Prospects for the Mechanism of Spiroplasma Swimming

Total Page:16

File Type:pdf, Size:1020Kb

Prospects for the Mechanism of Spiroplasma Swimming fmicb-12-706426 August 23, 2021 Time: 14:50 # 1 REVIEW published: 27 August 2021 doi: 10.3389/fmicb.2021.706426 Prospects for the Mechanism of Spiroplasma Swimming Yuya Sasajima1 and Makoto Miyata1,2* 1 Department of Biology, Graduate School of Science, Osaka City University, Osaka, Japan, 2 The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Osaka, Japan Spiroplasma are helical bacteria that lack a peptidoglycan layer. They are widespread globally as parasites of arthropods and plants. Their infectious processes and survival are most likely supported by their unique swimming system, which is unrelated to well-known bacterial motility systems such as flagella and pili. Spiroplasma swims by switching the left- and right-handed helical cell body alternately from the cell front. The kinks generated by the helicity shift travel down along the cell axis and rotate the cell body posterior to the kink position like a screw, pushing the water backward and propelling the cell body forward. An internal structure called the “ribbon” has been focused to elucidate the mechanisms for the cell helicity formation and swimming. The ribbon is composed of Spiroplasma-specific fibril protein and a bacterial actin, MreB. Here, we propose a model for helicity-switching swimming focusing on the ribbon, in which MreBs generate a force like a bimetallic strip based on ATP energy and Edited by: Zhaomin Yang, switch the handedness of helical fibril filaments. Cooperative changes of these filaments Virginia Tech, United States cause helicity to shift down the cell axis. Interestingly, unlike other motility systems, the Reviewed by: fibril protein and Spiroplasma MreBs can be traced back to their ancestors. The fibril Pananghat Gayathri, protein has evolved from methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) Indian Institute of Science Education and Research, Pune, India nucleosidase, which is essential for growth, and MreBs, which function as a scaffold Chih-Horng Kuo, for peptidoglycan synthesis in walled bacteria. Institute of Plant and Microbial Biology, Academia Sinica, Taiwan Keywords: helix, MreB, fibril protein, SAH nucleosidase, electron microscopy, cooperativity, kink, evolution *Correspondence: Makoto Miyata [email protected] INTRODUCTION Specialty section: Spiroplasma is a parasitic bacterium that infects arthropods and plants globally (Regassa and This article was submitted to Gasparich, 2006; Harne et al., 2020b). Their interactions with hosts are mostly commensal but Microbial Physiology and Metabolism, sometimes pathogenic, causing economical damage to different industries (Regassa and Gasparich, a section of the journal 2006). Interestingly, Spiroplasma poulsonii is known to disrupt the sex ratio of Drosophila species Frontiers in Microbiology by killing males (Regassa and Gasparich, 2006; Harumoto and Lemaitre, 2018). Their successful Received: 07 May 2021 survival may be supported by a unique swimming mechanism, which may be advantageous for Accepted: 12 July 2021 translocation in the tissues of their hosts, because they do not stack due to high load to their Published: 27 August 2021 appendages as do flagella and pili, which are widespread in bacterial motility (Miyata et al., 2020; Citation: Nakamura, 2020). Spiroplasma possesses helical cell morphology and swims in viscous media by Sasajima Y and Miyata M (2021) Prospects for the Mechanism switching handedness (Shaevitz et al., 2005; Wada and Netz, 2009). of Spiroplasma Swimming. The genus Spiroplasma belongs to the phylum Tenericutes, composed of the class Mollicutes, Front. Microbiol. 12:706426. which evolved from the phylum Firmicutes represented by Bacillus and Clostridium. Mollicutes doi: 10.3389/fmicb.2021.706426 have some of the smallest genome sizes among all culturable organisms and lack a peptidoglycan Frontiers in Microbiology| www.frontiersin.org 1 August 2021| Volume 12| Article 706426 fmicb-12-706426 August 23, 2021 Time: 14:50 # 2 Sasajima and Miyata Spiroplasma Swimming (PG) layer, unlike other bacteria (Razin et al., 1998; Grosjean progresses like a corkscrew (Figure 1B)(Wada and Netz, 2009). et al., 2014; Miyata et al., 2020). These unique characteristics When the cell swims in one direction, the distributions of helix were established during the evolutionary process of Mollicutes handedness, generation, and traveling of the kink in a cell can from Firmicutes. Many bacterial species, including Escherichia be presented as shown in Figure 1C (Nakane et al., 2020). Note coli and Bacillus subtilis, can grow in the L-form, which does not that the cell architecture is composed of proteins, and that the synthesize the PG layer under stresses inhibiting peptidoglycan structures and behaviors have intrinsic chirality not in mirror maintenance (Claessen and Errington, 2019). Mollicutes may images (Sasajima et al., 2021). have survived in the L-form due to their ability to escape the No other motility system is driven by switching the innate immune system of their hosts by halting the synthesis of helical handedness of a cell (Miyata et al., 2020; Nakamura, PG, a major target of natural immune system of hosts (Claessen 2020). Although Spirochetes, which are a phylum of Gram- and Errington, 2019). During the evolution from a Firmicutes- negative bacteria, are also known as helical swimming bacteria, like ancestor to extant Mollicutes, they established stable their swimming system is completely different from that of parasitism with the acquisition of adhesion ability, modulation Spiroplasma (Figure 1D)(Liu et al., 2009; Charon et al., 2012; of antigenic properties, and reduction in metabolic pathways. Nakamura, 2020). Spirochetes rotate and propel the cell body by In the absence of the PG, the flagella-based motility common rotating their flagella that are aligned along the cell axis in the in Firmicutes was lost because the machinery is anchored to periplasmic space. the PG layer (Miyata et al., 2020). Hence, Mollicutes may have evolved new motility systems because motility is beneficial for Cell Architecture in Swimming parasitic life. Interestingly, in addition to Spiroplasma swimming, The characteristic helical cell shape of Spiroplasma is maintained Mollicutes have two types of unique gliding motilities, even by an internal ribbon approximately 150 nm wide, which though they are a small group, as discussed previously (Miyata runs the whole cell length (Figure 2A)(Kürner et al., 2005; and Hamaguchi, 2016a,b). The mechanism of Spiroplasma Trachtenberg et al., 2008; Liu et al., 2017; Sasajima et al., 2021). swimming has attracted many researchers in the fields of The ribbon, composed of sheets of cytoskeletal filaments, is mycoplasmology, motility, and structural biology. Although the aligned along the innermost line of the helical cell structure. mechanism has been discussed in some aspects, a model for It can be divided into the central zone, 30 nm wide, and the whole image has not emerged (Kürner et al., 2005; Shaevitz outer zones based on electron microscopy (EM) (Kürner et al., et al., 2005; Trachtenberg et al., 2008; Wada and Netz, 2009; 2005). In the outer zone, “fibril” filaments are suggested to Roth et al., 2018; Harne et al., 2020a,b; Nakane et al., 2020). In be aligned horizontally with 10-nm periodicity (Kürner et al., this perspective review, we suggest a working model to explain 2005). Fibril protein is specific to the Spiroplasma genus and has the swimming mechanism and its evolution based on currently been the focus of research since 1980 (Figure 2B)(Townsend available information and ideas. et al., 1980; Trachtenberg et al., 2008, 2014). Recently, the critical role of fibril filaments has been suggested based on its structure determination using EM (Sasajima et al., 2021). MAIN TEXT The structure was consistent with previous works but did not suggest contraction and extension, as expected previously Swimming Scheme (Kürner et al., 2005; Cohen-Krausz et al., 2011). Instead, it Spiroplasma swimming has been analyzed for three species, suggested roles as the determinant of cell helicity. The fibril Spiroplasma melliferum, Spiroplasma citri, and Spiroplasma filament is composed of oval rings with dimensions of 11 and eriocheiris (Shaevitz et al., 2005; Wada and Netz, 2009; Liu 6 nm, a cylindrical connecting part, and aligned with an 8.7- et al., 2017; Roth et al., 2018; Harne et al., 2020a; Nakane nm unit length (Figure 2B)(Sasajima et al., 2021). The units et al., 2020; Sasajima et al., 2021). They are characterized as a do not disassemble or change its length; however, each unit helical cell 2–10-mm long with a tapered end (Figures 1A,B) is twisted either side relative to adjacent ones. The side view (Supplementary Video 1). They swim up to 5 mm/s in viscous of the fibril filament showed that the cylindrical part formed media by dynamically switching their handedness. The cells have a positive curvature (Figure 2B). In a cell, the fibril filaments different handedness simultaneously localizing along the cell axis, are aligned beneath the membrane with this curvature, forming reversing the handedness from the tapered end, making a kink at parts of the ribbon (Figure 3A)(Kürner et al., 2005; Sasajima the boundary of the axis (Shaevitz et al., 2005; Wada and Netz, et al., 2021). The isolated fibril filaments showed half pitches 2009; Nakane et al., 2020). When the kink travels along the cell around 350 nm similar to those of cells, suggesting that the axis, the helical structure on one side of the kink rotates in one cell
Recommended publications
  • Spiroplasma Arp Sequences: Relationships
    SPIROPLASMA ARP SEQUENCES: RELATIONSHIPS WITH EXTRACHROMOSOMAL ELEMENTS By BHARAT DILIP JOSHI Bachelor of Science University of Pune, India 1995 Master of Science University of Pune, India 1997 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY July, 2006 SPIROPLASMA ARP SEQUENCES: RELATIONSHIPS WITH EXTRACHROMOSOMAL ELEMENTS Dissertation Approved: Dr. Ulrich K. Melcher Dissertation Adviser Dr. Andrew J. Mort Dr. Robert L. Matts Dr. Richard C. Essenberg ________________________________________________ Dr. Jacqueline Fletcher Dr. A. Gordon Emslie Dean of the Graduate College ii TABLE OF CONTENTS Chapter Page I. LITERATURE REVIEW ............................................................................... 1 Background ........................................................................................... 1 Economic Importance............................................................................ 1 Classification ......................................................................................... 2 Transmission in Nature ......................................................................... 3 Molecular Mollicute-host Interactions .................................................. 4 Molecular Spiroplasma-host Interactions ............................................. 4 Mollicute Extrachromosomal DNAs .................................................... 7 Objectives of the Present Study ...........................................................
    [Show full text]
  • Spiroplasma Infection Among Ixodid Ticks Exhibits Species Dependence and Suggests a Vertical Pattern of Transmission
    microorganisms Article Spiroplasma Infection among Ixodid Ticks Exhibits Species Dependence and Suggests a Vertical Pattern of Transmission Shohei Ogata 1, Wessam Mohamed Ahmed Mohamed 1 , Kodai Kusakisako 1,2, May June Thu 1,†, Yongjin Qiu 3 , Mohamed Abdallah Mohamed Moustafa 1,4 , Keita Matsuno 5,6 , Ken Katakura 1, Nariaki Nonaka 1 and Ryo Nakao 1,* 1 Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, N 18 W 9, Kita-ku, Sapporo 060-0818, Japan; [email protected] (S.O.); [email protected] (W.M.A.M.); [email protected] (K.K.); [email protected] (M.J.T.); [email protected] (M.A.M.M.); [email protected] (K.K.); [email protected] (N.N.) 2 Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan 3 Hokudai Center for Zoonosis Control in Zambia, School of Veterinary Medicine, The University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia; [email protected] 4 Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt 5 Unit of Risk Analysis and Management, Research Center for Zoonosis Control, Hokkaido University, N 20 W 10, Kita-ku, Sapporo 001-0020, Japan; [email protected] 6 International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, N 20 W 10, Kita-ku, Sapporo 001-0020, Japan Citation: Ogata, S.; Mohamed, * Correspondence: [email protected]; Tel.: +81-11-706-5196 W.M.A.; Kusakisako, K.; Thu, M.J.; † Present address: Food Control Section, Department of Food and Drug Administration, Ministry of Health and Sports, Zabu Thiri, Nay Pyi Taw 15011, Myanmar.
    [Show full text]
  • Extremozymes of the Hot and Salty Halothermothrix Orenii
    Extremozymes of the Hot and Salty Halothermothrix orenii Author Kori, Lokesh D Published 2012 Thesis Type Thesis (PhD Doctorate) School School of Biomolecular and Physical Sciences DOI https://doi.org/10.25904/1912/2191 Copyright Statement The author owns the copyright in this thesis, unless stated otherwise. Downloaded from http://hdl.handle.net/10072/366220 Griffith Research Online https://research-repository.griffith.edu.au Extremozymes of the hot and salty Halothermothrix orenii LOKESH D. KORI (M.Sc. Biotechnology) School of Biomolecular and Physical Sciences Science, Environment, Engineering and Technology Griffith University, Australia Submitted in fulfillment of the requirements of the degree of Doctor of Philosophy December 2011 STATEMENT OF ORIGINALITY STATEMENT OF ORIGINALITY This work has not previously been submitted for a degree or diploma in any university. To the best of my knowledge and belief, the thesis contains no material previously published or written by another person except where due reference is made in the thesis itself. LOKESH DULICHAND KORI II ACKNOWLEDGEMENTS ACKNOWLEDGEMENTS I owe my deepest gratitude to my supervisor Prof. Bharat Patel, for offering me an opportunity for being his postgraduate. His boundless knowledge motivates me for keep going and enjoy the essence of science. Without his guidance, great patience and advice, I could not finish my PhD program successfully. I take this opportunity to give my heartiest thanks to Assoc. Prof. Andreas Hofmann, (Structural Chemistry, Eskitis Institute for Cell & Molecular Therapies, Griffith University) for his support and encouragement for crystallographic work. I am grateful to him for teaching me about the protein structures, in silico analysis and their hidden chemistry.
    [Show full text]
  • Bacterial Communities of the Upper Respiratory Tract of Turkeys
    www.nature.com/scientificreports OPEN Bacterial communities of the upper respiratory tract of turkeys Olimpia Kursa1*, Grzegorz Tomczyk1, Anna Sawicka‑Durkalec1, Aleksandra Giza2 & Magdalena Słomiany‑Szwarc2 The respiratory tracts of turkeys play important roles in the overall health and performance of the birds. Understanding the bacterial communities present in the respiratory tracts of turkeys can be helpful to better understand the interactions between commensal or symbiotic microorganisms and other pathogenic bacteria or viral infections. The aim of this study was the characterization of the bacterial communities of upper respiratory tracks in commercial turkeys using NGS sequencing by the amplifcation of 16S rRNA gene with primers designed for hypervariable regions V3 and V4 (MiSeq, Illumina). From 10 phyla identifed in upper respiratory tract in turkeys, the most dominated phyla were Firmicutes and Proteobacteria. Diferences in composition of bacterial diversity were found at the family and genus level. At the genus level, the turkey sequences present in respiratory tract represent 144 established bacteria. Several respiratory pathogens that contribute to the development of infections in the respiratory system of birds were identifed, including the presence of Ornithobacterium and Mycoplasma OTUs. These results obtained in this study supply information about bacterial composition and diversity of the turkey upper respiratory tract. Knowledge about bacteria present in the respiratory tract and the roles they can play in infections can be useful in controlling, diagnosing and treating commercial turkey focks. Next-generation sequencing has resulted in a marked increase in culture-independent studies characterizing the microbiome of humans and animals1–6. Much of these works have been focused on the gut microbiome of humans and other production animals 7–11.
    [Show full text]
  • Movements of Mycoplasma Mobile Gliding Machinery Detected by High
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.28.428740; this version posted January 29, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 mBio (Research Article) 2 3 Movements of Mycoplasma mobile gliding machinery detected by 4 high-speed atomic force microscopy 5 Kohei Kobayashia*, Noriyuki Koderab*, Taishi Kasaia, Yuhei O Taharaa,c, Takuma 6 Toyonagaa, Masaki Mizutania, Ikuko Fujiwaraa, Toshio Andob, Makoto Miyataa,c,# 7 8 aGraduate School of Science, Osaka City University, 3-3-138 Sugimoto, 9 Sumiyoshi-ku, Osaka 558-8585, Japan. 10 bNano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-chou, 11 Kanazawa, Ishikawa 920-1192, Japan. 12 cThe OCU Advanced Research Institute for Natural Science and Technology 13 (OCARINA), Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 14 558-8585, Japan. 15 16 Address correspondence to Makoto Miyata, [email protected] 17 *These authors contributed equally to this work. 18 Present address: Taishi Kasai: Department of Life Science, Rikkyo University, 19 3-34-1 Nishiikebukuro, Toshima-ku, Tokyo 171-8501, Japan. 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.28.428740; this version posted January 29, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.
    [Show full text]
  • Global Metagenomic Survey Reveals a New Bacterial Candidate Phylum in Geothermal Springs
    ARTICLE Received 13 Aug 2015 | Accepted 7 Dec 2015 | Published 27 Jan 2016 DOI: 10.1038/ncomms10476 OPEN Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs Emiley A. Eloe-Fadrosh1, David Paez-Espino1, Jessica Jarett1, Peter F. Dunfield2, Brian P. Hedlund3, Anne E. Dekas4, Stephen E. Grasby5, Allyson L. Brady6, Hailiang Dong7, Brandon R. Briggs8, Wen-Jun Li9, Danielle Goudeau1, Rex Malmstrom1, Amrita Pati1, Jennifer Pett-Ridge4, Edward M. Rubin1,10, Tanja Woyke1, Nikos C. Kyrpides1 & Natalia N. Ivanova1 Analysis of the increasing wealth of metagenomic data collected from diverse environments can lead to the discovery of novel branches on the tree of life. Here we analyse 5.2 Tb of metagenomic data collected globally to discover a novel bacterial phylum (‘Candidatus Kryptonia’) found exclusively in high-temperature pH-neutral geothermal springs. This lineage had remained hidden as a taxonomic ‘blind spot’ because of mismatches in the primers commonly used for ribosomal gene surveys. Genome reconstruction from metagenomic data combined with single-cell genomics results in several high-quality genomes representing four genera from the new phylum. Metabolic reconstruction indicates a heterotrophic lifestyle with conspicuous nutritional deficiencies, suggesting the need for metabolic complementarity with other microbes. Co-occurrence patterns identifies a number of putative partners, including an uncultured Armatimonadetes lineage. The discovery of Kryptonia within previously studied geothermal springs underscores the importance of globally sampled metagenomic data in detection of microbial novelty, and highlights the extraordinary diversity of microbial life still awaiting discovery. 1 Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA. 2 Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
    [Show full text]
  • The Mysterious Orphans of Mycoplasmataceae
    The mysterious orphans of Mycoplasmataceae Tatiana V. Tatarinova1,2*, Inna Lysnyansky3, Yuri V. Nikolsky4,5,6, and Alexander Bolshoy7* 1 Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, 90027, California, USA 2 Spatial Science Institute, University of Southern California, Los Angeles, 90089, California, USA 3 Mycoplasma Unit, Division of Avian and Aquatic Diseases, Kimron Veterinary Institute, POB 12, Beit Dagan, 50250, Israel 4 School of Systems Biology, George Mason University, 10900 University Blvd, MSN 5B3, Manassas, VA 20110, USA 5 Biomedical Cluster, Skolkovo Foundation, 4 Lugovaya str., Skolkovo Innovation Centre, Mozhajskij region, Moscow, 143026, Russian Federation 6 Vavilov Institute of General Genetics, Moscow, Russian Federation 7 Department of Evolutionary and Environmental Biology and Institute of Evolution, University of Haifa, Israel 1,2 [email protected] 3 [email protected] 4-6 [email protected] 7 [email protected] 1 Abstract Background: The length of a protein sequence is largely determined by its function, i.e. each functional group is associated with an optimal size. However, comparative genomics revealed that proteins’ length may be affected by additional factors. In 2002 it was shown that in bacterium Escherichia coli and the archaeon Archaeoglobus fulgidus, protein sequences with no homologs are, on average, shorter than those with homologs [1]. Most experts now agree that the length distributions are distinctly different between protein sequences with and without homologs in bacterial and archaeal genomes. In this study, we examine this postulate by a comprehensive analysis of all annotated prokaryotic genomes and focusing on certain exceptions.
    [Show full text]
  • MIB–MIP Is a Mycoplasma System That Captures and Cleaves Immunoglobulin G
    MIB–MIP is a mycoplasma system that captures and cleaves immunoglobulin G Yonathan Arfia,b,1, Laetitia Minderc,d, Carmelo Di Primoe,f,g, Aline Le Royh,i,j, Christine Ebelh,i,j, Laurent Coquetk, Stephane Claveroll, Sanjay Vasheem, Joerg Joresn,o, Alain Blancharda,b, and Pascal Sirand-Pugneta,b aINRA (Institut National de la Recherche Agronomique), UMR 1332 Biologie du Fruit et Pathologie, F-33882 Villenave d’Ornon, France; bUniversity of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33882 Villenave d’Ornon, France; cInstitut Européen de Chimie et Biologie, UMS 3033, University of Bordeaux, 33607 Pessac, France; dInstitut Bergonié, SIRIC BRIO, 33076 Bordeaux, France; eINSERM U1212, ARN Regulation Naturelle et Artificielle, 33607 Pessac, France; fCNRS UMR 5320, ARN Regulation Naturelle et Artificielle, 33607 Pessac, France; gInstitut Européen de Chimie et Biologie, University of Bordeaux, 33607 Pessac, France; hInstitut de Biologie Structurale, University of Grenoble Alpes, F-38044 Grenoble, France; iCNRS, Institut de Biologie Structurale, F-38044 Grenoble, France; jCEA, Institut de Biologie Structurale, F-38044 Grenoble, France; kCNRS UMR 6270, Plateforme PISSARO, Institute for Research and Innovation in Biomedicine - Normandie Rouen, Normandie Université, F-76821 Mont-Saint-Aignan, France; lProteome Platform, Functional Genomic Center of Bordeaux, University of Bordeaux, F-33076 Bordeaux Cedex, France; mJ. Craig Venter Institute, Rockville, MD 20850; nInternational Livestock Research Institute, 00100 Nairobi, Kenya; and oInstitute of Veterinary Bacteriology, University of Bern, CH-3001 Bern, Switzerland Edited by Roy Curtiss III, University of Florida, Gainesville, FL, and approved March 30, 2016 (received for review January 12, 2016) Mycoplasmas are “minimal” bacteria able to infect humans, wildlife, introduced into naive herds (8).
    [Show full text]
  • Role of Protein Phosphorylation in Mycoplasma Pneumoniae
    Pathogenicity of a minimal organism: Role of protein phosphorylation in Mycoplasma pneumoniae Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades „Doctor rerum naturalium“ der Georg-August-Universität Göttingen vorgelegt von Sebastian Schmidl aus Bad Hersfeld Göttingen 2010 Mitglieder des Betreuungsausschusses: Referent: Prof. Dr. Jörg Stülke Koreferent: PD Dr. Michael Hoppert Tag der mündlichen Prüfung: 02.11.2010 “Everything should be made as simple as possible, but not simpler.” (Albert Einstein) Danksagung Zunächst möchte ich mich bei Prof. Dr. Jörg Stülke für die Ermöglichung dieser Doktorarbeit bedanken. Nicht zuletzt durch seine freundliche und engagierte Betreuung hat mir die Zeit viel Freude bereitet. Des Weiteren hat er mir alle Freiheiten zur Verwirklichung meiner eigenen Ideen gelassen, was ich sehr zu schätzen weiß. Für die Übernahme des Korreferates danke ich PD Dr. Michael Hoppert sowie Prof. Dr. Heinz Neumann, PD Dr. Boris Görke, PD Dr. Rolf Daniel und Prof. Dr. Botho Bowien für das Mitwirken im Thesis-Komitee. Der Studienstiftung des deutschen Volkes gilt ein besonderer Dank für die finanzielle Unterstützung dieser Arbeit, durch die es mir unter anderem auch möglich war, an Tagungen in fernen Ländern teilzunehmen. Prof. Dr. Michael Hecker und der Gruppe von Dr. Dörte Becher (Universität Greifswald) danke ich für die freundliche Zusammenarbeit bei der Durchführung von zahlreichen Proteomics-Experimenten. Ein ganz besonderer Dank geht dabei an Katrin Gronau, die mich in die Feinheiten der 2D-Gelelektrophorese eingeführt hat. Außerdem möchte ich mich bei Andreas Otto für die zahlreichen Proteinidentifikationen in den letzten Monaten bedanken. Nicht zu vergessen ist auch meine zweite Außenstelle an der Universität in Barcelona. Dr. Maria Lluch-Senar und Dr.
    [Show full text]
  • Metazoan Ribosome Inactivating Protein Encoding Genes Acquired by Horizontal Gene Transfer Received: 30 September 2016 Walter J
    www.nature.com/scientificreports OPEN Metazoan Ribosome Inactivating Protein encoding genes acquired by Horizontal Gene Transfer Received: 30 September 2016 Walter J. Lapadula1, Paula L. Marcet2, María L. Mascotti1, M. Virginia Sanchez-Puerta3 & Accepted: 5 April 2017 Maximiliano Juri Ayub1 Published: xx xx xxxx Ribosome inactivating proteins (RIPs) are RNA N-glycosidases that depurinate a specific adenine residue in the conserved sarcin/ricin loop of 28S rRNA. These enzymes are widely distributed among plants and their presence has also been confirmed in several bacterial species. Recently, we reported for the first timein silico evidence of RIP encoding genes in metazoans, in two closely related species of insects: Aedes aegypti and Culex quinquefasciatus. Here, we have experimentally confirmed the presence of these genes in mosquitoes and attempted to unveil their evolutionary history. A detailed study was conducted, including evaluation of taxonomic distribution, phylogenetic inferences and microsynteny analyses, indicating that mosquito RIP genes derived from a single Horizontal Gene Transfer (HGT) event, probably from a cyanobacterial donor species. Moreover, evolutionary analyses show that, after the HGT event, these genes evolved under purifying selection, strongly suggesting they play functional roles in these organisms. Ribosome inactivating proteins (RIPs, EC 3.2.2.22) irreversibly modify ribosomes through the depurination of an adenine residue in the conserved alpha-sarcin/ricin loop of 28S rRNA1–4. This modification prevents the binding of elongation factor 2 to the ribosome, arresting protein synthesis5, 6. The occurrence of RIP genes has been exper- imentally confirmed in a wide range of plant taxa, as well as in several species of Gram positive and Gram negative bacteria7–9.
    [Show full text]
  • Complete Genomes of Two Dipteran-Associated Spiroplasmas Provided Insights Into the Origin, Dynamics, and Impacts of Viral Invasion in Spiroplasma
    GBE Complete Genomes of Two Dipteran-Associated Spiroplasmas Provided Insights into the Origin, Dynamics, and Impacts of Viral Invasion in Spiroplasma Chuan Ku1,Wen-SuiLo1,2,3, Ling-Ling Chen1, and Chih-Horng Kuo1,2,4,* 1Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan 2Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan 3Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan 4Biotechnology Center, National Chung Hsing University, Taichung, Taiwan *Corresponding author: E-mail: [email protected]. Accepted: May 21, 2013 Data deposition: The genome sequences reported in this study have been deposited at DDBJ/EMBL/GenBank under the accessions CP005077 and CP005078. Abstract Spiroplasma is a genus of wall-less, low-GC, Gram-positive bacteria with helical morphology. As commensals or pathogens of plants, insects, ticks, or crustaceans, they are closely related with mycoplasmas and form a monophyletic group (Spiroplasma– Entomoplasmataceae–Mycoides) with Mycoplasma mycoides and its relatives. In this study, we report the complete genome sequences of Spiroplasma chrysopicola and S. syrphidicola from the Chrysopicola clade. These species form the sister group to the Citri clade, which includes several well-known pathogenic spiroplasmas. Surprisingly, these two newly available genomes from the Chrysopicola clade contain no plectroviral genes, which were found to be highly repetitive in the previously sequenced genomes from the Citri clade. Based on the genome alignment and patterns of GC-skew, these two Chrysopicola genomes appear to be relatively stable, rather than being highly rearranged as those from the Citri clade.
    [Show full text]
  • Bacterial Vector-Borne Plant Diseases: Unanswered Questions and Future Directions
    Bacterial Vector-Borne Plant Diseases: Unanswered Questions and Future Directions Weijie Huang, Paola Reyes-Caldas, Marina Mann, Shirin Seifbarghi, Alexandra Kahn, Rodrigo P.P. Almeida, Laure Béven, Michelle Heck, Saskia Hogenhout, Gitta Coaker To cite this version: Weijie Huang, Paola Reyes-Caldas, Marina Mann, Shirin Seifbarghi, Alexandra Kahn, et al.. Bacterial Vector-Borne Plant Diseases: Unanswered Questions and Future Directions. Molecular Plant, Cell Press/Oxford UP, 2020, 13 (10), pp.1379-1393. 10.1016/j.molp.2020.08.010. hal-03035576 HAL Id: hal-03035576 https://hal.inrae.fr/hal-03035576 Submitted on 2 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License Molecular Plant ll Perspective Bacterial Vector-Borne Plant Diseases: Unanswered Questions and Future Directions Weijie Huang1,9, Paola Reyes-Caldas2,9, Marina Mann3,9, Shirin Seifbarghi2,9, Alexandra Kahn4,9, Rodrigo P.P. Almeida4, Laure Be´ ven5, Michelle Heck3,6,7, Saskia A. Hogenhout1,8 and Gitta Coaker2,* 1Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK 2Department of Plant Pathology, University of California, Davis, CA, 95616, USA 3Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA 4Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA 5UMR 1332 Biologie du Fruit et Pathologie, Univ.
    [Show full text]