Regulation of Chloroplast Development During the Greening Process
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Investigations on the Influence of Cellular Sugar and Endoplasmic Reticulum Dynamics on Plastid Pleomorphy in Arabidopsis Thaliana
Investigations on the Influence of Cellular Sugar and Endoplasmic Reticulum Dynamics on Plastid Pleomorphy in Arabidopsis thaliana by Kiah A. Barton A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Molecular and Cellular Biology Guelph, Ontario, Canada © Kiah A. Barton, April, 2020 ABSTRACT INVESTIGATIONS ON THE INFLUENCE OF CELLULAR SUGAR AND ENDOPLASMIC RETICULUM DYNAMICS ON PLASTID PLEOMORPHY IN ARABIDOPSIS THALIANA Kiah A. Barton Advisor: University of Guelph, 2020 Dr. Jaideep Mathur Plastids exhibit continuous changes in shape over time, seen either as alterations in the form of the entire plastid or as the extension of thin stroma-filled tubules (stromules). Live-imaging of fluorescently-highlighted organelles was used to assess the role of cellular sugar status and endoplasmic reticulum (ER) rearrangement in this behaviour. Plastids in the pavement cells of Arabidopsis are shown to be chloroplasts and a brief summary of their physical relationship with other cellular structures, their development, and their stromule response to exogenous sucrose is presented. Of the several sugars and sugar alcohols tested, plastid elongation in response to exogenously applied sugars is specific to glucose, sucrose and maltose, indicating that the response is not osmotic in nature. Sugar analogs, used to assess the contribution of sugar signalling to a process, and the sucrose signalling component trehalose-6-phosphate have no effect on stromule formation. Stromule frequency increases in response to multiple nutrient stresses in a sugar- dependent manner. Mutants with increased sugar accumulation show corresponding increases in stromule frequencies, though plastid swelling as a result of excessive starch accumulation negatively affects stromule formation. -
Response of Plant Growth and Development to Different Light Conditions in Three Model Plant Systems Hanhong Bae Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2001 Response of plant growth and development to different light conditions in three model plant systems Hanhong Bae Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Molecular Biology Commons Recommended Citation Bae, Hanhong, "Response of plant growth and development to different light conditions in three model plant systems " (2001). Retrospective Theses and Dissertations. 911. https://lib.dr.iastate.edu/rtd/911 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. in the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. -
Regulatory Shifts in Plastid Transcription Play a Key Role in Morphological Conversions of Plastids During Plant Development
Regulatory Shifts in Plastid Transcription Play a Key Role in Morphological Conversions of Plastids during Plant Development. Monique Liebers, Björn Grübler, Fabien Chevalier, Silva Lerbs-Mache, Livia Merendino, Robert Blanvillain, Thomas Pfannschmidt To cite this version: Monique Liebers, Björn Grübler, Fabien Chevalier, Silva Lerbs-Mache, Livia Merendino, et al.. Regu- latory Shifts in Plastid Transcription Play a Key Role in Morphological Conversions of Plastids during Plant Development.. Frontiers in Plant Science, Frontiers, 2017, 8, pp.23. 10.3389/fpls.2017.00023. hal-01513709 HAL Id: hal-01513709 https://hal.archives-ouvertes.fr/hal-01513709 Submitted on 26 Sep 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. fpls-08-00023 January 17, 2017 Time: 16:47 # 1 MINI REVIEW published: 19 January 2017 doi: 10.3389/fpls.2017.00023 Regulatory Shifts in Plastid Transcription Play a Key Role in Morphological Conversions of Plastids during Plant Development Monique Liebers, Björn Grübler, Fabien Chevalier, Silva Lerbs-Mache, Livia Merendino, Robert Blanvillain and Thomas Pfannschmidt* Laboratoire de Physiologie Cellulaire et Végétale, Institut de Biosciences et Biotechnologies de Grenoble, CNRS, CEA, INRA, Université Grenoble Alpes, Grenoble, France Plastids display a high morphological and functional diversity. -
Short De-Etiolation Increases the Rooting of VC801 Avocado Rootstock
plants Article Short De-Etiolation Increases the Rooting of VC801 Avocado Rootstock Zvi Duman 1,2, Gal Hadas-Brandwein 1,2, Avi Eliyahu 1,2, Eduard Belausov 1, Mohamad Abu-Abied 1, Yelena Yeselson 1, Adi Faigenboim 1, Amnon Lichter 3, Vered Irihimovitch 1 and Einat Sadot 1,* 1 The Institute of Plant Sciences, The Volcani Center, ARO, 68 HaMaccabim Road, Rishon LeZion 7528809, Israel; [email protected] (Z.D.); [email protected] (G.H.-B.); [email protected] (A.E.); [email protected] (E.B.); [email protected] (M.A.-A.); [email protected] (Y.Y.); [email protected] (A.F.); [email protected] (V.I.) 2 The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel 3 The Institute of Post Harvest and Food Sciences, The Volcani Center, ARO, 68 HaMaccabim Road, Rishon LeZion 7528809, Israel; [email protected] * Correspondence: [email protected] Received: 5 August 2020; Accepted: 2 November 2020; Published: 3 November 2020 Abstract: Dark-grown (etiolated) branches of many recalcitrant plant species root better than their green counterparts. Here it was hypothesized that changes in cell-wall properties and hormones occurring during etiolation contribute to rooting efficiency. Measurements of chlorophyll, carbohydrate and auxin contents, as well as tissue compression, histological analysis and gene-expression profiles were determined in etiolated and de-etiolated branches of the avocado rootstock VC801. Differences in chlorophyll content and tissue rigidity, and changes in xyloglucan and pectin in cambium and parenchyma cells were found. -
The Chloroplast Protein Import System: from Algae to Trees☆
CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1833 (2013) 314–331 Contents lists available at SciVerse ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbamcr Review The chloroplast protein import system: From algae to trees☆ Lan-Xin Shi, Steven M. Theg ⁎ Department of Plant Biology, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA article info abstract Article history: Chloroplasts are essential organelles in the cells of plants and algae. The functions of these specialized plas- Received 2 July 2012 tids are largely dependent on the ~3000 proteins residing in the organelle. Although chloroplasts are capable Received in revised form 7 September 2012 of a limited amount of semiautonomous protein synthesis – their genomes encode ~100 proteins – they must Accepted 1 October 2012 import more than 95% of their proteins after synthesis in the cytosol. Imported proteins generally possess an Available online 9 October 2012 N-terminal extension termed a transit peptide. The importing translocons are made up of two complexes in the outer and inner envelope membranes, the so-called Toc and Tic machineries, respectively. The Toc com- Keywords: Toc/Tic complex plex contains two precursor receptors, Toc159 and Toc34, a protein channel, Toc75, and a peripheral compo- Chloroplast nent, Toc64/OEP64. The Tic complex consists of as many as eight components, namely Tic22, Tic110, Tic40, Protein import Tic20, Tic21 Tic62, Tic55 and Tic32. This general Toc/Tic import pathway, worked out largely in pea chloroplasts, Protein conducting channel appears to operate in chloroplasts in all green plants, albeit with significant modifications. -
The DIMINUTO Gene of Arabidopsis Is Involved in Regulating Cell Elongation
Downloaded from genesdev.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press The DIMINUTO gene of Arabidopsis is involved in regulating cell elongation Taku Takahashi, Alexander Gasch, Naoko Nishizawa, 1 and Nam-Hai Chua 2 Laboratory of Plant Molecular Biology, The Rockefeller University, New York, New York 10021-6399 USA; 1Faculty of Agriculture, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan We have isolated a recessive mutation named diminuto (dim) from T-DNA transformed lines of Arabidopsis thaliana. Under normal growth conditions, the dim mutant has very short hypocotyls, petioles, stems, and roots because of the reduced size of cells along the longitudinal axes of these organs. In addition, dim results in the development of open cotyledons and primary leaves in dark-grown seedlings. The gene for DIM was cloned by T-DNA tagging. DIM encodes a novel protein of 561 amino acids that possesses bipartite sequence domains characteristic of nuclear localization signals. Molecular and physiological studies indicate that the loss-of-function mutant allele does not abolish the response of seedlings to light or phytohormones, although the inhibitory effect of light on hypocotyl elongation is greater in the mutant than in wild type. Moreover, the dim mutation affects the expression of a ~-tubulin gene, TUB1, which is thought to be important for plant cell growth. Our results suggest that the DIM gene product plays a critical role in the general process of plant cell elongation. [Key Words: Arabidopsis mutant; T-DNA tagging; cell elongation; tubulin genes; nuclear localization signals] Received October 13, 1994; revised version accepted November 29, 1994. -
Stromule Biogenesis in Maize Chloroplasts 192 6.1 Introduction 192
Plastid Tubules in Higher Plants: An Analysis of Form and Function Mark T. Waters, BA (Oxon) A thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy, September 2004 ABSTRACT Besides photosynthesis, plastids are responsible for starch storage, fatty acid biosynthe- sis and nitrate metabolism. Our understanding of plastids can be improved with obser- vation by microscopy, but this has been hampered by the invisibility of many plastid types. By targeting green fluorescent protein (GFP) to the plastid in transgenic plants, the visualisation of plastids has become routinely possible. Using GFP, motile, tubular protrusions can be observed to emanate from the plastid envelope into the surrounding cytoplasm. These structures, called stromules, vary considerably in frequency and length between different plastid types, but their function is poorly understood. During tomato fruit ripening, chloroplasts in the pericarp cells differentiate into chro- moplasts. As chlorophyll degrades and carotenoids accumulate, plastid and stromule morphology change dramatically. Stromules become significantly more abundant upon chromoplast differentiation, but only in one cell type where plastids are large and sparsely distributed within the cell. Ectopic chloroplast components inhibit stromule formation, whereas preventing chloroplast development leads to increased numbers of stromules. Together, these findings imply that stromule function is closely related to the differentiation status, and thus role, of the plastid in question. In tobacco seedlings, stromules in hypocotyl epidermal cells become longer as plastids become more widely distributed within the cell, implying a plastid density-dependent regulation of stromules. Co-expression of fluorescent proteins targeted to plastids, mi- tochondria and peroxisomes revealed a close spatio-temporal relationship between stromules and other organelles. -
Genetic and Molecular Analysis of Two New Loci Controlling Flowering in Garden Pea
Genetic and molecular analysis of two new loci controlling flowering in garden pea By A S M Mainul Hasan School of Natural Sciences Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy University of Tasmania, July 2018 Declaration of originality This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledge in the thesis, and to the best of my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright. Authority of access This thesis may be made available for loan. Copying and communication of any part of this thesis is prohibited for two years from the date this statement was signed; after that time limited copying and communication is permitted in accordance with the Copyright Act 1968. Date: 6-07-2018 A S M Mainul Hasan i Abstract Flowering is one of the key developmental process associated with the life cycle of plant and it is regulated by different environmental factors and endogenous cues. In the model species Arabidopsis thaliana a mobile protein, FLOWERING LOCUS T (FT) plays central role to mediate flowering time and expression of FT is regulated by photoperiod. While flowering mechanisms are well-understood in A. thaliana, knowledge about this process is limited in legume (family Fabaceae) which are the second major group of crops after cereals in satisfying the global demand for food and fodder. -
A Multifaceted Analysis Reveals Two Distinct Phases of Chloroplast
RESEARCH ARTICLE A multifaceted analysis reveals two distinct phases of chloroplast biogenesis during de-etiolation in Arabidopsis Rosa Pipitone1, Simona Eicke2, Barbara Pfister2, Gaetan Glauser3, Denis Falconet4, Clarisse Uwizeye4, Thibaut Pralon1, Samuel C Zeeman2, Felix Kessler1*, Emilie Demarsy1,5* 1Plant Physiology Laboratory, University of Neuchaˆtel, Neuchaˆtel, Switzerland; 2Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Zurich, Switzerland; 3Neuchaˆtel Platform of Analytical Chemistry, University of Neuchaˆtel, Neuchaˆtel, Switzerland; 4Universite´ Grenoble Alpes, CNRS, CEA, INRAE, IRIG- DBSCI-LPCV, Grenoble, France; 5Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland Abstract Light triggers chloroplast differentiation whereby the etioplast transforms into a photosynthesizing chloroplast and the thylakoid rapidly emerges. However, the sequence of events during chloroplast differentiation remains poorly understood. Using Serial Block Face Scanning Electron Microscopy (SBF-SEM), we generated a series of chloroplast 3D reconstructions during differentiation, revealing chloroplast number and volume and the extent of envelope and thylakoid membrane surfaces. Furthermore, we used quantitative lipid and whole proteome data to complement the (ultra)structural data, providing a time-resolved, multi-dimensional description of chloroplast differentiation. This showed two distinct phases of chloroplast biogenesis: an initial photosynthesis-enabling ‘Structure Establishment Phase’ followed by a ‘Chloroplast Proliferation Phase’ during cell expansion. Moreover, these data detail thylakoid membrane expansion during *For correspondence: de-etiolation at the seedling level and the relative contribution and differential regulation of [email protected] (FK); proteins and lipids at each developmental stage. Altogether, we establish a roadmap for [email protected] (ED) chloroplast differentiation, a critical process for plant photoautotrophic growth and survival. -
Integration of Light Signaling with Photoperiodic Flowering and Circadian Rhythm
REVIEW Min NI Integration of light signaling with photoperiodic flowering and circadian rhythm Min NI* Department of Plant Biology, University of Minnesota, St. Paul, MN 55108, USA ABSTRACT Plants become photosynthetic through de-etiolation, a developmental process regulated by red/far-red light-absorbing phytochromes and blue/ultraviolet A light-absorbing cryptochromes. Genetic screens have identified in the last decade many far-red light signaling mutants and several red and blue light signaling mutants, suggesting the existence of distinct red, far-red, or blue light signaling pathways downstream of phytochromes and cryptochromes. However, genetic screens have also identified mutants with defective de-etiolation responses under multiple wavelengths. Thus, the opti- mal de-etiolation responses of a plant depend on coordination among the different light signaling pathways. This review intends to discuss several recently identified signaling components that have a potential role to integrate red, far-red, and blue light signalings. This review also highlights the recent discoveries on proteolytic degradation in the desensitization of light signal transmission, and the tight connection of light signaling with photoperiodic flowering and circadian rhythm. Studies on the controlling mechanisms of de-etiolation, photoperiodic flowering, and circadian rhythm have been the fascinating topics in Arabidopsis research. The knowledge obtained from Arabidopsis can be readily applied to food crops and ornamental species, and can be contributed to -
Light-Sensing-In-Plants-By-M-Wada
M. Wada, K. Shimazaki, M. Iino (Eds.) Light Sensing in Plants M. Wada · K. Shimazaki · M. Iino (Eds.) Light Sensing in Plants With 46 figures, including 4 in color The Botanical Society of Japan Masamitsu Wada, Dr. Department of Biology, Graduate School of Science, Tokyo Metropolitan University 1-1 Minami Osawa, Hachioji, Tokyo 192-0397, Japan Ken-ichiro Shimazaki, Dr. Department of Biology, Faculty of Science, Kyushu University Ropponmatsu, Fukuoka 810-8560, Japan Moritoshi Iino, Ph.D. Botanical Gardens, Graduate School of Science, Osaka City University 2000 Kisaichi, Katano, Osaka 576-0004, Japan Library of Congress Control Number: 2004117723 ISBN 4-431-24002-0 Springer-Verlag Tokyo Berlin Heidelberg New York This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad- casting, reproduction on microfilms or in other ways, and storage in data banks. The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Springer is a part of Springer Science+Business Media springeronline.com © Yamada Science Foundation and Springer-Verlag Tokyo 2005 Printed in Japan Typesetting: SNP Best-set Typesetter Ltd., Hong Kong Printing and binding: Hicom, Japan Printed on acid-free paper Preface Plants utilize light not only for photosynthesis but also for monitoring changes in environmental conditions essential to their survival. Wavelength, intensity, direction, duration, and other attributes of light are used by plants to predict imminent seasonal change and to determine when to initiate physiological and developmental alterations. -
Glucose Induces Thylakoid Formation and Upregulates Green Pigment Contents in Complete Dark Culture of the Angiosperm Pachira Macrocarpa
agronomy Article Glucose Induces Thylakoid Formation and Upregulates Green Pigment Contents in Complete Dark Culture of the Angiosperm Pachira macrocarpa Tzan-Chain Lee 1,† , Kuan-Hung Lin 2,† , Meng-Yuan Huang 3,* and Chi-Ming Yang 4,* 1 Department of Tea Science, Anxi College of Tea Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; [email protected] 2 Department of Horticulture and Biotechnology, Chinese Culture University, Shilin, Taipei 11114, Taiwan; [email protected] 3 Department of Life Sciences and Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 40227, Taiwan 4 Biodiversity Research Center, Academia Sinica, Nangang, Taipei 11529, Taiwan * Correspondence: [email protected] (M.-Y.H.); [email protected] (C.-M.Y.); Tel.: +886-2787-1096 (C.-M.Y.) † These authors contributed equally to this work. Abstract: In addition to angiosperms, most plants are able to synthesize chlorophyll (Chl)-generating green tissues in total darkness. In this study, 140 plants of the angiosperm Pachira macrocarpa were divided into five groups. Among them, one group was grown for 2 weeks under natural light conditions, whereas the others were grown in complete darkness (0 µmol m−2 s−1). Dark-grown plants were then treated with 0~6% glucose for another 8 weeks. The budding and greening ratios, ultrastructure of chloroplasts (ChlPs) of newly developed leaves, and green pigment contents of Citation: Lee, T.-C.; Lin, K.-H.; pre-illuminated mature and young leaves, and totally dark-grown newly developed leaves were Huang, M.-Y.; Yang, C.-M. Glucose measured. Results showed that glucose inhibited the budding and promoted the greening of newly Induces Thylakoid Formation and Upregulates Green Pigment Contents developed leaves.