key concept of this model is uncontrolled flow of energy (UFOE), essential ele- ments are the state, location and movement of the energy (and mass). A UFOE can be considered as the driving force of an accident, e.g., an explosion, a fire, a release of heavy gases. As long as the energy is confined, i.e. the location and movement of the energy are under control, the situation is safe, but loss of con- finement will create a hazardous situation that may develop into an accident. A domain model has been developed for representing accident and emergency scenarios occurring in society. The domain model uses three main categories: status, context and objectives. A domain is a group of activities with allied goals and elements and ten specific domains have been investigated: process plant, storage, nuclear power plant, energy distribution, marine transport of goods, marine transport of people, aviation, transport by road, transport by rail and natural disasters. Totally 25 accident cases were consulted and information was extracted for filling into the schematic representations with two to four cases pr. specific domain. The work described in this report is financially supported by EUREKA MEM- brain (Major Emergency Management) project running 1993-1998.
    [Show full text]
  • Explosive Chemical Hazards & Risk
    Safe Operating Procedure (1/13) EXPLOSIVE CHEMICAL HAZARDS & RISK MINIMIZATION _____________________________________________________________________ (For assistance, please contact EHS at (402) 472-4925, or visit our web site at http://ehs.unl.edu/) Background The Globally Harmonized System (GHS) of classification and labeling of chemicals defines an explosive materials as follows: a solid or liquid substance (or mixture of substances) which is in itself capable by chemical reaction of producing gas at such temperature and pressure and at such speed as to cause damage to the surroundings. Under the GHS system, there are seven divisions for explosives. • Unstable explosives • Division 1.1 – mass explosion hazards (i.e., nearly instant detonation of the entire quantity of explosive present) • Division 1.2 – projection hazards but not mass explosion hazards • Division 1.3 – minor mass explosion or projection hazards • Divisions 1.4 through 1.6 – very insensitive substances; negligible probability of accidental initiation or propagation Explosive chemicals will be identified with the pictogram shown below. In addition, Section 2 of the Safety Data Sheet (SDS) will include one or more of the hazard statements indicated below. • H200 Unstable; explosive • H201 Explosive; mass explosion hazard • H202 Explosive; severe projection hazard • H203 Explosive; fire, blast or projection hazard • H204 Fire or projection hazard • H205 May explode in fire Scope This SOP is limited in scope to those chemicals that meet the GHS definition of an explosive. However, it is important to understand that explosions can occur with chemicals that are not considered GHS explosives. For example, an explosion can occur with large-scale polymerization of a monomer. The reaction of monomers forming polymers is exothermic.
    [Show full text]