Advancing Nematode Barcoding: a Primer Cocktail for the Cytochrome C Oxidase Subunit I Gene from Vertebrate Parasitic Nematodes

Total Page:16

File Type:pdf, Size:1020Kb

Advancing Nematode Barcoding: a Primer Cocktail for the Cytochrome C Oxidase Subunit I Gene from Vertebrate Parasitic Nematodes Molecular Ecology Resources (2013) doi: 10.1111/1755-0998.12082 Advancing nematode barcoding: A primer cocktail for the cytochrome c oxidase subunit I gene from vertebrate parasitic nematodes SEAN. W. J. PROSSER,* MARIA. G. VELARDE-AGUILAR,† VIRGINIA. LEON-R EGAGNON† and PAUL.D.N.HEBERT* *Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario N1G 2W1, Canada, †Estacion de Biologıa Chamela, Instituto de Biologıa, Universidad Nacional Autonoma de Mexico, San Patricio, Jalisco 48980, Mexico Abstract Although nematodes are one of the most diverse metazoan phyla, species identification through morphology is diffi- cult. Several genetic markers have been used for their identification, but most do not provide species-level resolution in all groups, and those that do lack primer sets effective across the phylum, precluding high-throughput processing. This study describes a cocktail of three novel primer pairs that overcome this limitation by recovering cytochrome c oxidase I (COI) barcodes from diverse nematode lineages parasitic on vertebrates, including members of three orders and eight families. Its effectiveness across a broad range of nematodes enables high-throughput processing. Keywords: barcoding, identification, nematodes, primers Received 19 September 2012; revision received 9 November 2012; accepted 13 November 2012 high phenotypic plasticity (Coomans 2002; Nadler 2002), Introduction the absence of clear diagnostic characters (Wijova et al. Roundworms (Nematoda) are known to be among the 2005; Derycke et al. 2008) or their restriction to adults in most physiologically and ecologically diverse of meta- the numerous groups in which larvae are more often zoan phyla, occupying habitats from the deep sea to encountered (Anderson 2000). Given these constraints, deserts, and from the tropics to polar permafrost (Brown there is recognition that molecular techniques are critical et al. 1949, 1950; De Ley 2006; Dailey 2009; Asbakk et al. for taxonomic progress (Godfray 2002; Blaxter 2003). 2010; Vanreusel et al. 2010). The phylum includes free- Indeed, there are now online databases, such as NemA- living, parasitic, mutualistic, opportunistic and symbiotic TOL (http://nematol.unh.edu/), that are dedicated to taxa (Ott et al. 1991; Clarke 2008) and provides a useful organizing and storing ecological and molecular data of model system for the study of human diseases (Fire et al. nematodes. 1998; Barr 2005; Jadiya et al. 2011) and a tool for ecosys- Several genetic markers have been used for nematode tem surveillance (Sambongi et al. 1999; Marcogliese 2005; identification, including small and large subunit ribo- Ekschmitt & Korthals 2006; Wu et al. 2010; Denver et al. somal DNA (SSU and LSU respectively), the internal 2011; Hoess et al. 2011; Palm et al. 2011). However, nema- transcribed spacer (ITS) region of ribosomal DNA and todes are also a scourge as many species cause disease in cytochrome c oxidase subunit I (COI) (Blaxter et al. 1998; crops, livestock and humans (Hodda & Cook 2009; Man- Floyd et al. 2002; Subbotin et al. 2008; Elsasser et al. 2009; guin et al. 2010). Despite their importance, the taxonomy Ferri et al. 2009; Siddal et al. 2012). The ribosomal DNA of nematodes is poorly studied. Species-level identifica- small subunit (SSU) was the first marker used, and tion has traditionally relied on detailed morphological successfully delineated some nematodes but failed to analysis, a task requiring considerable expertise (Coo- completely explain previous observations based on mor- mans 2000) given the morphological conservatism and phology (Blaxter et al. 1998). As the use of SSU was small size of nematodes (Creer et al. 2010; Powers et al. expanded, it was discovered that the SSU barcode failed 2011). Aside from being time-consuming, morphology- to separate many species of nematodes and was better based identifications are often problematic because of suited for order or family-level discrimination (De Ley et al. 2005). The ribosomal DNA large subunit (LSU) Correspondence: Sean W. J. Prosser, Fax: 519-824-5703; was the second marker used in an attempt to develop E-mail: [email protected] a nematode phylogenetic classification system, but © 2013 Blackwell Publishing Ltd Table 1 Nematode specimens used in this study. Taxa identified using morphology. Classification follows Hodda (2011) unless indicated by *, in those cases classification follows 2 Hodda (2007); ND: No Data S. W. J. PROSSER Number of specimens studied (successfully Order Family Genus sequenced) Host species Locality Collection date Panagrolaimida Rhabdiasidae Rhabdias sp. 1 1 (1) Smilisca Colima: Hwy Colima 7 July 2008 baudinii -Minatitlan ET AL. Panagrolaimida Rhabdiasidae Rhabdias sp. 2 4 (4) Rana sp. Nayarit: S of Hyw Barranca 25 June 2009 del Oro: Barranqueno~ bridge Panagrolaimida Rhabdiasidae Rhabdias sp. 3 5 (5) Rhinella marina Colima: Comala 7 July 2008 Panagrolaimida Rhabdiasidae Rhabdias lamothei 4 (4) Leptodeira sp. Colima: Hyw 98 Minatitlan 8 July 2008 -Manzanillo Rhabditida Molienidae* Oswaldocruzia sp. 9 (9) Phrynohyas Colima: Hyw Colima- 6 July 2008 venulosa Minatitlan 7 July 2008 Smilisca baudinii Colima: Hyw 98 Minatitlan -Manzanillo Rhabditida Diaphanocephalidae* Kalicephalus sp. 2 (2) Leptodeira sp. Colima: Comala 27 June 2009 Imantodes sp. Colima: Ixtlahuacan 24 June 2009 Spirurida Heterakidae Strongyluris sp. 1 (1) Trimorphodon Colima: Hwy 98 Minatitlan 8 July 2008 biscutatus -Manzanillo Spirurida Pharyngodonidae Ozolaimus sp. 5 (0) Ctenosaura sp. Colima: Hyw 54 Ixtlahuacan 8 July 2008 Spirurida Pharyngodonidae Parapharyngodon sp. 4 (4) Phrynohyas Colima: Hyw 98 Minatitlan 8 July 2008 venulosa -Manzanillo Spirurida Pharyngodonidae gen sp. 1 15 (10) Sceloporus sp. Jalisco: ND 25 July 2009 Spirurida Pharyngodonidae gen sp. 2 2 (2) Sceloporus formosus Veracruz: Hyw Xico 28 July 2004 Viejo- Matlalapa Spirurida Cosmocercidae Aplectana sp. 18 (17) Rana pustulosa Nayarit: S of Hyw Barranca 24 June 2009 Bufo sp. del Oro: Barranqueno~ bridge Leptodeira sp. Nayarit: Hyw Uzeta-La Gloria Colima: Comala Spirurida Onchocercidae Foleyellides sp. 11 (11) Rana pustulosa Nayarit: S of Hyw Barranca 24 June 2009 Rana psilonota del Oro: Barranqueno~ bridge 30 June 2010 © Jalisco: Zapopan: Barranca 2013 Blackwell Publishing Ltd del rıo Santiago Spirurida Physalopteridae Physaloptera sp. 7 (7) Trimorphodon Michoacan: Hwy 200 5 July 2008 biscutatus between La placita and Maruata Spirurida Physalopteridae gen sp. 1 5 (5) Sceloporus sp. Jalisco: ND 25 June 2009 Spirurida Physalopteridae gen sp. 2 1 (1) Imantodes sp. Colima: Hyw Comala 25 June 2009 -Minatitlan Spirurida Physalopteridae Turgida sp. 1 (1) Didelphis virginiana Jalisco: Zapopan: Barranca 30 June 2010 del rıo Santiago PRIMERS FOR NEMATODE DNA BARCODING 3 requires the amplification of multiple regions to be effec- Materials and methods tive (De Ley et al. 2005; Subbotin et al. 2008). Similar studies using ITS revealed that a lack of phylum-wide Specimen collection primers combined with difficulties in aligning the extre- mely variable ITS sequences precluded its use as a Ninety-five adult nematodes collected in Mexico from universal nematode identification marker amenable to various reptilian, amphibian and mammalian hosts were high-throughput platforms (Floyd et al. 2002; De Ley analysed (Table 1). Each specimen was collected in et al. 2005). duplicate (i.e. from the same habitat within the same The mitochondrial gene cyctochrome c oxidase sub- host), with one stored in 95% ethanol for DNA extraction unit I (COI) has also been explored as a potential marker and the other cleared on a glass slide with undiluted on which to base a nematode phylogenetic classification glycerine to enable identification to family, genus or spe- system (Floyd et al. 2002; Elsasser et al. 2009). In addition cies level using morphological characteristics (Table 1). to being a mitochondrial gene, COI is translated into an evolutionarily conserved protein and thus has some Primer design advantages over SSU, LSU and ITS. However, COI is not immune to the inherent problems associated with nema- Cytochrome c oxidase subunit I (COI) sequences were tode barcoding. While the 5′ region of COI has been obtained from 56 mitochondrial genome sequences from shown to separate nematodes into proper species (Dery- nematodes in GenBank (Table 2) and aligned using cke et al. 2010), a phylum-wide primer set has yet to be online EBI CLUSTALW2 software (Larkin et al. 2007). A developed (De Ley et al. 2005). In this study, we report lepidopteran COI sequence was included in the align- the development of a primer cocktail which enables ment as a reference for locating the standard primer the recovery of COI barcodes from a broad range of binding sites (Folmer et al. 1994) for COI barcoding nematode parasites of vertebrates in a high-throughput (Hebert et al. 2003a,b). The forward and reverse primer manner and delivers species-level resolution. binding sites were excised from the 56 sequences and Table 2 Nematode COI sequences used to design cocktail primers GenBank Accession Species GenBank Accession Species NC_008231 Agamermis sp. BH-2006 AJ556134 Necator americanus FJ483518 Ancylostoma caninum NC_003416 Necator americanus NC_003415 Ancylostoma duodenale GQ888716 Oesophagostomum dentatum GQ398121 Angiostrongylus cantonensis FM161883 Oesophagostomum quadrispinulatum GQ398122 Angiostrongylus costaricensis NC_001861 Onchocerca volvulus NC_007934 Anisakis simplex FN313571 Radopholus similis NC_001327 Ascaris suum NC_008640 Romanomermis culicivorax
Recommended publications
  • Gastrointestinal Helminthic Parasites of Habituated Wild Chimpanzees
    Aus dem Institut für Parasitologie und Tropenveterinärmedizin des Fachbereichs Veterinärmedizin der Freien Universität Berlin Gastrointestinal helminthic parasites of habituated wild chimpanzees (Pan troglodytes verus) in the Taï NP, Côte d’Ivoire − including characterization of cultured helminth developmental stages using genetic markers Inaugural-Dissertation zur Erlangung des Grades eines Doktors der Veterinärmedizin an der Freien Universität Berlin vorgelegt von Sonja Metzger Tierärztin aus München Berlin 2014 Journal-Nr.: 3727 Gedruckt mit Genehmigung des Fachbereichs Veterinärmedizin der Freien Universität Berlin Dekan: Univ.-Prof. Dr. Jürgen Zentek Erster Gutachter: Univ.-Prof. Dr. Georg von Samson-Himmelstjerna Zweiter Gutachter: Univ.-Prof. Dr. Heribert Hofer Dritter Gutachter: Univ.-Prof. Dr. Achim Gruber Deskriptoren (nach CAB-Thesaurus): chimpanzees, helminths, host parasite relationships, fecal examination, characterization, developmental stages, ribosomal RNA, mitochondrial DNA Tag der Promotion: 10.06.2015 Contents I INTRODUCTION ---------------------------------------------------- 1- 4 I.1 Background 1- 3 I.2 Study objectives 4 II LITERATURE OVERVIEW --------------------------------------- 5- 37 II.1 Taï National Park 5- 7 II.1.1 Location and climate 5- 6 II.1.2 Vegetation and fauna 6 II.1.3 Human pressure and impact on the park 7 II.2 Chimpanzees 7- 12 II.2.1 Status 7 II.2.2 Group sizes and composition 7- 9 II.2.3 Territories and ranging behavior 9 II.2.4 Diet and hunting behavior 9- 10 II.2.5 Contact with humans 10 II.2.6
    [Show full text]
  • Pdf/107/4/600/2901038/I0022-3395-107-4-600.Pdf by Guest on 02 October 2021 CHICKENS (TYMPANUCHUS CUPIDO PINNATUS)
    Journal of Parasitology 2021 107(4) 600–605 Ó American Society of Parasitologists 2021 Published 3 August 2021 Contents and archives available through www.bioone.org or www.jstor.org Journal of Parasitology journal homepage: www.journalofparasitology.org DOI: 10.1645/19-138 GAPEWORM (SYNGAMUS SPP.) PREVALENCE IN WISCONSIN GREATER PRAIRIE Downloaded from http://meridian.allenpress.com/journal-of-parasitology/article-pdf/107/4/600/2901038/i0022-3395-107-4-600.pdf by guest on 02 October 2021 CHICKENS (TYMPANUCHUS CUPIDO PINNATUS) J. A. Shurba1,2, R. A. Cole3, M. S. Broadway1,4, C. L. Roderick3, J. D. Riddle1, S. A. Dubay1, and S. Hull5 1 University of Wisconsin–Stevens Point, College of Natural Resources 800 Reserve Street, Stevens Point, Wisconsin 54481. 2 Department of Forestry and Environmental Conservation, Clemson University 261 Lehotsky Hall, Box 340317, Clemson, South Carolina 29634. 3 U.S. Geological Survey–National Wildlife Health Center, 6006 Schroeder Road, Madison, Wisconsin 53711. 4 Indiana Department of Natural Resources Division of Fish and Wildlife, 402 W. Washington Street, Indianapolis, Indiana 46204. 5 Wisconsin Department of Natural Resources, 101 S. Webster Street, PO Box 7921, Madison, Wisconsin 53707. Correspondence should be sent to J. A. Shurba (https://orcid.org/0000-0002-1895-4158) at: [email protected] or to R. A. Cole (https://orcid.org/ 0000-003-2923-1622) at: [email protected] KEY WORDS ABSTRACT Gapeworm Under Wisconsin state law, the greater prairie chicken (GRPC; Tympanuchus cupido pinnatus) has Greater prairie chicken been listed as a threatened species since 1976. In 2014–15, we conducted a pilot study to determine Syngamus spp.
    [Show full text]
  • Universidade Federal De Pernambuco Centro De Biociências Programa De Pós-Graduação Em Biologia Animal
    UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE BIOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM BIOLOGIA ANIMAL CAMILA NASCIMENTO DE OLIVEIRA HISTÓRIA NATURAL E ASPECTOS ECOLÓGICOS DE COLEODACTYLUS MERIDIONALIS (BOULENGER, 1888) EM UM FRAGMENTO DE MATA ATLÂNTICA, PERNAMBUCO, NORDESTE, BRASIL RECIFE 2016 CAMILA NASCIMENTO DE OLIVEIRA HISTÓRIA NATURAL E ASPECTOS ECOLÓGICOS DE COLEODACTYLUS MERIDIONALIS (BOULENGER, 1888) EM UM FRAGMENTO DE MATA ATLÂNTICA, PERNAMBUCO, NORDESTE, BRASIL Dissertação apresentada ao Programa de Pós-Graduação em Biologia Animal, Área de Concentração Zoologia, da Universidade Federal de Pernambuco, como requisito parcial para obtenção do título de mestre em Biologia Animal. Orientadora: Drª. Míriam Camargo Guarnieri Co-orientador: Dr. Samuel Cardozo Ribeiro RECIFE 2016 Catalogação na fonte Elaine Barroso CRB 1728 Oliveira, Camila Nascimento de História natural e aspectos ecológicos de Coleodactylus meridionalis (Boulenger, 1888) em um fragmento de Mata Atlântica, Pernambuco, Nordeste, Brasil / Camila Nascimento de Oliveira- Recife: O Autor, 2016. 88 folhas: il., fig., tab. Orientadora: Miriam Camargo Guarnieri Coorientador: Samuel Cardozo Ribeiro Dissertação (mestrado) – Universidade Federal de Pernambuco. Centro de Biociências. Biologia Animal, 2016. Inclui referências e apêndice 1. Lagartos 2. Florestas tropicais 3. Ecologia I. Guarnieri, Miriam Camargo (orientadora) II. Ribeiro, Samuel Cardozo (coorientador) III. Título 597.95 CDD (22.ed.) UFPE/CB-2017-275 CAMILA NASCIMENTO DE OLIVEIRA HISTÓRIA NATURAL E ASPECTOS ECOLÓGICOS DE COLEODACTYLUS MERIDIONALIS (BOULENGER, 1888) EM UM FRAGMENTO DE MATA ATLÂNTICA, PERNAMBUCO, NORDESTE, BRASIL Dissertação apresentada ao Programa de Pós-Graduação em Biologia Animal, Área de Concentração Zoologia, da Universidade Federal de Pernambuco, como requisito parcial para obtenção do título de mestre em Biologia Animal. Aprovada em: 29/07/2016 COMISSÃO EXAMINADORA ___________________________ ____________________________ Dr.
    [Show full text]
  • Symbiosis of the Millipede Parasitic
    Nagae et al. BMC Ecol Evo (2021) 21:120 BMC Ecology and Evolution https://doi.org/10.1186/s12862-021-01851-4 RESEARCH ARTICLE Open Access Symbiosis of the millipede parasitic nematodes Rhigonematoidea and Thelastomatoidea with evolutionary diferent origins Seiya Nagae1, Kazuki Sato2, Tsutomu Tanabe3 and Koichi Hasegawa1* Abstract Background: How various host–parasite combinations have been established is an important question in evolution- ary biology. We have previously described two nematode species, Rhigonema naylae and Travassosinema claudiae, which are parasites of the xystodesmid millipede Parafontaria laminata in Aichi Prefecture, Japan. Rhigonema naylae belongs to the superfamily Rhigonematoidea, which exclusively consists of parasites of millipedes. T. claudiae belongs to the superfamily Thelastomatoidea, which includes a wide variety of species that parasitize many invertebrates. These nematodes were isolated together with a high prevalence; however, the phylogenetic, evolutionary, and eco- logical relationships between these two parasitic nematodes and between hosts and parasites are not well known. Results: We collected nine species (11 isolates) of xystodesmid millipedes from seven locations in Japan, and found that all species were co-infected with the parasitic nematodes Rhigonematoidea spp. and Thelastomatoidea spp. We found that the infection prevalence and population densities of Rhigonematoidea spp. were higher than those of Thelastomatoidea spp. However, the population densities of Rhigonematoidea spp. were not negatively afected by co-infection with Thelastomatoidea spp., suggesting that these parasites are not competitive. We also found a positive correlation between the prevalence of parasitic nematodes and host body size. In Rhigonematoidea spp., combina- tions of parasitic nematode groups and host genera seem to be fxed, suggesting the evolution of a more specialized interaction between Rhigonematoidea spp.
    [Show full text]
  • Proceedings of the Helminthological Society of Washington 51(2) 1984
    Volume 51 July 1984 PROCEEDINGS ^ of of Washington '- f, V-i -: ;fx A semiannual journal of research devoted to Helminthohgy and all branches of Parasitology Supported in part by the -•>"""- v, H. Ransom Memorial 'Tryst Fund : CONTENTS -j<:'.:,! •</••• VV V,:'I,,--.. Y~v MEASURES, LENA N., AND Roy C. ANDERSON. Hybridization of Obeliscoides cuniculi r\ XGraybill, 1923) Graybill, ,1924 jand Obeliscoides,cuniculi multistriatus Measures and Anderson, 1983 .........:....... .., :....„......!"......... _ x. iXJ-v- 179 YATES, JON A., AND ROBERT C. LOWRIE, JR. Development of Yatesia hydrochoerus "•! (Nematoda: Filarioidea) to the Infective Stage in-Ixqdid Ticks r... 187 HUIZINGA, HARRY W., AND WILLARD O. GRANATH, JR. -Seasonal ^prevalence of. Chandlerellaquiscali (Onehocercidae: Filarioidea) in Braih, of the Common Grackle " '~. (Quiscdlus quisculd versicolor) '.'.. ;:,„..;.......„.;....• :..: „'.:„.'.J_^.4-~-~-~-<-.ii -, **-. 191 ^PLATT, THOMAS R. Evolution of the Elaphostrongylinae (Nematoda: Metastrongy- X. lojdfea: Protostrongylidae) Parasites of Cervids,(Mammalia) ...,., v.. 196 PLATT, THOMAS R., AND W. JM. SAMUEL. Modex of Entry of First-Stage Larvae ofr _^ ^ Parelaphostrongylus odocoilei^Nematoda: vMefastrongyloidea) into Four Species of Terrestrial Gastropods .....:;.. ....^:...... ./:... .; _.... ..,.....;. .-: 205 THRELFALL, WILLIAM, AND JUAN CARVAJAL. Heliconema pjammobatidus sp. n. (Nematoda: Physalbpteridae) from a Skate,> Psammobatis lima (Chondrichthyes: ; ''•• \^ Rajidae), Taken in Chile _... .„ ;,.....„.......„..,.......;. ,...^.J::...^..,....:.....~L.:.....,
    [Show full text]
  • Parasitic Nematodes of Pool Frog (Pelophylax Lessonae) in the Volga Basin
    Journal MVZ Cordoba 2019; 24(3):7314-7321. https://doi.org/10.21897/rmvz.1501 Research article Parasitic nematodes of Pool Frog (Pelophylax lessonae) in the Volga Basin Igor V. Chikhlyaev1 ; Alexander B. Ruchin2* ; Alexander I. Fayzulin1 1Institute of Ecology of the Volga River Basin, Russian Academy of Sciences, Togliatti, Russia 2Mordovia State Nature Reserve and National Park «Smolny», Saransk, Russia. *Correspondence: [email protected] Received: Febrary 2019; Accepted: July 2019; Published: August 2019. ABSTRACT Objetive. Present a modern review of the nematodes fauna of the pool frog Pelophylax lessonae (Camerano, 1882) from Volga basin populations on the basis of our own research and literature sources analysis. Materials and methods. Present work consolidates data from different helminthological works over the past 80 years, supported by our own research results. During the period from 1936 to 2016 different authors examined 1460 specimens of pool frog, using the method of full helminthological autopsy, from 13 regions of the Volga basin. Results. In total 9 nematodes species were recorded. Nematode Icosiella neglecta found for the first time in the studied host from the territory of Russia and Volga basin. Three species appeared to be more widespread: Oswaldocruzia filiformis, Cosmocerca ornata and Icosiella neglecta. For each helminth species the following information included: systematic position, areas of detection, localization, biology, list of definitive hosts, the level of host-specificity. Conclusions. Nematodes of pool frog, excluding I. neglecta, belong to the group of soil-transmitted helminthes (geohelminth) and parasitize in adult stages. Some species (O. filiformis, C. ornata, I. neglecta) are widespread in the host range.
    [Show full text]
  • ISSN: 2320-5407 Int. J. Adv. Res. 5(3), 972-999 REVIEW ARTICLE ……………………………………………………
    ISSN: 2320-5407 Int. J. Adv. Res. 5(3), 972-999 Journal Homepage: - www.journalijar.com Article DOI: 10.21474/IJAR01/3597 DOI URL: http://dx.doi.org/10.21474/IJAR01/3597 REVIEW ARTICLE HAEMONCHUS CONTORTUS AND OVINE HOST: A RETROSPECTIVE REVIEW. *Saeed El-Ashram1,2, Ibrahim Al Nasr3,4, Rashid mehmood5,6, Min Hu7, Li He7, *Xun Suo1 1. National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China. 2. Faculty of Science, Kafr El-Sheikh University, Kafr El-Sheikh, Egypt. 3. College of Science and Arts in Unaizah, Qassim University, Unaizah, Saudi Arabia. 4. College of Applied Health Sciences in Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia. 5. College of information science and technology, Beijing normal university, Beijing, china. 6. Department of Computer Science and Information Technology, University of Management Sciences and Information Technology, Kotli Azad Kashmir, 11100, Pakistan 7. State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei,China. …………………………………………………………………………………………………….... Manuscript Info Abstract ……………………. ……………………………………………………………… Manuscript History Gastrointestinal (GI) parasitic infections are a world-wide problem for Received: 05 January 2017 both small- and large-scale farmers. Infection by GI parasites in Final Accepted: 09 February 2017 ruminants, including sheep and goat can result in harsh economic losses Published: March 2017 in a variety of ways: reproductive inefficiency, decreased work capacity, involuntary culling, diminished food intake, poor animal growth rates and lower weight gains, treatment and management costs, Key words:- Gastrointestinal (GI) parasitic infections; and mortality in heavily parasitized animals.
    [Show full text]
  • Monophyly of Clade III Nematodes Is Not Supported by Phylogenetic Analysis of Complete Mitochondrial Genome Sequences
    UC Davis UC Davis Previously Published Works Title Monophyly of clade III nematodes is not supported by phylogenetic analysis of complete mitochondrial genome sequences Permalink https://escholarship.org/uc/item/7509r5vp Journal BMC Genomics, 12(1) ISSN 1471-2164 Authors Park, Joong-Ki Sultana, Tahera Lee, Sang-Hwa et al. Publication Date 2011-08-03 DOI http://dx.doi.org/10.1186/1471-2164-12-392 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Park et al. BMC Genomics 2011, 12:392 http://www.biomedcentral.com/1471-2164/12/392 RESEARCHARTICLE Open Access Monophyly of clade III nematodes is not supported by phylogenetic analysis of complete mitochondrial genome sequences Joong-Ki Park1*, Tahera Sultana2, Sang-Hwa Lee3, Seokha Kang4, Hyong Kyu Kim5, Gi-Sik Min2, Keeseon S Eom6 and Steven A Nadler7 Abstract Background: The orders Ascaridida, Oxyurida, and Spirurida represent major components of zooparasitic nematode diversity, including many species of veterinary and medical importance. Phylum-wide nematode phylogenetic hypotheses have mainly been based on nuclear rDNA sequences, but more recently complete mitochondrial (mtDNA) gene sequences have provided another source of molecular information to evaluate relationships. Although there is much agreement between nuclear rDNA and mtDNA phylogenies, relationships among certain major clades are different. In this study we report that mtDNA sequences do not support the monophyly of Ascaridida, Oxyurida and Spirurida (clade III) in contrast to results for nuclear rDNA. Results from mtDNA genomes show promise as an additional independently evolving genome for developing phylogenetic hypotheses for nematodes, although substantially increased taxon sampling is needed for enhanced comparative value with nuclear rDNA.
    [Show full text]
  • Epidemiology of Angiostrongylus Cantonensis and Eosinophilic Meningitis
    Epidemiology of Angiostrongylus cantonensis and eosinophilic meningitis in the People’s Republic of China INAUGURALDISSERTATION zur Erlangung der Würde eines Doktors der Philosophie vorgelegt der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel von Shan Lv aus Xinyang, der Volksrepublik China Basel, 2011 Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakult¨at auf Antrag von Prof. Dr. Jürg Utzinger, Prof. Dr. Peter Deplazes, Prof. Dr. Xiao-Nong Zhou, und Dr. Peter Steinmann Basel, den 21. Juni 2011 Prof. Dr. Martin Spiess Dekan der Philosophisch- Naturwissenschaftlichen Fakultät To my family Table of contents Table of contents Acknowledgements 1 Summary 5 Zusammenfassung 9 Figure index 13 Table index 15 1. Introduction 17 1.1. Life cycle of Angiostrongylus cantonensis 17 1.2. Angiostrongyliasis and eosinophilic meningitis 19 1.2.1. Clinical manifestation 19 1.2.2. Diagnosis 20 1.2.3. Treatment and clinical management 22 1.3. Global distribution and epidemiology 22 1.3.1. The origin 22 1.3.2. Global spread with emphasis on human activities 23 1.3.3. The epidemiology of angiostrongyliasis 26 1.4. Epidemiology of angiostrongyliasis in P.R. China 28 1.4.1. Emerging angiostrongyliasis with particular consideration to outbreaks and exotic snail species 28 1.4.2. Known endemic areas and host species 29 1.4.3. Risk factors associated with culture and socioeconomics 33 1.4.4. Research and control priorities 35 1.5. References 37 2. Goal and objectives 47 2.1. Goal 47 2.2. Objectives 47 I Table of contents 3. Human angiostrongyliasis outbreak in Dali, China 49 3.1. Abstract 50 3.2.
    [Show full text]
  • SR-109: Strongyles in Horses
    AGRICULTURAL EXPERIMENT STATION UNIVERSITY OF KENTUCKY COLLEGE OF AGRICULTURE, FOOD AND ENVIRONMENT, LEXINGTON, KY, 40546 SR-109 Strongyles in Horses Update 2015 E.T. Lyons and S.C. Tolliver, Veterinary Science Introduction Parasites live in a host from which they obtain food and pro- tection. They may harm but usu- ally do not benefit the host. The Mature worms word “parasite” is derived from the Immature worms live in Latin and Greek languages mean- migrate in tissues intestinal tract ing, in general, “one who eats at the table of another.” It is said that Stages inside the horse a “good” parasite does not overtly harm or kill its host. It is theoreti- Stages outside the horse cally possible that a more benign parasite (e.g. Gasterophilus spp.) is Infective stages much “older in eons of time” and ingested in food and water Eggs passed it and its host have adjusted better in feces to each other than a conceivably “newer” parasite (e.g. Strongylus spp.) which may be more harmful Infective larvae to its host. develop Taxonomy Horses can harbor over 100 species of internal parasites. About Figure 1. Strongyle life cycle. one half of these species are nema- todes in the strongyle group (fam- ily Strongylidae Baird, 1853). They the genera Bidentostomum Tshoijo to the first stage larva (L1) which are separated taxonomically into in Popova, 1958, Craterostomum hatches and then develops to the two categories—large strongyles Boulenger, 1920, Oesophagodon- second stage larva (L2), and finally (subfamily Strongylinae Railliet, tus Railliet et Henry, 1902, and to the third stage larva (L3) which 1893) and small strongyles (cya- Triodontophorus Looss, 1902.
    [Show full text]
  • Molecular Characterization of Β-Tubulin Isotype-1 Gene of Bunostomum Trigonocephalum
    Int.J.Curr.Microbiol.App.Sci (2018) 7(7): 3351-3358 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 7 Number 07 (2018) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2018.707.390 Molecular Characterization of β-Tubulin Isotype-1 Gene of Bunostomum trigonocephalum Ravi Kumar Khare1, A. Dixit3, G. Das4, A. Kumar1, K. Rinesh3, D.S. Khare4, D. Bhinsara1, Mohar Singh2, B.C. Parthasarathi2, P. Dipali2, M. Shakya5, J. Jayraw5, D. Chandra2 and M. Sankar1* 1Division of Temperate Animal Husbandry, ICAR- IVRI, Mukteswar, India 2IVRI, Izatnagar, India 3College of Veterinary Science and A.H., Rewa, India 4College of Veterinary Sciences and A.H., Jabalpur, India 5College of Veterinary Sciences and A.H., Mhow, India *Corresponding author ABSTRACT The mechanism of benzimidazoles resistance is linked to single nucleotide polymorphisms (SNPs) on beta -tubulin isotype-1 gene. The three known SNPs responsible for BZ K e yw or ds resistance are F200Y, F167Y and E198A on the beta-tubulin isotype-1. The present study was aimed to characterize beta-tubulin isotype-1 gene of Bunostomum trigonocephalum, Benzimidazole for identifying variations on possible mutation sites. The adult parasites were collected resistance, Beta from Mukteswar, Uttarakhand. The parasites were thoroughly examined morphologically tubulin, and male parasites were subjected for RNA isolation. Complementary DNA (cDNA) was Bunostomum synthesised from total RNA using OdT. The PCR was performed using cDNA and self trigonocephalum, Small ruminants designed degenerative primers. The purified PCR amplicons were cloned into pGEMT easy vector and custom sequenced. The obtained sequences were analysed using DNA Article Info STAR, MEGA7.0 and Gene tool software.
    [Show full text]
  • The Mitochondrial Genome of the Soybean Cyst Nematode, Heterodera Glycines
    565 The mitochondrial genome of the soybean cyst nematode, Heterodera glycines Tracey Gibson, Daniel Farrugia, Jeff Barrett, David J. Chitwood, Janet Rowe, Sergei Subbotin, and Mark Dowton Abstract: We sequenced the entire coding region of the mitochondrial genome of Heterodera glycines. The sequence ob- tained comprised 14.9 kb, with PCR evidence indicating that the entire genome comprised a single, circular molecule of ap- proximately 21–22 kb. The genome is the most T-rich nematode mitochondrial genome reported to date, with T representing over half of all nucleotides on the coding strand. The genome also contains the highest number of poly(T) tracts so far reported (to our knowledge), with 60 poly(T) tracts ≥ 12 Ts. All genes are transcribed from the same mitochon- drial strand. The organization of the mitochondrial genome of H. glycines shows a number of similarities compared with Ra- dopholus similis, but fewer similarities when compared with Meloidogyne javanica. Very few gene boundaries are shared with Globodera pallida or Globodera rostochiensis. Partial mitochondrial genome sequences were also obtained for Hetero- dera cardiolata (5.3 kb) and Punctodera chalcoensis (6.8 kb), and these had identical organizations compared with H. gly- cines. We found PCR evidence of a minicircular mitochondrial genome in P. chalcoensis, but at low levels and lacking a noncoding region. Such circularised genome fragments may be present at low levels in a range of nematodes, with multipar- tite mitochondrial genomes representing a shift to a condition in which these subgenomic circles predominate. Key words: mitochondrial, nematode, gene rearrangement, Punctodera, Punctoderinae, Heteroderidae, Heterodera cardio- lata.
    [Show full text]