The Safety of the Use of Bisphenol a in Medical Devices

Total Page:16

File Type:pdf, Size:1020Kb

The Safety of the Use of Bisphenol a in Medical Devices The safety of the use of bisphenol A in medical devices Scientific Committee on Emerging and Newly Identified Health Risks SCENIHR Opinion on The safety of the use of bisphenol A in medical devices SCENIHR adopted this opinion by written procedure on 18 February 2015 1 The safety of the use of bisphenol A in medical devices About the Scientific Committees Three independent non-food Scientific Committees provide the Commission with the scientific advice it needs when preparing policy and proposals relating to consumer safety, public health and the environment. The Committees also draw the Commission's attention to the new or emerging problems which may pose an actual or potential threat. They are: the Scientific Committee on Consumer Safety (SCCS), the Scientific Committee on Health and Environmental Risks (SCHER) and the Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR). In addition, the Commission relies upon the work of the European Food Safety Authority (EFSA), the European Medicines Agency (EMA), the European Centre for Disease prevention and Control (ECDC) and the European Chemicals Agency (ECHA). SCENIHR This Committee deals with questions related to emerging or newly identified health and environmental risks and to broad, complex or multidisciplinary issues requiring a comprehensive assessment of risks to consumer safety or public health and related issues not covered by other Community risk assessment bodies. Examples of potential areas of activity include potential risks associated with interaction of risk factors, synergic effects, cumulative effects, antimicrobial resistance, new technologies such as nanotechnologies, medical devices including those incorporating substances of animal and/or human origin, tissue engineering, blood products, fertility reduction, cancer of endocrine organs, physical hazards such as noise and electromagnetic fields (from mobile phones, transmitters and electronically controlled home environments), and methodologies for assessing new risks. It may also be invited to address risks related to public health determinants and non-transmissible diseases. Scientific Committee members Michelle Epstein, Igor Emri, Philippe Hartemann, Peter Hoet, Norbert Leitgeb, Luis Martínez Martínez, Ana Proykova, Luigi Rizzo, Eduardo Rodriguez-Farré, Lesley Rushton, Konrad Rydzynski, Theodoros Samaras, Emanuela Testai, Theo Vermeire Contact: European Commission DG Health and Food Safety Directorate C Public Health Unit C2 – "Health Information and Scientific Committees" Office: HTC 03/073 L-2920 Luxembourg [email protected] © European Commission 2015 ISSN 1831-4783 ISBN 978-92-79-30133-9 Doi: 10.2772/75546 ND-AS-13-003-EN-N The opinions of the Scientific Committees present the views of the independent scientists who are members of the committees. They do not necessarily reflect the views of the European Commission. The opinions are published by the European Commission in their original language only. http://ec.europa.eu/health/scientific_committees/emerging/opinions/index_en.htm 2 The safety of the use of bisphenol A in medical devices ACKNOWLEDGMENTS Members of the working group are acknowledged for their valuable contribution to this Opinion. They are: SCENIHR members: Dr. Emanuela Testai - Istituto Superiore di Sanità, Environment & Primary Prevention Dept., Mechanisms of Toxicity Unit, Roma, Italy. Chair of the Working Group since April 2013. Prof. Philippe Hartemann - Université de Lorraine, Faculté de Médecine, Nancy, France. Prof. Eduardo Rodriguez-Farré – Barcelona Institute of Biomedical Research, Barcelona, Spain. SCCS member: Dr. Suresh Chandra Rastogi. External experts: Dr. Wim De Jong - National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands. Chair of the Working Group until March 2013 and rapporteur. Dr. Juana Bustos - National Food Centre - Spanish Food Safety and Nutrition Agency (AESAN), Spain. Dr. Laurence Castle - FERA, York, United Kingdom. Prof. Ursula Gundert-Remy - Medical School (Charité), Berlin, Germany. Prof. Arne Hensten- UiT The Arctic University of Norway, Tromsö, Norway. Dr. Hilde Molvig Kopperud - Nordic Institute of Dental Materials, Oslo, Norway. Prof. Nicolás Olea - University of Granada, Granada, Spain. Prof. Aldert Piersma - National Institute for Public Health and the Environment, Bilthoven, the Netherlands. All Declarations of working group members and supporting experts are available at the following webpage: http://ec.europa.eu/health/scientific_committees/emerging/members_wg/index_en.htm 3 The safety of the use of bisphenol A in medical devices ABSTRACT Bisphenol A (BPA) is a key building block of polycarbonate plastic and a precursor for the manufacturing of monomers of epoxy resins. The BPA exposure of the general population is via food as a result of the use of BPA in food packaging and via skin as a result of contact with thermal paper. The vast majority of the population (91–99%) has detectable levels of BPA-conjugates in their urine. BPA is also present in medical devices including implants, catheters, tubing, and some dental materials. This Opinion describes the risk assessment of exposure to BPA via medical devices that are manufactured with materials that potentially leach BPA leading to oral (via dental material), subcutaneous and intravenous (e.g. during heamodialysis) routes of exposure. After oral exposure BPA is readily absorbed from the gastro-intestinal tract and due to the first pass effect in the liver and the small intestine is rapidly conjugated to non-toxic metabolites. By the oral route BPA has a low systemic bioavailability (1-10% in humans) and has a half life time of a few hours. For parenteral routes of exposure (intravenous, intraperitoneal, subcutaneous), BPA can be considered 100% systemically bioavailable. However, BPA will also be conjugated in the liver and the clearance of free BPA from the circulation appears to be relatively fast. Toxicity studies indicate that the kidney and the liver are relevant target organs for BPA toxicity. The lowest NOAEL after oral repeated exposure identified in several studies, including multigeneration reproductive toxicity studies, was approximately 5 mg/kg b.w./day. By applying the benchmark dose (BMD) approach, a BMDL10 of 8.96 mg/kg b.w./day was derived (EFSA 2015), based on the alteration in kidney weight. BPA is not likely to pose a genotoxic hazard to humans and has no carcinogenic activity, although there are some effects observed in the mammary gland, which currently are of unknown significance to human health. Neither reproductive nor prenatal developmental toxicity are critical end-points in BPA toxicity, though BPA is associated with reproductive toxicity at doses higher than those causing liver and kidney damage. There are several indications that BPA might have biological effects below the recently determined BMDL10. However, the evidence is inconsistent, mainly obtained in dedicated studies focussing on different selected health effects and dose-response relationships could not be established. Regarding possible low dose effects, some concern remains for effects on mammary gland, metabolism and adiposity and neurobehaviour. The SCENIHR adopts the temporary oral TDI (t-TDI) of 4 µg/kg b.w./day derived by EFSA which considers the BMDL10 as point of departure, and the uncertainties related to some effects using a BPA-specific assessment factor of 150. This t-TDI represents a useful base for carrying out a BPA risk assessment for the use of BPA in medical devices. The BMDL10 dose was translated into a human dose inducing similar effects, the human equivalent dose (HED). The HED of 609 µg/kg b.w./day was determined considering the ratio of internal exposure in mice (the species used in the study from which BMDL10 was derived) versus the internal exposure in humans based on toxicokinetic studies. For medical devices, several exposure scenarios were evaluated taking into account the material used, information related to BPA leaching, duration of a single treatment and the frequency of treatments, giving rise to toxicologically relevant acute, short and long term exposure. The information available is very limited and in many cases due to the lack of experimental data, only estimations were used. The uncertainties related to the exposure assessment indeed represent the weakest part of this evaluation. For this reason only the highest value obtained in the estimate was indicatively used. The estimated BPA exposures were: 1) 3000 ng/kg b.w./day (3 µg/kg b.w./day) for prematurely born infants in neonatal intensive care units; 2) 685 ng/kg b.w./day for prolonged medical procedures (such as extracorporeal circulation or transplantation/ implantation of an artificial organ) in infants (b.w. around 5 kg); 3) 57 ng/kg b.w./day for dialysis patients; 4) 0.4 - 12ng/kg b.w./day for long-term exposures to medical devices; 5) 140 to 200 ng/kg b.w./day for, respectively, children and adults due to 4 The safety of the use of bisphenol A in medical devices contact with dental materials (<24 h); 6) 2 to 12 ng/kg b.w./day due to long-term contact with dental materials. Exposure via medical devices consisting of BPA containing PVC might even be higher with values estimated for adults up to 5000 ng/kg b.w./day and infants up to 12000 ng/kg b.w./day. However, exposure to BPA via BPA-containing PVC has been estimated based on extrapolation from data on phthalate leakage from PVC and has a high degree of uncertainty. Notably, European PVC
Recommended publications
  • Effect of Vitamin C on Bisphenol a Induced Hepato& Nephrotoxicity in Albino Rats
    Haroun et al. 57 EFFECT OF VITAMIN C ON BISPHENOL A INDUCED HEPATO& NEPHROTOXICITY IN ALBINO RATS Marcelle R. Haroun,M.D.*, Ibrahim S. Zamzam, M.D.*,Eslam S. Metwally, M.D.*, and Rabab Sh. EL-Shafey, M.S.C. * *Forensic Medicine & Clinical Toxicology Department, Faculty of Medicine, Benha University, Egypt [email protected] [email protected] [email protected] [email protected] ABSTRACT Bisphenol-A (BPA) is a worldwide used endocrine disruptor that is incorporated in many plastic industries. The exposure of humans to that substance starts early during the fetal life. Many agencies raised warnings against the excessive use of such substances. The present study aimed to evaluate the oxidative stress effect of BPA on liver and kidney of albino rats, and whether co-administration of vitamin C can ameliorate this oxidative damage. Albino rats were divided into six groups: -ve control group,+ve control group,vitamin C (60mglkg) treated group, BPA treated group, BPA+ high dose of vitamin C (60mglkg) treated group, and BPA+ low dose of vitamin C (5.5mglkg) treated group The oxidative stress arising from BPA was evaluated in liver and kidney tissues. In addition, serum creatinine, uric acid levels, (AST) and (ALT) activities as markers of kidney and liver function were measured. Biochemical analysis revealed significant reduction in activities of enzymatic antioxidants in BPA treated group and BPA + vitamin C treated groups in high & low doses as compared to control group. In addition, there were significant increase in AST, ALT, uric acid, and creatinine levels in BPA treated group and reduction in their concentrations BPA + vitamin C treated groups in high & low doses as compared to control group.
    [Show full text]
  • Pesticides Reduce Symbiotic Efficiency of Nitrogen-Fixing Rhizobia and Host Plants
    Pesticides reduce symbiotic efficiency of nitrogen-fixing rhizobia and host plants Jennifer E. Fox*†, Jay Gulledge‡, Erika Engelhaupt§, Matthew E. Burow†¶, and John A. McLachlan†ʈ *Center for Ecology and Evolutionary Biology, University of Oregon, 335 Pacific Hall, Eugene, OR 97403; †Center for Bioenvironmental Research, Environmental Endocrinology Laboratory, Tulane University, 1430 Tulane Avenue, New Orleans, LA 70112-2699; ‡Department of Biology, University of Louisville, Louisville, KY 40292 ; §University of Colorado, Boulder, CO 80309; and ¶Department of Medicine and Surgery, Hematology and Medical Oncology Section, Tulane University Medical School, 1430 Tulane Avenue, New Orleans, LA 70112-2699 Edited by Christopher B. Field, Carnegie Institution of Washington, Stanford, CA, and approved May 8, 2007 (received for review January 8, 2007) Unprecedented agricultural intensification and increased crop by plants, in rotation with non-N-fixing crops (8, 15). The yield will be necessary to feed the burgeoning world population, effectiveness of this strategy relies on maximizing symbiotic N whose global food demand is projected to double in the next 50 fixation (SNF) and plant yield to resupply organic and inorganic years. Although grain production has doubled in the past four N and nutrients to the soil. The vast majority of biologically fixed decades, largely because of the widespread use of synthetic N is attributable to symbioses between leguminous plants (soy- nitrogenous fertilizers, pesticides, and irrigation promoted by the bean, alfalfa, etc.) and species of Rhizobium bacteria; replacing ‘‘Green Revolution,’’ this rate of increased agricultural output is this natural fertilizer source with synthetic N fertilizer would cost unsustainable because of declining crop yields and environmental Ϸ$10 billion annually (16, 17).
    [Show full text]
  • Mitochondrial Toxicity of Triclosan on Mammalian Cells
    Toxicology Reports 2 (2015) 624–637 Contents lists available at ScienceDirect Toxicology Reports j ournal homepage: www.elsevier.com/locate/toxrep Mitochondrial toxicity of triclosan on mammalian cells a,∗,1 a,1 b,1 c Charmaine Ajao , Maria A. Andersson , Vera V. Teplova , Szabolcs Nagy , d e f g Carl G. Gahmberg , Leif C. Andersson , Maria Hautaniemi , Balazs Kakasi , h a Merja Roivainen , Mirja Salkinoja-Salonen a Department of Food and Environmental Sciences, Haartman Institute, University of Helsinki, POB 56, FI-00014, Finland b Institute of Theoretical and Experimental Biophysics, RAS, Puschino, Moscow Region, Russia c Department of Animal Science and Animal Husbandry, University of Pannonia, Georgikon Faculty, Deak F. u.,16, H8360 Keszthely, Hungary d Dept. of Bio- and Environmental Sciences, Haartman Institute, University of Helsinki, FI-00014, Finland e Dept. of Pathology, Haartman Institute, University of Helsinki, FI-00014, Finland f Finnish Food Safety Authority (EVIRA), Research and Laboratory Department, Veterinary Virology Research Unit, Mustialankatu 3, FI 00790 Helsinki, Finland g Institute of Environmental Sciences, University of Pannonia, Egyetem u. 10, H-8200 Veszprem, Hungary h National Institute for Health and Welfare, Department of Virology, Mannerheimintie 166, 00300 Helsinki, Finland a r t a b i c s t l r e i n f o a c t Article history: Effects of triclosan (5-chloro-2 -(2,4-dichlorophenoxy)phenol) on mammalian cells were Received 28 January 2015 investigated using human peripheral blood mono nuclear cells (PBMC), keratinocytes Received in revised form 29 March 2015 (HaCaT), porcine spermatozoa and kidney tubular epithelial cells (PK-15), murine pan- Accepted 30 March 2015 creatic islets (MIN-6) and neuroblastoma cells (MNA) as targets.
    [Show full text]
  • In Vivo Exposure to Bisphenol-A Altered the Reproductive Functionality in Male Coturnix Coturnix Japonica
    In Vivo Exposure to Bisphenol-A Altered the Reproductive Functionality in Male Coturnix Coturnix Japonica SUTHAN PERMUAL Central Avian Research Institute GAUTHAM KOLLURI ( [email protected] ) Central Avian Research Institute JAG MOHAN Central Avian Research Institute RAM SINGH Salim Ali Center for Ornithology and Natural History JAGBIR TYAGI Central Avian Research Institute Research Article Keywords: Bisphenol-A, quails, sperm quality, fertility Posted Date: December 21st, 2020 DOI: https://doi.org/10.21203/rs.3.rs-124102/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/21 Abstract Bisphenol-A, is one of the most characterized endocrine disruptors on the reproductive functions in humans and animals. We have previously reported in vitro and in vivo effects of bisphenol-A on functional role of sperm in chicken. Here, the effects of 1 and 5 mg/kg bisphenol-A daily administered by gavage for 3 wk to adult male Japanese quails on reproductive functionality was investigated. Cloacal index and foam frequency were greatly reduced at high dose. Sperm quality attributes were affected at both doses. Sperm quality attributes were affected at both doses. Alkaline phosphatase showed most signicant reduction among seminal enzymes. Dose dependent response (P < 0.01) of bisphenol-A was noticed with modulating testosterone concentrations at low and high doses. Disturbances regarding fertility and hatchability traits were prominent in high and low dose groups. The current study conrms the compromising actions of bisphenol-A on reproductive success in male Japanese quails at lower doses that are considered to be safe (50 mg/kg BW/d) under in vivo exposure module.
    [Show full text]
  • Fighting Bisphenol A-Induced Male Infertility: the Power of Antioxidants
    antioxidants Review Fighting Bisphenol A-Induced Male Infertility: The Power of Antioxidants Joana Santiago 1 , Joana V. Silva 1,2,3 , Manuel A. S. Santos 1 and Margarida Fardilha 1,* 1 Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; [email protected] (J.S.); [email protected] (J.V.S.); [email protected] (M.A.S.S.) 2 Institute for Innovation and Health Research (I3S), University of Porto, 4200-135 Porto, Portugal 3 Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal * Correspondence: [email protected]; Tel.: +351-234-247-240 Abstract: Bisphenol A (BPA), a well-known endocrine disruptor present in epoxy resins and poly- carbonate plastics, negatively disturbs the male reproductive system affecting male fertility. In vivo studies showed that BPA exposure has deleterious effects on spermatogenesis by disturbing the hypothalamic–pituitary–gonadal axis and inducing oxidative stress in testis. This compound seems to disrupt hormone signalling even at low concentrations, modifying the levels of inhibin B, oestra- diol, and testosterone. The adverse effects on seminal parameters are mainly supported by studies based on urinary BPA concentration, showing a negative association between BPA levels and sperm concentration, motility, and sperm DNA damage. Recent studies explored potential approaches to treat or prevent BPA-induced testicular toxicity and male infertility. Since the effect of BPA on testicular cells and spermatozoa is associated with an increased production of reactive oxygen species, most of the pharmacological approaches are based on the use of natural or synthetic antioxidants.
    [Show full text]
  • Toxicological Profile for Bisphenol A
    TT TOXICOLOGICAL PROFILE FOR BISPHENOL A September 2009 Integrated Risk Assessment Branch Office of Environmental Health Hazard Assessment California Environmental Protection Agency Toxicological Profile for Bisphenol A September 2009 Prepared by Office of Environmental Health Hazard Assessment Prepared for Ocean Protection Council Under an Interagency Agreement, Number 07-055, with the State Coastal Conservancy LIST OF CONTRIBUTORS Authors Jim Carlisle, D.V.M., Ph.D., Senior Toxicologist, Integrated Risk Assessment Branch Dave Chan, D. Env., Staff Toxicologist, Integrated Risk Assessment Branch Mari Golub, Ph.D., Staff Toxicologist, Reproductive and Cancer Hazard Assessment Branch Sarah Henkel, Ph.D., California Sea Grant Fellow, California Ocean Science Trust Page Painter, M.D., Ph.D., Senior Toxicologist, Integrated Risk Assessment Branch K. Lily Wu, Ph.D., Associate Toxicologist, Reproductive and Cancer Hazard Assessment Branch Reviewers David Siegel, Ph.D., Chief, Integrated Risk Assessment Branch i Table of Contents Executive Summary ................................................................................................................................ iv Use and Exposure ............................................................................................................................... iv Environmental Occurrence ................................................................................................................. iv Effects on Aquatic Life ......................................................................................................................
    [Show full text]
  • Toxicological Evaluation of Bisphenol a and Its Analogues Bisfenol a Ve Analoglarının Toksikolojik Değerlendirilmesi
    Turk J Pharm Sci 2020;17(4):457-462 DOI: 10.4274/tjps.galenos.2019.58219 REVIEW Toxicological Evaluation of Bisphenol A and Its Analogues Bisfenol A ve Analoglarının Toksikolojik Değerlendirilmesi İrem İYİGÜNDOĞDU1, Aylin ÜSTÜNDAĞ2*, Yalçın DUYDU2 1Gazi University Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey 2Ankara University Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey ABSTRACT Bisphenol A (BPA) is known as one of the oldest synthetic compounds with endocrine disrupting activity. It is commonly used in the production of epoxy resins, polycarbonates, dental fillings, food storage containers, baby bottles, and water containers. BPA is associated with various health problems such as obesity, diabetes, chronic respiratory diseases, cardiovascular diseases, renal diseases, behavior disorders, breast cancer, tooth development disorders, and reproductive disorders. Increasing health concerns have led the industry to seek alternatives to BPA. As BPA is now being excluded from several consumer products, the use of alternative compounds is increasing. However, the chemicals used to replace BPA are also BP analogues and may have similar or higher toxicological effects on organisms. The aim of this review is to focus on the toxicological profiles of different BP analogues (i.e. BPS and BPF) which are increasingly used today as alternative to BPA. Key words: Bisphenols, bisphenol A, endocrine disruptor, bisphenol S, bisphenol F ÖZ Bisfenol A (BPA) endokrin aktiviteye sahip bilinen en eski bileşiklerden biridir. BPA epoksi reçineler, polikarbonatlar, diş dolguları, yemek saklama kapları, bebek biberonları ve su bidonlarının üretiminde yaygın olarak kullanılmaktadır. BPA obezite, diyabet, kronik solunum hastalıkları, kardiyovasküler hastalıklar, renal hastalıklar, davranış bozuklukları, meme kanseri, diş gelişimi bozuklukları ve üreme bozuklukları gibi çeşitli sağlık sorunlarıyla ilişkilendirilmiştir.
    [Show full text]
  • The Fates of Endocrine Disruptors in Consumer Products: Bisphenol A
    The Fates of Endocrine Disruptors in Consumer Products: Bisphenol A Prepared by Dr. Matthew A. DeNardo for the One Health One Planet Conference on March 8, 2018 at Phipps Conservatory The Fates of Endocrine Disruptors in Consumer Products: Bisphenol A Prepared by Dr. Matthew A. DeNardo for the One Health One Planet Conference on March 8, 2017 at Phipps Conservatory The Fates of Endocrine Disruptors in Consumer Products: Bisphenol A Prepared by Dr. Matthew A. DeNardo for the One Health One Planet Conference on March 8, 2017 at Phipps Conservatory A multidisciplinary investigation of the technical and environmental performances of TAML/peroxide elimination of Bisphenol A compounds from water. Green Chemistry doi:10.1039/C7GC01415E The Fates of Endocrine Disruptors in Consumer Products: Bisphenol A Prepared by Dr. Matthew A. DeNardo for the One Health One Planet Conference on March 8, 2017 at Phipps Conservatory HO OH Bisphenol A HO OH Phenol Bisphenol A HO OH Phenol Phenol Bisphenol A A HO OH Phenol Phenol Bisphenol A A HO OH Phenol Phenol Bisphenol A + O H 1 + 2 + H2O HO Δ HO OH Acetone Phenol Bisphenol A Water A HO OH Phenol Phenol Bisphenol A + O H 1 + 2 + H2O HO Δ HO OH Acetone Phenol Bisphenol A Water + A HO OH Phenol Phenol Bisphenol A + O H 1 + 2 + H2O HO Δ HO OH Acetone Phenol Bisphenol A Water + Bhandari 2015 HO OH Bisphenol A HO OH Bisphenol A HO OH Bisphenol A HO OH Bisphenol A O NaOH Cl Cl (Sodium (Phosgene) HO Hydroxide) o H2O, 25 C Bisphenol A OH O Cl O O Cl NaOH (Phosgene) O O O O (Sodium o C Hydroxide)O, 25 Bisphenol A Polycarbonate
    [Show full text]
  • Evaluation of Biorational and Natural Products for Vegetable Crop Management in Commercial Market Gardens and Home Gardens
    Report to the Ohio IPM Program on a Vegetable Team Project funded by the Ohio IPM Block Grant Program, 2005 Title: Evaluation of biorational and natural products for vegetable crop management in commercial market gardens and home gardens Investigators: Celeste Welty (entomologist), Sally Miller (plant pathologist), Doug Doohan (weed scientist); Mark Bennett, Matt Kleinhenz, Bob Precheur (horticulturists). Background: The insect pests and diseases that affect vegetable crops are the same whether grown on large farms for commercial production or on small diversified farms or home gardens, but the management tactics preferred by growers are often different for the different scale operations. Many market gardeners prefer to avoid using conventional pesticides because of concern about human safety and environmental contamination. During the past few years, many biorational crop protection products have become available. While it is known that biorational products are safer to humans than conventional pesticides, it is not known whether they are effective in controlling the target pests that they claim to control. In addition to products for insect and disease control, there are many products that promote plant growth, such as microbial soil inoculants. There is little to no unbiased data available on efficacy of these products. This deficit is a limiting factor in formulating up-to-date extension recommendations for market gardens and home gardens. This project was an important first step in the development of a set of recommended garden IPM tactics that will include cultural controls to prevent or delay pest problems, along with biological controls and selective chemical controls. Objective: To evaluate efficacy of biorational products that are available for vegetable crop management, in comparison with standard conventional materials.
    [Show full text]
  • Exposure to Endocrine Disrupting Chemicals and Risk of Breast Cancer
    International Journal of Molecular Sciences Review Exposure to Endocrine Disrupting Chemicals and Risk of Breast Cancer Louisane Eve 1,2,3,4,Béatrice Fervers 5,6, Muriel Le Romancer 2,3,4,* and Nelly Etienne-Selloum 1,7,8,* 1 Faculté de Pharmacie, Université de Strasbourg, F-67000 Strasbourg, France; [email protected] 2 Université Claude Bernard Lyon 1, F-69000 Lyon, France 3 Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France 4 CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France 5 Centre de Lutte Contre le Cancer Léon-Bérard, F-69000 Lyon, France; [email protected] 6 Inserm UA08, Radiations, Défense, Santé, Environnement, Center Léon Bérard, F-69000 Lyon, France 7 Service de Pharmacie, Institut de Cancérologie Strasbourg Europe, F-67000 Strasbourg, France 8 CNRS UMR7021/Unistra, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, F-67000 Strasbourg, France * Correspondence: [email protected] (M.L.R.); [email protected] (N.E.-S.); Tel.: +33-4-(78)-78-28-22 (M.L.R.); +33-3-(68)-85-43-28 (N.E.-S.) Received: 27 October 2020; Accepted: 25 November 2020; Published: 30 November 2020 Abstract: Breast cancer (BC) is the second most common cancer and the fifth deadliest in the world. Exposure to endocrine disrupting pollutants has been suggested to contribute to the increase in disease incidence. Indeed, a growing number of researchershave investigated the effects of widely used environmental chemicals with endocrine disrupting properties on BC development in experimental (in vitro and animal models) and epidemiological studies.
    [Show full text]
  • Effect of Triclosan on the Functioning of Liver Mitochondria And
    The Journal of Membrane Biology https://doi.org/10.1007/s00232-019-00099-w Efect of Triclosan on the Functioning of Liver Mitochondria and Permeability of Erythrocyte Membranes of Marsh Frog (Pelophylax ridibundus (Pallas, 1771)) Mikhail V. Dubinin1 · Kirill S. Tenkov1 · Anton O. Svinin1 · Victor N. Samartsev1 · Konstantin N. Belosludtsev1,2 Received: 28 June 2019 / Accepted: 24 September 2019 © Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract The paper examines the efects of the antimicrobial agent triclosan on the functioning of the liver mitochondria of marsh frog (Pelophylax ridibundus (Pallas, 1771)). It was established that triclosan inhibits DNP-stimulated respiration of mito- chondria and decreases respiratory control ratio. In addition, triclosan causes the collapse of the mitochondrial membrane potential on both types of substrates. Such an action of triclosan can be mediated by both a protonophore efect and suppres- sion of the activity of complex II and combined activity of complexes II + III (and, to a lesser degree, the combined activity of complexes I + III) of the mitochondrial respiratory chain. It is shown that high concentrations of triclosan enhance the production of hydrogen peroxide during the oxidation of substrates of the complex I by mitochondria, and decrease it in the case of succinate oxidation. It is found that triclosan is able to induce nonspecifc permeability of the liver mitochondria of these amphibians, as well as the plasma membrane of erythrocytes. The possible mechanisms of triclosan efect on marsh frog liver mitochondria and red blood cells are discussed. Graphic Abstract Keywords Triclosan · Toxicology · Mitochondria · Pelophylax ridibundus · Erythrocytes · Membrane permeability Abbreviations TCS Triclosan CsA Cyclosporine * Mikhail V.
    [Show full text]
  • Gas-Phase Chemical Reduction (GPCR)
    Gas-Phase Chemical Reduction (GPCR) Name of Process: Status: Gas-Phase Chemical Reduction (GPCR) A Commercial system operated in Australia for more than 5 years, treating Vendor: more than 2,500 tons of PCB’s, DDT and other POPs. In 1999 a full-scale test ELI Eco Logic International Inc. on HCB was conducted using the commercial plant. Web site: http://www.ecologic.ca Eco Logic’s partners in Japan have recently built a semi-mobile GPCR plant for Applicable Pesticides and related the treatment of PCB wastes, which will be operational in 2003. POPs wastes: Pesticides such as Hexachlorobenzene, In combination with Foster Wheeler and Kvaerner the company is DDT, Aldrin, Dieldrin, HCB’s, DDT, PCB’s, participating at present in the ACWA (Army Chemical Weapons Assessment) dioxins and furans and other POPs. Program for the destruction of chemical warfare agents. Eco Logic has partnered with Torftech Inc. for the treatment of soils and sediments at rates of up to 20 tons per hour. Eco Logic has also been selected by UNIDO for a pilot project for treatment of 1000 tons of PCB wastes in Slovakia. Additional approvals received: -for PCB and dioxin waste in Japan -for PCB’s TSCA permit in USA -for PCB’s and other toxic compounds in the Province of Ontario (Canada) Technology description: Eco Logic’s GPCR technology involves the gas-phase chemical reduction of organic compounds by hydrogen at a temperature of 850°C or higher. Chlorinated hydrocarbons, such as HCB, polychlorinated dibenzo-p-dioxins (dioxins) and other POPs, are chemically reduced to methane and hydrogen chloride (HCl).
    [Show full text]