RESEARCH ARTICLE Introgressive Hybridization and the Evolution of Lake-Adapted Catostomid Fishes Thomas E. Dowling1¤a*, Douglas F. Markle2, Greg J. Tranah3¤b, Evan W. Carson1¤c, David W. Wagman2¤d, Bernard P. May3 1 School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America, 2 Department of Fisheries and Wildlife, Oregon State University, Corvallis, Oregon, United States of America, 3 Department of Animal Science, University of California Davis, Davis, California, United States of America ¤a Current address: Department of Biological Sciences, Wayne State University, Detroit Michigan, United States of America ¤b Current address: California Pacific Medical Center Research Institute, University of California San Francisco, San Francisco, California, United States of America ¤c Current address: Biology Department and Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, United States of America ¤d Current address: Oregon Department of Fish and Wildlife, Newport, Oregon, United States of America *
[email protected] OPEN ACCESS Citation: Dowling TE, Markle DF, Tranah GJ, Carson EW, Wagman DW, May BP (2016) Introgressive Abstract Hybridization and the Evolution of Lake-Adapted Catostomid Fishes. PLoS ONE 11(3): e0149884. Hybridization has been identified as a significant factor in the evolution of plants as groups doi:10.1371/journal.pone.0149884 of interbreeding species retain their phenotypic integrity despite gene exchange among Editor: Filippos A. Aravanopoulos, Aristotle forms. Recent studies have identified similar interactions in animals; however, the role of University of Thessaloniki, GREECE hybridization in the evolution of animals has been contested. Here we examine patterns of Received: October 15, 2015 gene flow among four species of catostomid fishes from the Klamath and Rogue rivers using molecular and morphological traits.