bioRxiv preprint doi: https://doi.org/10.1101/2020.12.31.425011; this version posted January 1, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Widespread inhibitory projections from the interposed cerebellar nucleus 2 3 Elena N. Judd1, Samantha M. Lewis1, Daniel G. Heck1, Abigail L. Person1 4 5 1. Department of Physiology and Biophysics, University of Colorado School of 6 Medicine, Anschutz Medical Campus 7 8 Contact: <
[email protected]> 9 10 Abstract 11 12 The cerebellum consists of parallel parasagittal modules that contribute to diverse behaviors, 13 spanning motor to cognitive. Recent work illustrating a role for the anterior interposed nucleus 14 (IntA) in reach control in mice raised questions of its anatomical organization that could confer 15 functional specificity. We employed intersectional cell- and projection- specific labeling 16 methods to map IntA inputs and outputs. In contrast to long-standing dogma 17 of primarily excitatory outputs and restricted inferior olive targeting inhibitory output, we found 18 that inhibitory IntA neurons ramified widely within the brainstem, targeting both motor- and 19 sensory-related nuclei, suggesting potential functional roles in disinhibitory control or predictive 20 sensory cancellation. Using monosynaptic rabies tracing, we then found that excitatory output 21 neurons receive fewer and more precisely organized inputs than inhibitory neurons, which may 22 set them up for distinct computations. Together these data suggest IntA contains at least two 23 distinct output circuits and promise advances in identifying parallel computations of the 24 cerebellum.