Cerebellum (Small Brain)

Total Page:16

File Type:pdf, Size:1020Kb

Cerebellum (Small Brain) CerebellumCerebellum (small(small brain)brain) 44thth VentricleVentricle CNSCNS divisionsdivisions BrainstemBrainstem divisionsdivisions Midbrain Mesencephalon Pons Cerebellum Metencephalon Medulla Myelencephalon BasicBasic anatomicalanatomical datadata ofof cerebellumcerebellum Weight ~130 g (10% of the total brain volume) Location - posterior cranial fossa Separated from the occipital lobe by the cerebellar tentorium Cerebellum/cerebrum = 1/8 (adult); 1/20 (infant) MajorMajor componentscomponents ofof cerebellumcerebellum CortexCortex DeepDeep nucleinuclei WhiteWhite mattermatter deepdeep WMWM cerebellarcerebellar pedunclespeduncles MajorMajor componentscomponents ofof cerebellumcerebellum OrganizationOrganization ofof cerebellarcerebellar cortexcortex Folia (folds, equivalent to gyri of cerebral cortex) Lobules (groups of folia) Lobes (groups of lobes) The branching pattern of the white matter into the cerebellar convolutions inspired early anatomists to refer to it as the arbor vitae (Latin, tree of life); hence, the name folia (Latin, leaves) rather than gyri is used to describe the convolutions. Folia ↓ Lobules ↓ Lobes CerebellarCerebellar cortexcortex consistsconsists ofof vermisvermis andand hemisphereshemispheres crus cerebri midbrain aqueduct Cerebellar Cerebellar hemisphere hemisphere Vermis VermisVermis andand hemisphereshemispheres areare divideddivided intointo lobeslobes byby fissuresfissures Lobulus semilunaris sup. Posterolateral fissure VentralVentral viewview ofof cerebellumcerebellum 4th ventricle (=Inferior cerebellar notch) Vermis Hemisphere Anterior Lobe Lingula ---------- Centralis Ala lobuli centralis fissura prima Culmen Lob. quadrangularis ant. Declive Lob. quadrangularis post. horizontal fissure Folium Lob. semilunaris sup. Posterior Lobe Tuber Lob. semilun. inf./gracilis Pyrami s Lob. biventer posterolateral fissure Uvula Tonsilla Nodul us Flocculus LobulesLobules ofof vermisvermis Lingula Centralis C Culmen C Declive D Folium F Tuber T Pyramis P Uvula U Nodulus CerebellumCerebellum –– selectedselected lobuleslobules Basis pontis Tegmentum pontis F F CerebellumCerebellum –– selectedselected lobuleslobules Cerebellar Tonsil CerebellumCerebellum –– selectedselected lobuleslobules && WMWM SCP MCP ICP Flocculus Nodulus DeepDeep cerebellarcerebellar nucleinuclei -- DEFGDEFG fastigial globose emboliform dentate DeepDeep cerebellarcerebellar nucleinuclei (DEGF)(DEGF) Nodulus Fastigial Nucleus Dentate nucleus Globus and Globose Emboliform nucleus nuclei together Emboliform are known as: nucleus Interposed Nucleus DeepDeep cerebellarcerebellar nucleinuclei Dentate Nucleus OriginOrigin ofof CNSCNS subdivisionssubdivisions TheThe cerebellumcerebellum developsdevelops fromfrom thethe metencephalicmetencephalic vesiclevesicle Neural tube folding (5 th -8th wk) AlarAlar vs.vs. BasalBasal plateplate derivativesderivatives -- ponspons Pontine nuclei somatic are alar plate Alar plate = afferent = sensory visceral precursors migrated Basal plate = efferent = motor visceral ventrally somatic The basal plate → primarily efferent nuclei (CN V, VI, VII, superior salivatory nuclei) The alar plate → somatic and visceral sensory nuclei (CN V, VIII, pontine nuclei) The cerebellum is derived from the rhombic lip of the alar plate saggital section - lateral view dorsal view The cerebellum is derived from the rhombic lip of the alar plate Rhombic lip Primordium cerebellar cortex Alar plate Basal plate Sulcus Pontine nuclei saggital section - lateral view cross-section limitans ~ 5th week of development → the lateral parts of the alar plates on both sides of the roof of metencephalon join to form the rhombic lips, which eventually become the cerebellar vermis and hemispheres The remaining part of the alar plate forms the superior and inferior medullary veli BasicBasic stepssteps ofof cerebellarcerebellar histogenesishistogenesis Characterization of the cerebellar territory the hindbrain Formation of two compartments of cell proliferation → GABAergic & Glu-ergic neurons Inward migration of the granule cell precursors Differentiation of cerebellar neurons EstimatedEstimated timetime ofof developmentdevelopment ofof variousvarious brainbrain regiregionsons Modified from Bayer SA et al. Neurotoxicology 14:83–144, 1993 TheThe brainstembrainstem isis connectedconnected toto thethe cerebellumcerebellum viavia thethe cerebellarcerebellar pedunclespeduncles superior cerebellar peduncle (SCP) Brachium conjunctivum MidbrainMidbrain ↔↔ CerebellumCerebellum SCP is the principal output path of the cerebellum (it has also a little input) middle cerebellar peduncle (MCP) Brachium pontis PonsPons →→ CerebellumCerebellum MCP is the principal input path of the cerebellum (it has no output) inferior cerebellar peduncle (ICP) Restiform body MedullaMedulla oblongataoblongata ↔↔ CerebellumCerebellum ICP has both inputs and outputs CerebellarCerebellar inputsinputs && outputsoutputs -- overviewoverview INPUTS: OUTPUTS: SCP: SCP: • VSCT • Red nucleus • VA/VL thalamus- from dentate and interpositius nuclei MCP: • Pontocerebellar tract - MCP: from pontine nuclei • none ICP: ICP: • Vestibular nuclei • P/M reticular formations- • Vestibular ganglion from fastigial nucleus and • DSCT - from Clarke’s flocculus/nodulus nucleus • Lateral vestibular nucleus- • Olivocerebellar tract - from flocculus/nodulus and from inferior olive (climbing fastigial nucleus fibers) MajorMajor cerebellarcerebellar inputsinputs Middle cerebellar peduncle (decussation) Inferior cerebellar peduncle (ipsilateral) Purves, et al, Neuroscience, 3rd ed. Major cerebellar outputs Deep Cerebellar Nuclei Superior Cerebrocerebellum to Dentate Nucleus cerebellar peduncle Spinocerebellum to Interposed Nuclei (decussation) Vestibulocerebellum to Fastigial Nucleus CerebellarCerebellar functionalfunctional modulesmodules VestibulocerebellumVestibulocerebellum SpinocerebellumSpinocerebellum CerebrocerebellumCerebrocerebellum Purves, et al, Neuroscience, 3rd ed. TheThe functionalfunctional regionsregions ofof thethe cerebellumcerebellum havehave differentdifferent inputsinputs andand outputsoutputs Kandel, Schwartz, Jessell; Principles of Neural Science, 4 th ed. VestibulocerebellumVestibulocerebellum ((= archicerebellumarchicerebellum )) →→ brainbrain stemstem centerscenters forfor controllingcontrolling eyeeye andand headhead movementsmovements otolith organs Inputs – otolith organs of Flocculonodular lobe, inner ear, vestibular nuclei fastigial nucleus Outputs (via fastigial Vestibular nuclei nucleus) – vestibular nuclei (medial, inferior, and superior ) Medial vestibulospinal Function – neck muscle & tract (descending MLF) eye movement control Lateral vestibulospinal tract Clinical correlates – nystagmus and disturbances in body equilibrium (truncal ataxia) VestibulocerebellumVestibulocerebellum –– cerebellarcerebellar cortexcortex Maintenance of equilibrium and coordination of eye movements Origin: Flocculus or Nodulus Course: ICP, or direct to vestibular nucleus Termination: Vestibular Nuclei Laterality: Ipsilateral VestibulocerebellumVestibulocerebellum –– deepdeep nucleinuclei Main efferent mechanism from vermis to influence vestibulospinal and reticulospinal tracts Origin: Fastigial Nucleus Course: ICP Termination: Vestibular Nuclei Laterality: Bilateral VestibulocerebellumVestibulocerebellum –– outputoutput (ICP)(ICP) ICP From Vestibular nuclei and Vestibular ganglion (Scarpa ’s), for balance and coordination Origin: Flocculus or Nodulus Course: ICP, or direct to vestibular nucleus Termination: Vestibular Nuclei Laterality: Ipsilateral SpinoSpino cerebellumcerebellum ((= paleopaleo cerebellumcerebellum )) →→ laterallateral andand medialmedial motormotor systemssystems Lateral systems → limb muscles (fine movements); Medial systems → proximal (axial) (SCP) muscles Inputs – spinal cord (dorsal & ventral spinocerebellar tracts, DSCT/VSCT), accessory cuneate nucleus (cuneocerebellar tract (CCT) Outputs ICP Accessory cuneate nucleus (ACN) Vermis - via fastigial nucleus → brain stem nuclei that give rise to reticulospinal and vestibulospinal tracts Intermediate hemisphere - via interposed nuclei (EG) → red nucleus, thalamus (VL) Function – quality control of movements Vermis → head, neck, and trunk Intermediate hemisphere → limbs Clinical correlates – muscle rigidity, ataxia, dysmetria SpinocerebellumSpinocerebellum DorsalDorsal SpinocerebellarSpinocerebellar TractTract Clarke's nucleus transmits sensory information from the leg and lower trunk Origin: Clarke’s nucleus, T1-L2 Course: Dorsolateral spinal cord and medulla, enters the cerebellum via ICP Termination: granule cells of the vermis and intermediate zone Laterality: Ipsilateral SpinocerebellumSpinocerebellum DorsalDorsal SpinocerebellarSpinocerebellar TractTract Clarke's nucleus transmits sensory information from the leg and lower trunk Origin: Clarke’s Column, T1-L2 Course: Dorsolateral spinal cord and medulla, enters the cerebellum thru ICP Termination: granule cells of the vermis and intermediate zone Laterality: Ipsilateral SpinocerebellumSpinocerebellum DorsalDorsal SpinocerebellarSpinocerebellar TractTract ICP Clarke's nucleus transmits sensory information from the leg and lower trunk Origin: Clarke’s Column, T1-L2 Course: Dorsolateral spinal cord and medulla, enters the cerebellum thru ICP Termination: granule cells of the vermis and intermediate zone Laterality: Ipsilateral SpinocerebellumSpinocerebellum DorsalDorsal SpinocerebellarSpinocerebellar TractTract Origin: Clarke’s Column,
Recommended publications
  • Effect of Rtms Over the Medial Cerebellum on Positive and Negative Symptoms and Cognitive Dysmetria in Subjects with Treatment Refractory Schizophrenia
    Effect of rTMS over the Medial Cerebellum on Positive and Negative Symptoms and Cognitive Dysmetria in subjects with treatment refractory Schizophrenia Robert J. Buchanan, M.D. Zoltan Nadasdy, Ph.D. James Underhill, Psy.D. Seton Brain and Spine Institute UT Austin Department of Psychology and The Neuroscience Institute. Protocol Document Date: August 23, 2013 NCT02242578 Effect of rTMS over the Medial Cerebellum on Positive and Negative Symptoms and Cognitive Dysmetria in subjects with treatment refractory Schizophrenia Robert J. Buchanan, M.D. Zoltan Nadasdy, Ph.D. James Underhill, Psy.D. Seton Brain and Spine Institute UT Austin Department of Psychology and The Neuroscience Institute. Hypotheses: 1) Cerebellar stimulation will cause activation of thalamic and frontal cortical networks associated with attentional processes. These attentional processes are a component of the “distracted” affect of schizophrenia (part of both positive and negative symptoms). 2) Cerebellar stimulation will cause activation of the reticular activating system (RAS), and this will allow the “mutism”, which is a negative symptom, to be partially improved. Purpose of Study, Anticipated Benefits The etiology of negative symptoms in schizophrenia which includes social withdrawal, affective flattening, poor motivation, and apathy is poorly understood. Symptomatic treatment of these negative symptoms with medications and psychotherapy are almost non-existent, whereas treatment of the positive symptoms (hallucinations and delusions) has been more effective with psychotropic medications. New methods of treating negative symptoms are needed. Background and Significance There is increasing evidence from neuropsychological and imaging studies that cerebellar function is relevant not only to motor coordination, but equally to cognition and behavior (M. Rapoport et al 2000).
    [Show full text]
  • Functional Imaging of the Deep Cerebellar Nuclei: a Review
    Cerebellum (2010) 9:22–28 DOI 10.1007/s12311-009-0119-3 Functional Imaging of the Deep Cerebellar Nuclei: A Review Christophe Habas Published online: 10 June 2009 # Springer Science + Business Media, LLC 2009 Abstract The present mini-review focused on functional and climbing fibers derived from the bulbar olivary nuclei. imaging of human deep cerebellar nuclei, mainly the The mossy-fiber influence on DCN firing appears to be dentate nucleus. Although these nuclei represent the unique weaker than the climbing-fiber influence. Despite the output channel of the cerebellum, few data are available pivotal role of these nuclei, only very few results are concerning their functional role. However, the dentate available for functional imaging of the DCN, including nucleus has been shown to participate in a widespread PET scan and MRI techniques, and most of these data functional network including sensorimotor and associative concern the DN. This lack of data is due to a number of cortices, striatum, hypothalamus, and thalamus, and plays a reasons. minor role in motor execution and a major role in First, the human DCN mainly comprise the large, sensorimotor coordination and learning, and cognition. widespread, and easily identifiable DN which has a marked The dentate nucleus appears to be predominantly involved low-intensity signal on MRI T2*-weighted sequences and in conjunction with the neocerebellum in executive and is clearly distinguished from the adjacent cortical structures. affective networks devoted, at least, to attention, working In contrast, FN and GEN are very thin and are both located memory, procedural reasoning, and salience detection. very close to the gray matter of lobules VIII and IX, while these nuclei are situated on the medial aspect of the DN.
    [Show full text]
  • Prognostic Implications of Total Hemispheric Glucose Metabolism
    Journal of Nuclear Medicine, published on October 27, 2016 as doi:10.2967/jnumed.116.180398 Prognostic Implications of Total Hemispheric Glucose Metabolism Ratio in Cerebro-Cerebellar Diaschisis *Eivind Antonsen Segtnan1,2, Peter Grupe1, Jens Ole Jarden3, Oke Gerke1,4,Jana Ivanidze5 Sofie Bæk Christlieb1, Caius Constantinescu1, John Erling Pedersen1, Sina Houshmand6, Søren Hess1,7,8 Mojtaba Zarei9, Albert Gjedde2,10, Abass Alavi6, Poul F. Høilund-Carlsen1,8 1Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark 2 University of Southern Denmark, Odense, Denmark 3Department of Neurology, Herlev University Hospital, Copenhagen, Denmark 4Centre of Health Economics Research, Odense, University of Southern Denmark, Denmark 5Department of Diagnostic Radiology, Weill Cornell Medical College, NewYork-Presbyterian Hospital, New York, NY, United States 6Division of Nuclear Medicine, Department of Radiology, Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA 7Department of Radiology and Nuclear Medicine, Hospital of Southwest Jutland, Esbjerg, Denmark 8Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark 9National Brain Mapping Centre, Shahid Beheshti University (Medical and General Campus), Tehran, Iran. 10Department of Neuroscience and Pharmacology, Panum Institute, University of Copenhagen, Copenhagen, Denmark 1 *Corresponding author Eivind Antonsen Segtnan ( Medicin student) , Allegade 34, 2.tv, 5000 Odense C, Denmark, Tel: +45 3044 8498, e-mail: [email protected] 2 Abstract Purpose: Diaschisis denotes brain dysfunction remote from a focal brain lesion. We have quantified diaschisis and investigated its prognostic value in glioma. Methods and material: We compared 50 18F-FDG-PET-CT studies collected prospectively from 14 patients with supratentorial glioma (5 men and 9 women aged 35-77 years) with 10 single scans from healthy controls aged 43-75 years.
    [Show full text]
  • The Cerebellum in Sagittal Plane-Anatomic-MR Correlation: 2
    667 The Cerebellum in Sagittal Plane-Anatomic-MR Correlation: 2. The Cerebellar Hemispheres Gary A. Press 1 Thin (5-mm) sagittal high-field (1 .5-T) MR images of the cerebellar hemispheres James Murakami2 display (1) the superior, middle, and inferior cerebellar peduncles; (2) the primary white­ Eric Courchesne2 matter branches to the hemispheric lobules including the central, anterior, and posterior Dean P. Berthoty1 quadrangular, superior and inferior semilunar, gracile, biventer, tonsil, and flocculus; Marjorie Grafe3 and (3) several finer secondary white-matter branches to individual folia within the lobules. Surface features of the hemispheres including the deeper fissures (e.g., hori­ Clayton A. Wiley3 1 zontal, posterolateral, inferior posterior, and inferior anterior) and shallower sulci are John R. Hesselink best delineated on T1-weighted (short TRfshort TE) and T2-weighted (long TR/Iong TE) sequences, which provide greatest contrast between CSF and parenchyma. Correlation of MR studies of three brain specimens and 11 normal volunteers with microtome sections of the anatomic specimens provides criteria for identifying confidently these structures on routine clinical MR. MR should be useful in identifying, localizing, and quantifying cerebellar disease in patients with clinical deficits. The major anatomic structures of the cerebellar vermis are described in a companion article [1). This communication discusses the topographic relationships of the cerebellar hemispheres as seen in the sagittal plane and correlates microtome sections with MR images. Materials, Subjects, and Methods The preparation of the anatomic specimens, MR equipment, specimen and normal volunteer scanning protocols, methods of identifying specific anatomic structures, and system of This article appears in the JulyI August 1989 issue of AJNR and the October 1989 issue of anatomic nomenclature are described in our companion article [1].
    [Show full text]
  • Basal Ganglia & Cerebellum
    1/2/2019 This power point is made available as an educational resource or study aid for your use only. This presentation may not be duplicated for others and should not be redistributed or posted anywhere on the internet or on any personal websites. Your use of this resource is with the acknowledgment and acceptance of those restrictions. Basal Ganglia & Cerebellum – a quick overview MHD-Neuroanatomy – Neuroscience Block Gregory Gruener, MD, MBA, MHPE Vice Dean for Education, SSOM Professor, Department of Neurology LUHS a member of Trinity Health Outcomes you want to accomplish Basal ganglia review Define and identify the major divisions of the basal ganglia List the major basal ganglia functional loops and roles List the components of the basal ganglia functional “circuitry” and associated neurotransmitters Describe the direct and indirect motor pathways and relevance/role of the substantia nigra compacta 1 1/2/2019 Basal Ganglia Terminology Striatum Caudate nucleus Nucleus accumbens Putamen Globus pallidus (pallidum) internal segment (GPi) external segment (GPe) Subthalamic nucleus Substantia nigra compact part (SNc) reticular part (SNr) Basal ganglia “circuitry” • BG have no major outputs to LMNs – Influence LMNs via the cerebral cortex • Input to striatum from cortex is excitatory – Glutamate is the neurotransmitter • Principal output from BG is via GPi + SNr – Output to thalamus, GABA is the neurotransmitter • Thalamocortical projections are excitatory – Concerned with motor “intention” • Balance of excitatory & inhibitory inputs to striatum, determine whether thalamus is suppressed BG circuits are parallel loops • Motor loop – Concerned with learned movements • Cognitive loop – Concerned with motor “intention” • Limbic loop – Emotional aspects of movements • Oculomotor loop – Concerned with voluntary saccades (fast eye-movements) 2 1/2/2019 Basal ganglia “circuitry” Cortex Striatum Thalamus GPi + SNr Nolte.
    [Show full text]
  • Crossed Cerebellar Atrophy in Patients with Precocious Destructive Brain Insults
    ORIGINAL CONTRIBUTION Crossed Cerebellar Atrophy in Patients With Precocious Destructive Brain Insults Ricardo A. Teixeira, MD; Li M. Li, MD, PhD; Sergio L. M. Santos, MD; Veronica A. Zanardi, MD, PhD; Carlos A. M. Guerreiro, MD, PhD; Fernando Cendes, MD, PhD Objective: To analyze the frequency and pathogenetic ciated with the extent of the supratentorial lesion (6 from factors of crossed cerebellar atrophy (CCA) in adult pa- group A, 1 from group B, and none from group C; tients with epilepsy secondary to destructive brain in- PϽ.001). Status epilepticus was present in 6 patients from sults of early development. group A and in none from the other groups. There was an association between the antecedent of status epilep- Methods: We studied 51 adult patients with epilepsy ticus and CCA (PϽ.001). All patients had atrophy of the and precocious destructive lesions. Patients were cerebral peduncle ipsilateral to the supratentorial lesion divided into 3 groups according to the topographic dis- and 4 had contralateral atrophy of the middle cerebellar tribution of their lesions on magnetic resonance imag- peduncle. The duration of epilepsy was not associated ing: group A, hemispheric (n=9); group B, main arterial with the presence of CCA (P=.20). territory (n=25); and group C, arterial border zone (n=17). We evaluated the presence of CCA visually and Conclusions: Our data suggest that in patients with epi- with cerebellar volumetric measurement, correlating it lepsy and destructive insults early in life, the extent of with the clinical data. Other features shown on mag- the supratentorial lesion as well as the antecedent of sta- netic resonance imaging, such as the thalamus, brain- tus epilepticus play a major role in the pathogenesis of stem, and middle cerebellar peduncle, were also care- CCA.
    [Show full text]
  • Molar Tooth Sign of the Midbrain-Hindbrain Junction
    American Journal of Medical Genetics 125A:125–134 (2004) Molar Tooth Sign of the Midbrain–Hindbrain Junction: Occurrence in Multiple Distinct Syndromes Joseph G. Gleeson,1* Lesley C. Keeler,1 Melissa A. Parisi,2 Sarah E. Marsh,1 Phillip F. Chance,2 Ian A. Glass,2 John M. Graham Jr,3 Bernard L. Maria,4 A. James Barkovich,5 and William B. Dobyns6** 1Division of Pediatric Neurology, Department of Neurosciences, University of California, San Diego, California 2Division of Genetics and Development, Children’s Hospital and Regional Medical Center, University of Washington, Washington 3Medical Genetics Birth Defects Center, Ahmanson Department of Pediatrics, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, California 4Department of Child Health, University of Missouri, Missouri 5Departments of Radiology, Pediatrics, Neurology, Neurosurgery, University of California, San Francisco, California 6Department of Human Genetics, University of Chicago, Illinois The Molar Tooth Sign (MTS) is defined by patients with these variants of the MTS will an abnormally deep interpeduncular fossa; be essential for localization and identifica- elongated, thick, and mal-oriented superior tion of mutant genes. ß 2003 Wiley-Liss, Inc. cerebellar peduncles; and absent or hypo- plastic cerebellar vermis that together give KEY WORDS: Joubert; molar tooth; Va´ r- the appearance of a ‘‘molar tooth’’ on axial adi–Papp; OFD-VI; COACH; brain MRI through the junction of the mid- Senior–Lo¨ ken; Dekaban– brain and hindbrain (isthmus region). It was Arima; cerebellar vermis; first described in Joubert syndrome (JS) hypotonia; ataxia; oculomo- where it is present in the vast majority of tor apraxia; kidney cysts; patients with this diagnosis.
    [Show full text]
  • Bilateral Cerebellar Dysfunctions in a Unilateral Meso-Diencephalic Lesion
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.44.4.361 on 1 April 1981. Downloaded from Journal of Neurology, Neurosurgery, and Psychiatry, 1981, 44, 361-363 Short report Bilateral cerebellar dysfunctions in a unilateral meso-diencephalic lesion D VON CRAMON From the Max-Planck-Institute for Psychiatry, Munich, Germany SUMMARY The clinical syndrome of a 65-year-old patient with a slit-shaped right-sided meso- diencephalic lesion was analysed. A cerebellar syndrome with limb-kinetic ataxia, intention tremor and hypotonicity in all extremities as well as ataxic dysarthria was found. The disruption of the two cerebello-(rubro)-thalamic pathways probably explained the signs of bilateral cere- bellar dysfunction. The uncrossed ascending limb of the right, and the crossed one of the left brachium conjunctivum may have been damaged by the unilateral lesion extending between caudal midbrain and dorsal thalamus. Protected by copyright. Most of the fibres which constitute the superior general hospital where neurological examination cerebellar peduncle leave the cerebellum and showed bilateral miosis, convergent strabism, vertical originate in cells of the dentate nucleus but also gaze paresis on upward gaze with gaze-paretic nystag- arise from neurons of the globose and emboli- mus, flaccid sensori-motor hemiparesis with increased stretch reflexes and Babinski sign on the left side, forme nuclei. The crossed ascending fibres of the and dysmetric movements of the right upper extremity. brachia conjunctiva constitute the major outflow The CT scan showed an acute haemorrhage in the from the cerebellum, they form the cerebello- right mesodiencephalic area. On 19 February 1979 (rubro)-thalamic and dentato-thalamic tracts.' the patient was admitted to our department.
    [Show full text]
  • Intrinsic Neurons of Fastigial Nucleus Mediate Neurogenic Neuroprotection Against Excitotoxic and Ischemic Neuronal Injury in Rat
    The Journal of Neuroscience, May 15, 1999, 19(10):4142–4154 Intrinsic Neurons of Fastigial Nucleus Mediate Neurogenic Neuroprotection against Excitotoxic and Ischemic Neuronal Injury in Rat Sara B. Glickstein, Eugene V. Golanov, and Donald J. Reis Department of Neurology and Neuroscience, Cornell University Medical College, New York, New York 10021 Electrical stimulation of the cerebellar fastigial nucleus (FN) of FN, but not DN, abolished neuroprotection but not the elevates regional cerebral blood flow (rCBF) and arterial pres- elevations of rCBF and AP elicited from FN stimulation. Exci- sure (AP) and provides long-lasting protection against focal and totoxic lesions of FN, but not DN, also abolished the 37% global ischemic infarctions. We investigated which neuronal reduction in focal ischemic infarctions produced by middle element in FN, perikarya or axons, mediates this central neu- cerebral artery occlusion. Excitation of intrinsic FN neurons rogenic neuroprotection and whether it also protects against provides long-lasting, substantial, and reversible protection of excitotoxicity. In anesthetized rats, the FN was stimulated for 1 central neurons from excitotoxicity, as well as focal ischemia, hr, and ibotenic acid (IBO) was microinjected unilaterally into whereas axons in the nucleus, probably collaterals of ramified the striatum. In unstimulated controls, the excitotoxic lesions brainstem neurons, mediate the elevations in rCBF, which do averaged ;40 mm 3. Stimulation of FN, but not dentate nucleus not contribute to neuroprotection. Long-lived protection (DN), significantly reduced lesion volumes up to 80% when IBO against a range of injuries is an unrecognized function of FN was injected 15 min, 72 hr, or 10 d, but not 30 d, thereafter.
    [Show full text]
  • Internal Structure of the Spinal Cord. White and Grey Matters of the Spinal Cord
    Internal structure of the spinal cord. White and grey matters of the spinal cord. A 30 years old patient has been arrived in the neurosurgical department with stab wounds in the area of lowthoracic spine. During the examination was found that the knife blade passed between the procesus spinosus of 10th and 11th thoracic vertebrae and damaged posterior spinal cord. The fibers of which pathways have been damaged in this case? fasciculus gracilis and fasciculus cuneatus fasciculus cuneatus fasciculus gracilis spinocerebellaris dorsalis spinocerebellaris ventralis A. skier dosen’t have knee-jerk after after spinal cord injury. Which segments of the spinal cord were injured? 2-4 lumbar segments of the spinal cord 1-2 cervical segments of the spinal cord 8-9 thoracic spinal cord segments 10-11 thoracic spinal cord segments 5-6 cervical segments of the spinal cord A patient has lost tactile sensitivity, body position sense and vibrations sense. Which pathways were damaged? fasciculus cuneatus et gracilis tractus reticulospinalis tractus spinocerebellares lateralis et ventralis tractus rubrospinalis tractus tectospinalis A 65 years old patient has been diagnosed with bleeding in the anterior horn of the spinal cord. Which, by the function are anterior horns? Motional Sensitive Sympathetic Parasympathetic Mixed A patient has meningitis. The puncture of the arachnoid area was proposed. Determine shells between which it is located: Arachnoid and pia maters. The periosteum and arachnoid membrane. The solid and the arachnoid membranes. The periosteum and dura mater. The dura mater pia mater. A patient has severe headache, stiffness in the neck muscles, repeated vomiting, pain on skull percussion, increased sensitivity to light stimuli.
    [Show full text]
  • Associations of Pathological Diagnosis and Genetic Abnormalities In
    www.nature.com/scientificreports OPEN Associations of pathological diagnosis and genetic abnormalities in meningiomas with the embryological origins of the meninges Atsushi Okano1, Satoru Miyawaki1*, Hiroki Hongo1, Shogo Dofuku1, Yu Teranishi1, Jun Mitsui2, Michihiro Tanaka3, Masahiro Shin1, Hirofumi Nakatomi1 & Nobuhito Saito1 Certain driver mutations and pathological diagnoses are associated with the anatomical site of meningioma, based on which the meninges have diferent embryological origins. We hypothesized that mutations and pathological diagnoses of meningiomas are associated with diferent embryological origins. We comprehensively evaluated associations among tumor location, pathological diagnosis (histological type), and genetic alterations including AKT1, KLF4, SMO, POLR2A, and NF2 mutations and 22q deletion in 269 meningioma cases. Based on the embryological origin of meninges, the tumor locations were as follows: neural crest, paraxial mesodermal, and dorsal mesodermal origins. Tumors originating from the dura of certain embryologic origin displayed a signifcantly diferent pathological diagnoses and genetic abnormality ratio. For instance, driver genetic mutations with AKT1, KLF4, SMO, and POLR2A, were signifcantly associated with the paraxial mesodermal origin (p = 1.7 × ­10−10). However, meningiomas with NF2-associated mutations were signifcantly associated with neural crest origin (p = 3.9 × ­10–12). On analysis of recurrence, no diference was observed in embryological origin. However, POLR2A mutation was a risk factor for the tumor recurrence (p = 1.7 × ­10−2, Hazard Ratio 4.08, 95% Confdence Interval 1.28–13.0). Assessment of the embryological origin of the meninges may provide novel insights into the pathomechanism of meningiomas. Meningiomas are the most common primary intracranial tumors accounting for 20% of all such tumors.
    [Show full text]
  • Differentiation of the Cerebellum 2463
    Development 128, 2461-2469 (2001) 2461 Printed in Great Britain © The Company of Biologists Limited 2001 DEV1660 Inductive signal and tissue responsiveness defining the tectum and the cerebellum Tatsuya Sato, Isato Araki‡ and Harukazu Nakamura* Department of Molecular Neurobiology, Institute of Development, Aging and Cancer, Seiryo-machi 4-1, Aoba-ku, Sendai 980- 8575, Japan ‡Present address: Department of Neurobiology, University of Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany *Author for correspondence (e-mail: [email protected]) Accepted 11 April 2001 SUMMARY The mes/metencephalic boundary (isthmus) has an Fgf8b repressed Otx2 expression, but upregulated Gbx2 and organizing activity for mesencephalon and metencephalon. Irx2 expression in the mesencephalon. As a result, Fgf8b The candidate signaling molecule is Fgf8 whose mRNA is completely changed the fate of the mesencephalic alar plate localized in the region where the cerebellum differentiates. to cerebellum. Quantitative analysis showed that Fgf8b Responding to this signal, the cerebellum differentiates in signal is 100 times stronger than Fgf8a signal. Co- the metencephalon and the tectum differentiates in the transfection of Fgf8b with Otx2 indicates that Otx2 is a key mesencephalon. Based on the assumption that strong Fgf8 molecule in mesencephalic generation. We have shown by signal induces the cerebellum and that the Fgf8b signal is RT-PCR that both Fgf8a and Fgf8b are expressed, Fgf8b stronger than that of Fgf8a, we carried out experiments to expression prevailing in the isthmic region. The results all misexpress Fgf8b and Fgf8a in chick embryos. Fgf8a did not support our working hypothesis that the strong Fgf8 signal affect the expression pattern of Otx2, Gbx2 or Irx2.
    [Show full text]