Advancing Nematode Barcoding: a Primer Cocktail for the Cytochrome C Oxidase Subunit I Gene from Vertebrate Parasitic Nematodes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gastrointestinal Helminthic Parasites of Habituated Wild Chimpanzees
Aus dem Institut für Parasitologie und Tropenveterinärmedizin des Fachbereichs Veterinärmedizin der Freien Universität Berlin Gastrointestinal helminthic parasites of habituated wild chimpanzees (Pan troglodytes verus) in the Taï NP, Côte d’Ivoire − including characterization of cultured helminth developmental stages using genetic markers Inaugural-Dissertation zur Erlangung des Grades eines Doktors der Veterinärmedizin an der Freien Universität Berlin vorgelegt von Sonja Metzger Tierärztin aus München Berlin 2014 Journal-Nr.: 3727 Gedruckt mit Genehmigung des Fachbereichs Veterinärmedizin der Freien Universität Berlin Dekan: Univ.-Prof. Dr. Jürgen Zentek Erster Gutachter: Univ.-Prof. Dr. Georg von Samson-Himmelstjerna Zweiter Gutachter: Univ.-Prof. Dr. Heribert Hofer Dritter Gutachter: Univ.-Prof. Dr. Achim Gruber Deskriptoren (nach CAB-Thesaurus): chimpanzees, helminths, host parasite relationships, fecal examination, characterization, developmental stages, ribosomal RNA, mitochondrial DNA Tag der Promotion: 10.06.2015 Contents I INTRODUCTION ---------------------------------------------------- 1- 4 I.1 Background 1- 3 I.2 Study objectives 4 II LITERATURE OVERVIEW --------------------------------------- 5- 37 II.1 Taï National Park 5- 7 II.1.1 Location and climate 5- 6 II.1.2 Vegetation and fauna 6 II.1.3 Human pressure and impact on the park 7 II.2 Chimpanzees 7- 12 II.2.1 Status 7 II.2.2 Group sizes and composition 7- 9 II.2.3 Territories and ranging behavior 9 II.2.4 Diet and hunting behavior 9- 10 II.2.5 Contact with humans 10 II.2.6 -
Pdf/107/4/600/2901038/I0022-3395-107-4-600.Pdf by Guest on 02 October 2021 CHICKENS (TYMPANUCHUS CUPIDO PINNATUS)
Journal of Parasitology 2021 107(4) 600–605 Ó American Society of Parasitologists 2021 Published 3 August 2021 Contents and archives available through www.bioone.org or www.jstor.org Journal of Parasitology journal homepage: www.journalofparasitology.org DOI: 10.1645/19-138 GAPEWORM (SYNGAMUS SPP.) PREVALENCE IN WISCONSIN GREATER PRAIRIE Downloaded from http://meridian.allenpress.com/journal-of-parasitology/article-pdf/107/4/600/2901038/i0022-3395-107-4-600.pdf by guest on 02 October 2021 CHICKENS (TYMPANUCHUS CUPIDO PINNATUS) J. A. Shurba1,2, R. A. Cole3, M. S. Broadway1,4, C. L. Roderick3, J. D. Riddle1, S. A. Dubay1, and S. Hull5 1 University of Wisconsin–Stevens Point, College of Natural Resources 800 Reserve Street, Stevens Point, Wisconsin 54481. 2 Department of Forestry and Environmental Conservation, Clemson University 261 Lehotsky Hall, Box 340317, Clemson, South Carolina 29634. 3 U.S. Geological Survey–National Wildlife Health Center, 6006 Schroeder Road, Madison, Wisconsin 53711. 4 Indiana Department of Natural Resources Division of Fish and Wildlife, 402 W. Washington Street, Indianapolis, Indiana 46204. 5 Wisconsin Department of Natural Resources, 101 S. Webster Street, PO Box 7921, Madison, Wisconsin 53707. Correspondence should be sent to J. A. Shurba (https://orcid.org/0000-0002-1895-4158) at: [email protected] or to R. A. Cole (https://orcid.org/ 0000-003-2923-1622) at: [email protected] KEY WORDS ABSTRACT Gapeworm Under Wisconsin state law, the greater prairie chicken (GRPC; Tympanuchus cupido pinnatus) has Greater prairie chicken been listed as a threatened species since 1976. In 2014–15, we conducted a pilot study to determine Syngamus spp. -
Universidade Federal De Pernambuco Centro De Biociências Programa De Pós-Graduação Em Biologia Animal
UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE BIOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM BIOLOGIA ANIMAL CAMILA NASCIMENTO DE OLIVEIRA HISTÓRIA NATURAL E ASPECTOS ECOLÓGICOS DE COLEODACTYLUS MERIDIONALIS (BOULENGER, 1888) EM UM FRAGMENTO DE MATA ATLÂNTICA, PERNAMBUCO, NORDESTE, BRASIL RECIFE 2016 CAMILA NASCIMENTO DE OLIVEIRA HISTÓRIA NATURAL E ASPECTOS ECOLÓGICOS DE COLEODACTYLUS MERIDIONALIS (BOULENGER, 1888) EM UM FRAGMENTO DE MATA ATLÂNTICA, PERNAMBUCO, NORDESTE, BRASIL Dissertação apresentada ao Programa de Pós-Graduação em Biologia Animal, Área de Concentração Zoologia, da Universidade Federal de Pernambuco, como requisito parcial para obtenção do título de mestre em Biologia Animal. Orientadora: Drª. Míriam Camargo Guarnieri Co-orientador: Dr. Samuel Cardozo Ribeiro RECIFE 2016 Catalogação na fonte Elaine Barroso CRB 1728 Oliveira, Camila Nascimento de História natural e aspectos ecológicos de Coleodactylus meridionalis (Boulenger, 1888) em um fragmento de Mata Atlântica, Pernambuco, Nordeste, Brasil / Camila Nascimento de Oliveira- Recife: O Autor, 2016. 88 folhas: il., fig., tab. Orientadora: Miriam Camargo Guarnieri Coorientador: Samuel Cardozo Ribeiro Dissertação (mestrado) – Universidade Federal de Pernambuco. Centro de Biociências. Biologia Animal, 2016. Inclui referências e apêndice 1. Lagartos 2. Florestas tropicais 3. Ecologia I. Guarnieri, Miriam Camargo (orientadora) II. Ribeiro, Samuel Cardozo (coorientador) III. Título 597.95 CDD (22.ed.) UFPE/CB-2017-275 CAMILA NASCIMENTO DE OLIVEIRA HISTÓRIA NATURAL E ASPECTOS ECOLÓGICOS DE COLEODACTYLUS MERIDIONALIS (BOULENGER, 1888) EM UM FRAGMENTO DE MATA ATLÂNTICA, PERNAMBUCO, NORDESTE, BRASIL Dissertação apresentada ao Programa de Pós-Graduação em Biologia Animal, Área de Concentração Zoologia, da Universidade Federal de Pernambuco, como requisito parcial para obtenção do título de mestre em Biologia Animal. Aprovada em: 29/07/2016 COMISSÃO EXAMINADORA ___________________________ ____________________________ Dr. -
Symbiosis of the Millipede Parasitic
Nagae et al. BMC Ecol Evo (2021) 21:120 BMC Ecology and Evolution https://doi.org/10.1186/s12862-021-01851-4 RESEARCH ARTICLE Open Access Symbiosis of the millipede parasitic nematodes Rhigonematoidea and Thelastomatoidea with evolutionary diferent origins Seiya Nagae1, Kazuki Sato2, Tsutomu Tanabe3 and Koichi Hasegawa1* Abstract Background: How various host–parasite combinations have been established is an important question in evolution- ary biology. We have previously described two nematode species, Rhigonema naylae and Travassosinema claudiae, which are parasites of the xystodesmid millipede Parafontaria laminata in Aichi Prefecture, Japan. Rhigonema naylae belongs to the superfamily Rhigonematoidea, which exclusively consists of parasites of millipedes. T. claudiae belongs to the superfamily Thelastomatoidea, which includes a wide variety of species that parasitize many invertebrates. These nematodes were isolated together with a high prevalence; however, the phylogenetic, evolutionary, and eco- logical relationships between these two parasitic nematodes and between hosts and parasites are not well known. Results: We collected nine species (11 isolates) of xystodesmid millipedes from seven locations in Japan, and found that all species were co-infected with the parasitic nematodes Rhigonematoidea spp. and Thelastomatoidea spp. We found that the infection prevalence and population densities of Rhigonematoidea spp. were higher than those of Thelastomatoidea spp. However, the population densities of Rhigonematoidea spp. were not negatively afected by co-infection with Thelastomatoidea spp., suggesting that these parasites are not competitive. We also found a positive correlation between the prevalence of parasitic nematodes and host body size. In Rhigonematoidea spp., combina- tions of parasitic nematode groups and host genera seem to be fxed, suggesting the evolution of a more specialized interaction between Rhigonematoidea spp. -
Proceedings of the Helminthological Society of Washington 51(2) 1984
Volume 51 July 1984 PROCEEDINGS ^ of of Washington '- f, V-i -: ;fx A semiannual journal of research devoted to Helminthohgy and all branches of Parasitology Supported in part by the -•>"""- v, H. Ransom Memorial 'Tryst Fund : CONTENTS -j<:'.:,! •</••• VV V,:'I,,--.. Y~v MEASURES, LENA N., AND Roy C. ANDERSON. Hybridization of Obeliscoides cuniculi r\ XGraybill, 1923) Graybill, ,1924 jand Obeliscoides,cuniculi multistriatus Measures and Anderson, 1983 .........:....... .., :....„......!"......... _ x. iXJ-v- 179 YATES, JON A., AND ROBERT C. LOWRIE, JR. Development of Yatesia hydrochoerus "•! (Nematoda: Filarioidea) to the Infective Stage in-Ixqdid Ticks r... 187 HUIZINGA, HARRY W., AND WILLARD O. GRANATH, JR. -Seasonal ^prevalence of. Chandlerellaquiscali (Onehocercidae: Filarioidea) in Braih, of the Common Grackle " '~. (Quiscdlus quisculd versicolor) '.'.. ;:,„..;.......„.;....• :..: „'.:„.'.J_^.4-~-~-~-<-.ii -, **-. 191 ^PLATT, THOMAS R. Evolution of the Elaphostrongylinae (Nematoda: Metastrongy- X. lojdfea: Protostrongylidae) Parasites of Cervids,(Mammalia) ...,., v.. 196 PLATT, THOMAS R., AND W. JM. SAMUEL. Modex of Entry of First-Stage Larvae ofr _^ ^ Parelaphostrongylus odocoilei^Nematoda: vMefastrongyloidea) into Four Species of Terrestrial Gastropods .....:;.. ....^:...... ./:... .; _.... ..,.....;. .-: 205 THRELFALL, WILLIAM, AND JUAN CARVAJAL. Heliconema pjammobatidus sp. n. (Nematoda: Physalbpteridae) from a Skate,> Psammobatis lima (Chondrichthyes: ; ''•• \^ Rajidae), Taken in Chile _... .„ ;,.....„.......„..,.......;. ,...^.J::...^..,....:.....~L.:....., -
Parasitic Nematodes of Pool Frog (Pelophylax Lessonae) in the Volga Basin
Journal MVZ Cordoba 2019; 24(3):7314-7321. https://doi.org/10.21897/rmvz.1501 Research article Parasitic nematodes of Pool Frog (Pelophylax lessonae) in the Volga Basin Igor V. Chikhlyaev1 ; Alexander B. Ruchin2* ; Alexander I. Fayzulin1 1Institute of Ecology of the Volga River Basin, Russian Academy of Sciences, Togliatti, Russia 2Mordovia State Nature Reserve and National Park «Smolny», Saransk, Russia. *Correspondence: [email protected] Received: Febrary 2019; Accepted: July 2019; Published: August 2019. ABSTRACT Objetive. Present a modern review of the nematodes fauna of the pool frog Pelophylax lessonae (Camerano, 1882) from Volga basin populations on the basis of our own research and literature sources analysis. Materials and methods. Present work consolidates data from different helminthological works over the past 80 years, supported by our own research results. During the period from 1936 to 2016 different authors examined 1460 specimens of pool frog, using the method of full helminthological autopsy, from 13 regions of the Volga basin. Results. In total 9 nematodes species were recorded. Nematode Icosiella neglecta found for the first time in the studied host from the territory of Russia and Volga basin. Three species appeared to be more widespread: Oswaldocruzia filiformis, Cosmocerca ornata and Icosiella neglecta. For each helminth species the following information included: systematic position, areas of detection, localization, biology, list of definitive hosts, the level of host-specificity. Conclusions. Nematodes of pool frog, excluding I. neglecta, belong to the group of soil-transmitted helminthes (geohelminth) and parasitize in adult stages. Some species (O. filiformis, C. ornata, I. neglecta) are widespread in the host range. -
ISSN: 2320-5407 Int. J. Adv. Res. 5(3), 972-999 REVIEW ARTICLE ……………………………………………………
ISSN: 2320-5407 Int. J. Adv. Res. 5(3), 972-999 Journal Homepage: - www.journalijar.com Article DOI: 10.21474/IJAR01/3597 DOI URL: http://dx.doi.org/10.21474/IJAR01/3597 REVIEW ARTICLE HAEMONCHUS CONTORTUS AND OVINE HOST: A RETROSPECTIVE REVIEW. *Saeed El-Ashram1,2, Ibrahim Al Nasr3,4, Rashid mehmood5,6, Min Hu7, Li He7, *Xun Suo1 1. National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China. 2. Faculty of Science, Kafr El-Sheikh University, Kafr El-Sheikh, Egypt. 3. College of Science and Arts in Unaizah, Qassim University, Unaizah, Saudi Arabia. 4. College of Applied Health Sciences in Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia. 5. College of information science and technology, Beijing normal university, Beijing, china. 6. Department of Computer Science and Information Technology, University of Management Sciences and Information Technology, Kotli Azad Kashmir, 11100, Pakistan 7. State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei,China. …………………………………………………………………………………………………….... Manuscript Info Abstract ……………………. ……………………………………………………………… Manuscript History Gastrointestinal (GI) parasitic infections are a world-wide problem for Received: 05 January 2017 both small- and large-scale farmers. Infection by GI parasites in Final Accepted: 09 February 2017 ruminants, including sheep and goat can result in harsh economic losses Published: March 2017 in a variety of ways: reproductive inefficiency, decreased work capacity, involuntary culling, diminished food intake, poor animal growth rates and lower weight gains, treatment and management costs, Key words:- Gastrointestinal (GI) parasitic infections; and mortality in heavily parasitized animals. -
Monophyly of Clade III Nematodes Is Not Supported by Phylogenetic Analysis of Complete Mitochondrial Genome Sequences
UC Davis UC Davis Previously Published Works Title Monophyly of clade III nematodes is not supported by phylogenetic analysis of complete mitochondrial genome sequences Permalink https://escholarship.org/uc/item/7509r5vp Journal BMC Genomics, 12(1) ISSN 1471-2164 Authors Park, Joong-Ki Sultana, Tahera Lee, Sang-Hwa et al. Publication Date 2011-08-03 DOI http://dx.doi.org/10.1186/1471-2164-12-392 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Park et al. BMC Genomics 2011, 12:392 http://www.biomedcentral.com/1471-2164/12/392 RESEARCHARTICLE Open Access Monophyly of clade III nematodes is not supported by phylogenetic analysis of complete mitochondrial genome sequences Joong-Ki Park1*, Tahera Sultana2, Sang-Hwa Lee3, Seokha Kang4, Hyong Kyu Kim5, Gi-Sik Min2, Keeseon S Eom6 and Steven A Nadler7 Abstract Background: The orders Ascaridida, Oxyurida, and Spirurida represent major components of zooparasitic nematode diversity, including many species of veterinary and medical importance. Phylum-wide nematode phylogenetic hypotheses have mainly been based on nuclear rDNA sequences, but more recently complete mitochondrial (mtDNA) gene sequences have provided another source of molecular information to evaluate relationships. Although there is much agreement between nuclear rDNA and mtDNA phylogenies, relationships among certain major clades are different. In this study we report that mtDNA sequences do not support the monophyly of Ascaridida, Oxyurida and Spirurida (clade III) in contrast to results for nuclear rDNA. Results from mtDNA genomes show promise as an additional independently evolving genome for developing phylogenetic hypotheses for nematodes, although substantially increased taxon sampling is needed for enhanced comparative value with nuclear rDNA. -
Epidemiology of Angiostrongylus Cantonensis and Eosinophilic Meningitis
Epidemiology of Angiostrongylus cantonensis and eosinophilic meningitis in the People’s Republic of China INAUGURALDISSERTATION zur Erlangung der Würde eines Doktors der Philosophie vorgelegt der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel von Shan Lv aus Xinyang, der Volksrepublik China Basel, 2011 Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakult¨at auf Antrag von Prof. Dr. Jürg Utzinger, Prof. Dr. Peter Deplazes, Prof. Dr. Xiao-Nong Zhou, und Dr. Peter Steinmann Basel, den 21. Juni 2011 Prof. Dr. Martin Spiess Dekan der Philosophisch- Naturwissenschaftlichen Fakultät To my family Table of contents Table of contents Acknowledgements 1 Summary 5 Zusammenfassung 9 Figure index 13 Table index 15 1. Introduction 17 1.1. Life cycle of Angiostrongylus cantonensis 17 1.2. Angiostrongyliasis and eosinophilic meningitis 19 1.2.1. Clinical manifestation 19 1.2.2. Diagnosis 20 1.2.3. Treatment and clinical management 22 1.3. Global distribution and epidemiology 22 1.3.1. The origin 22 1.3.2. Global spread with emphasis on human activities 23 1.3.3. The epidemiology of angiostrongyliasis 26 1.4. Epidemiology of angiostrongyliasis in P.R. China 28 1.4.1. Emerging angiostrongyliasis with particular consideration to outbreaks and exotic snail species 28 1.4.2. Known endemic areas and host species 29 1.4.3. Risk factors associated with culture and socioeconomics 33 1.4.4. Research and control priorities 35 1.5. References 37 2. Goal and objectives 47 2.1. Goal 47 2.2. Objectives 47 I Table of contents 3. Human angiostrongyliasis outbreak in Dali, China 49 3.1. Abstract 50 3.2. -
SR-109: Strongyles in Horses
AGRICULTURAL EXPERIMENT STATION UNIVERSITY OF KENTUCKY COLLEGE OF AGRICULTURE, FOOD AND ENVIRONMENT, LEXINGTON, KY, 40546 SR-109 Strongyles in Horses Update 2015 E.T. Lyons and S.C. Tolliver, Veterinary Science Introduction Parasites live in a host from which they obtain food and pro- tection. They may harm but usu- ally do not benefit the host. The Mature worms word “parasite” is derived from the Immature worms live in Latin and Greek languages mean- migrate in tissues intestinal tract ing, in general, “one who eats at the table of another.” It is said that Stages inside the horse a “good” parasite does not overtly harm or kill its host. It is theoreti- Stages outside the horse cally possible that a more benign parasite (e.g. Gasterophilus spp.) is Infective stages much “older in eons of time” and ingested in food and water Eggs passed it and its host have adjusted better in feces to each other than a conceivably “newer” parasite (e.g. Strongylus spp.) which may be more harmful Infective larvae to its host. develop Taxonomy Horses can harbor over 100 species of internal parasites. About Figure 1. Strongyle life cycle. one half of these species are nema- todes in the strongyle group (fam- ily Strongylidae Baird, 1853). They the genera Bidentostomum Tshoijo to the first stage larva (L1) which are separated taxonomically into in Popova, 1958, Craterostomum hatches and then develops to the two categories—large strongyles Boulenger, 1920, Oesophagodon- second stage larva (L2), and finally (subfamily Strongylinae Railliet, tus Railliet et Henry, 1902, and to the third stage larva (L3) which 1893) and small strongyles (cya- Triodontophorus Looss, 1902. -
Molecular Characterization of Β-Tubulin Isotype-1 Gene of Bunostomum Trigonocephalum
Int.J.Curr.Microbiol.App.Sci (2018) 7(7): 3351-3358 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 7 Number 07 (2018) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2018.707.390 Molecular Characterization of β-Tubulin Isotype-1 Gene of Bunostomum trigonocephalum Ravi Kumar Khare1, A. Dixit3, G. Das4, A. Kumar1, K. Rinesh3, D.S. Khare4, D. Bhinsara1, Mohar Singh2, B.C. Parthasarathi2, P. Dipali2, M. Shakya5, J. Jayraw5, D. Chandra2 and M. Sankar1* 1Division of Temperate Animal Husbandry, ICAR- IVRI, Mukteswar, India 2IVRI, Izatnagar, India 3College of Veterinary Science and A.H., Rewa, India 4College of Veterinary Sciences and A.H., Jabalpur, India 5College of Veterinary Sciences and A.H., Mhow, India *Corresponding author ABSTRACT The mechanism of benzimidazoles resistance is linked to single nucleotide polymorphisms (SNPs) on beta -tubulin isotype-1 gene. The three known SNPs responsible for BZ K e yw or ds resistance are F200Y, F167Y and E198A on the beta-tubulin isotype-1. The present study was aimed to characterize beta-tubulin isotype-1 gene of Bunostomum trigonocephalum, Benzimidazole for identifying variations on possible mutation sites. The adult parasites were collected resistance, Beta from Mukteswar, Uttarakhand. The parasites were thoroughly examined morphologically tubulin, and male parasites were subjected for RNA isolation. Complementary DNA (cDNA) was Bunostomum synthesised from total RNA using OdT. The PCR was performed using cDNA and self trigonocephalum, Small ruminants designed degenerative primers. The purified PCR amplicons were cloned into pGEMT easy vector and custom sequenced. The obtained sequences were analysed using DNA Article Info STAR, MEGA7.0 and Gene tool software. -
The Mitochondrial Genome of the Soybean Cyst Nematode, Heterodera Glycines
565 The mitochondrial genome of the soybean cyst nematode, Heterodera glycines Tracey Gibson, Daniel Farrugia, Jeff Barrett, David J. Chitwood, Janet Rowe, Sergei Subbotin, and Mark Dowton Abstract: We sequenced the entire coding region of the mitochondrial genome of Heterodera glycines. The sequence ob- tained comprised 14.9 kb, with PCR evidence indicating that the entire genome comprised a single, circular molecule of ap- proximately 21–22 kb. The genome is the most T-rich nematode mitochondrial genome reported to date, with T representing over half of all nucleotides on the coding strand. The genome also contains the highest number of poly(T) tracts so far reported (to our knowledge), with 60 poly(T) tracts ≥ 12 Ts. All genes are transcribed from the same mitochon- drial strand. The organization of the mitochondrial genome of H. glycines shows a number of similarities compared with Ra- dopholus similis, but fewer similarities when compared with Meloidogyne javanica. Very few gene boundaries are shared with Globodera pallida or Globodera rostochiensis. Partial mitochondrial genome sequences were also obtained for Hetero- dera cardiolata (5.3 kb) and Punctodera chalcoensis (6.8 kb), and these had identical organizations compared with H. gly- cines. We found PCR evidence of a minicircular mitochondrial genome in P. chalcoensis, but at low levels and lacking a noncoding region. Such circularised genome fragments may be present at low levels in a range of nematodes, with multipar- tite mitochondrial genomes representing a shift to a condition in which these subgenomic circles predominate. Key words: mitochondrial, nematode, gene rearrangement, Punctodera, Punctoderinae, Heteroderidae, Heterodera cardio- lata.